高中数学对数函数指数函数经典题型练习(有答案)
高一数学指数函数和对数函数试题答案及解析

高一数学指数函数和对数函数试题答案及解析一、选择题1. 函数 y = 2^x 的反函数是()A. y = log2(x)B. y = log(x)C. y = log2(x+1)D. y = log2(x-1)答案:A解析:由指数函数与对数函数的关系,我们知道指数函数y = 2^x 的反函数是对数函数 y = log2(x)。
因此,选项A正确。
2. 函数 y = log3(x) 的定义域是()A. x > 0B. x ≥ 1C. x < 0D. x ≤ 1答案:A解析:对数函数 y = log3(x) 的定义域是 x > 0,因为对数函数要求真数大于0。
所以选项A正确。
二、填空题1. 函数 y = 3^x 在 x = 2 时的函数值是________。
答案:9解析:将 x = 2 代入函数 y = 3^x,得到 y = 3^2 = 9。
2. 函数 y = log5(x) 在 x = 25 时的函数值是________。
答案:2解析:将 x = 25 代入函数 y = log5(x),得到 y =log5(25) = 2。
三、解答题1. 已知函数 y = 2^x 和 y = log2(x),求它们的交点坐标。
解析:为了求出两个函数的交点坐标,我们可以将两个函数相等,即:2^x = log2(x)对上式两边取以2为底的对数,得到:log2(2^x) = log2(log2(x))x = log2(log2(x))这是一个关于 x 的方程,我们可以通过换元法求解。
设t = log2(x),则原方程可化为:t = log2(t)2^t = t这是一个二次方程,我们可以通过解二次方程的方法求解。
将方程两边移项,得到:2^t - t = 0设 f(t) = 2^t - t,求导得到 f'(t) = 2^t ln(2) - 1。
令 f'(t) = 0,解得 t = log2(ln(2))。
指数函数与对数函数高考题及答案

指数函数与对数函数(一)选择题(共15题)1.(安徽卷文7)设232555322555a b c ===(),(),(),则a ,b ,c 的大小关系是 (A )a >c >b (B )a >b >c (C )c >a >b (D )b >c >a【答案】A【解析】25y x =在0x >时是增函数,所以a c >,2()5xy =在0x >时是减函数,所以c b >。
【方法总结】根据幂函数与指数函数的单调性直接可以判断出来.2.(湖南卷文8)函数y=ax2+ bx 与y= ||log b ax(ab ≠0,| a |≠| b |)在同一直角坐标系中的图像可能是【答案】D【解析】对于A 、B 两图,|b a |>1而ax2+ bx=0的两根之和为 -b a ,由图知0<-b a <1得-1<ba <0,矛盾,对于C 、D 两图,0<|b a |<1,在C 图中两根之和-b a <-1,即ba >1矛盾,选D 。
3.(辽宁卷文10)设525bm ==,且112a b +=,则m =(A(B )10 (C )20 (D )100 【答案】D解析:选A.211log 2log 5log 102,10,m m m m a b +=+==∴=又0,m m >∴=4.(全国Ⅰ卷理8文10)设a=3log 2,b=In2,c=125-,则A. a<b<cB.b<c<aC. c<a<b D .c<b<a 【答案】C【解析】 a=3log 2=21log 3, b=In2=21log e ,而22log 3log 1e >>,所以a<b,c=125-=,而222log 4log 3>=>,所以c<a,综上c<a<b.【命题意图】本小题以指数、对数为载体,主要考查指数函数与对数函数的性质、实数大小的比较、换底公式、不等式中的倒数法则的应用.5.(全国Ⅰ卷理10)已知函数F(x)=|lgx|,若0<a<b,且f(a)=f(b),则a+2b 的取值范围是(A))+∞(B))+∞ (C)(3,)+∞(D)[3,)+∞【答案】A【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+2b 2a a =+>,从而错选A,这也是命题者的用苦良心之处.【解析】因为 f(a)=f(b),所以|lga|=|lgb|,所以a=b(舍去),或1b a =,所以a+2b=2a a +又0<a<b,所以0<a<1<b ,令2()f a a a =+,由“对勾”函数的性质知函数()f a 在a ∈(0,1)上为减函数,所以f(a)>f(1)=1+21=3,即a+2b 的取值范围是(3,+∞).6.(全国Ⅰ卷文7)已知函数()|lg |f x x =.若a b ≠且,()()f a f b =,则a b +的取值范围是(A)(1,)+∞ (B)[1,)+∞ (C) (2,)+∞ (D) [2,)+∞【答案】C【命题意图】本小题主要考查对数函数的性质、函数的单调性、函数的值域,考生在做本小题时极易忽视a 的取值范围,而利用均值不等式求得a+b=12a a +≥,从而错选D,这也是命题者的用苦良心之处. 7.(山东卷文3)函数()()2log 31x f x =+的值域为A.()0,+∞ B. )0,+∞⎡⎣ C. ()1,+∞ D. )1,+∞⎡⎣ 【答案】A【解析】因为311x+>,所以()()22log 31log 10x f x =+>=,故选A 。
高中数学第四章指数函数与对数函数经典大题例题(带答案)

高中数学第四章指数函数与对数函数经典大题例题单选题1、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A2、已知函数f(x)=log a(x−b)(a>0且a≠1,a,b为常数)的图象如图,则下列结论正确的是()A.a>0,b<−1B.a>0,−1<b<0C.0<a<1,b<−1D.0<a<1,−1<b<0答案:D分析:根据函数图象及对数函数的性质可求解.因为函数f (x )=log a (x −b )为减函数,所以0<a <1又因为函数图象与x 轴的交点在正半轴,所以x =1+b >0,即b >−1 又因为函数图象与y 轴有交点,所以b <0,所以−1<b <0, 故选:D3、定义在R 上的奇函数f(x)在(−∞,0]上单调递增,且f(−2)=−2,则不等式f(lgx)−f (lg 1x )>4的解集为( )A .(0,1100)B .(1100,+∞)C .(0,100)D .(100,+∞) 答案:D分析:利用函数为奇函数,将不等式转化为f(lgx)>f (2),再利用函数的单调性求解. 因为函数f(x)为奇函数,所以f(−x)=−f (x ),又f(−2)=−2,f(2)=2,所以不等式f(lgx)−f (lg 1x )>4,可化为2f(lgx)>4=2f (2),即f(lgx)>f (2),又因为f(x)在(−∞,0]上单调递增, 所以f(x)在R 上单调递增, 所以lgx >2, 解得x >100. 故选:D.4、已知函数f(x)=3|x|+x 2+2,则f(2x −1)>f(3−x)的解集为( ) A .(−∞,43)B .(43,+∞)C .(−2,43)D .(−∞,−2)∪(43,+∞)答案:D分析:根据函数奇偶性可得f(x)为偶函数,根据解析式直接判断函数在[0,+∞)上的单调性,则可结合奇偶性与单调性解不等式得解集.解:因为f(x)=3|x|+x 2+2,则x ∈R所以f(−x)=3|−x|+(−x)2+2=3|x|+x2+2=f(x),则f(x)为偶函数,当x⩾0时,f(x)=3x+x2+2,又y=3x,y=x2+2在[0,+∞)上均为增函数,所以f(x)在[0,+∞)上为增函数,所以f(2x−1)>f(3−x),即|2x−1|>|3−x|,解得x<−2或x>43,所以f(2x−1)>f(3−x)的解集为(−∞,−2)∪(43,+∞).故选:D.5、已知函f(x)=log2(√1+4x2+2x)+3,且f(m)=−5,则f(−m)=()A.−1B.−5C.11D.13答案:C分析:令g(x)=log2(√1+4x2+2x),则f(x)=g(x)+3,则先判断函数g(−x)+g(x)=0,进而可得f(−x)+f(x)=6,即f(m)+f(−m)=6,结合已知条件即可求f(−m)的值.令g(x)=log2(√1+4x2+2x),则f(x)=g(x)+3,因为g(x)+g(−x)=log2(√1+4x2+2x)+log2(√1+4x2−2x)=log2(1+4x2−4x2)=0,所以f(−x)+f(x)=g(−x)+3+g(x)+3=6,则f(m)+f(−m)=6,又因为f(m)=−5,则f(−m)=11,故选:C.6、设2a=5b=m,且1a +1b=2,则m=()A.√10B.10C.20D.100 答案:A分析:根据指数式与对数的互化和对数的换底公式,求得1a =log m2,1b=log m5,进而结合对数的运算公式,即可求解.由2a=5b=m,可得a=log2m,b=log5m,由换底公式得1a =log m2,1b=log m5,所以1a +1b=log m2+log m5=log m10=2,又因为m>0,可得m=√10.故选:A.7、化简√a3b2√ab23(a14b12)4⋅√a3(a>0,b>0)的结果是()A.ba B.abC.a2bD.b2a答案:B分析:直接利用根式与分数指数幕的互化及其化简运算,求解即可.√a3b2√ab23(a 14b12)4⋅√ba=a32b⋅a16b13(a14b12)4⋅a−13⋅b13=a32+16−1+13b1+13−2−13=ab−1=ab故选:B8、函数y=log2(2x−x2)的单调递减区间为()A.(1,2)B.(1,2]C.(0,1)D.[0,1)答案:A分析:先求出函定义域,再通过换元法利用复合函数“同增异减”的性质得到结果由2x−x2>0,得0<x<2,令t=2x−x2,则y=log2t,t=2x−x2在(0,1)上递增,在(1,2)上递减,因为y=log2t在定义域内为增函数,所以y=log2(2x−x2)的单调递减区间为(1,2),故选:A多选题9、已知函数f(x)=|lgx|,则()A.f(x)是偶函数B.f(x)值域为[0,+∞)C.f(x)在(0,+∞)上递增D.f(x)有一个零点答案:BD分析:画出f(x)的函数图象即可判断.画出f(x)=|lgx|的函数图象如下:由图可知,f(x)既不是奇函数也不是偶函数,故A错误;f(x)值域为[0,+∞),故B正确;f(x)在(0,1)单调递减,在(1,+∞)单调递增,故C错误;f(x)有一个零点1,故D正确.故选:BD.10、已知函数f(x)={x2,x∈(−∞,0), lnx,x∈(0,1),−x2+4x−3,x∈[1,+∞),若函数g(x)=f(x)−m恰有2个零点,则实数m可以是()A.−1B.0C.1D.2答案:ABC分析:转化为函数y=f(x)的图象与直线y=m恰有两个交点,画出函数f(x)的图象,根据图象可得解.因为函数g(x)=f(x)−m恰有2个零点,所以函数y=f(x)的图象与直线y=m恰有两个交点,画出函数f(x)的图象如图:由图可知,m=1或m≤0,结合选项,因此m可以为-1,0,1.故选:ABC.小提示:方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.11、已知函数f(x)=1−2x1+2x,g(x)=lg(√x2+1−x),则()A.函数f(x)为偶函数B.函数g(x)为奇函数C.函数F(x)=f(x)+g(x)在区间[−1,1]上的最大值与最小值之和为0D.设F(x)=f(x)+g(x),则F(2a)+F(−1−a)<0的解集为(1,+∞)答案:BCD分析:根据题意,利用奇偶性,单调性,依次分析选项是否正确,即可得到答案对于A:f(x)=1−2x1+2x ,定义域为R,f(−x)=1−2−x1+2−x=−1−2x1+2x=−f(x),则f(x)为奇函数,故A错误;对于B:g(x)=lg(√x2+1−x),定义域为R,g(−x)=lg(√(−x)2+1−(−x))=−lg(√x2+1−x)=−g(x),则g(x)为奇函数,故B正确;对于C :F (x )=f (x )+g (x ),f (x ),g (x )都为奇函数, 则F (x )=f (x )+g (x )为奇函数,F (x )=f (x )+g (x )在区间[−1,1]上的最大值与最小值互为相反数, 必有F (x )在区间[−1,1]上的最大值与最小值之和为0,故C 正确; 对于D :f (x )=1−2x 1+2x =−(2x +1−22x +1)=22x +1−1,则f (x )在R 上为减函数,g (x )=lg(√x 2+1−x)=√x 2+1+x,则g (x )在R 上为减函数,则F (x )=f (x )+g (x )在R 上为减函数, 若F (2a )+F (−1−a )<0即F (2a )<F (1+a ), 则必有2a >1+a ,解得a >1,即F (2a )+F (−1−a )<0的解集为(1,+∞),故D 正确; 故选:BCD12、若函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,则必有( ). A .0<a <1B .a >1C .b >0D .b <0 答案:BC分析:对底数a 分情况讨论即可得答案.解:若0<a <1,则y =a x −(b +1)的图像必过第二象限,而函数y =a x −(b +1)(a >0且a ≠1)的图像过第一、三、四象限,所以a >1.当a >1时,要使y =a x −(b +1)的图像过第一、三、四象限,则b +1>1,即b >0. 故选:BC小提示:此题考查了指数函数的图像和性质,属于基础题.13、若f (x )满足对定义域内任意的x 1,x 2,都有f (x 1)+f (x 2)=f (x 1⋅x 2),则称f (x )为“好函数”,则下列函数是“好函数”的是( )A .f (x )=2xB .f (x )=(12)xC .f (x )=log 12x D .f (x )=log 3x答案:CD分析:利用“好函数”的定义,举例说明判断A ,B ;计算判断C ,D 作答.对于A ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=6,f (x 1⋅x 2)=4, 则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),A 不是;对于B ,函数f (x )定义域为R ,取x 1=1,x 2=2,则f (x 1)+f (x 2)=34,f (x 1⋅x 2)=14,则存在x 1,x 2,使得f (x 1)+f (x 2)≠f (x 1⋅x 2),B 不是;对于C ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 12x 1+log 12x 2=log 12(x 1x 2)=f (x 1⋅x 2),C 是;对于D ,函数f (x )定义域{x|x >0}内任意的x 1,x 2,f (x 1)+f (x 2)=log 3x 1+log 3x 2=log 3(x 1x 2)=f (x 1⋅x 2),D 是. 故选:CD 填空题14、已知0<a <1,化简:√a 43−2a +a 23=______. 答案:a 13−a 23分析:根据指数幂的基本运算结合指数函数的性质即可求解. 解:√a 43−2a +a 23=√(a 23−a 13)2=|a 23−a 13|,因为0<a <1,23>13,所以a 23<a 13,所以√a 43−2a +a 23=a 13−a 23.所以答案是:a 13−a 23. 15、计算:27−13−(−17)−2+25634−3−1+(√2−1)0=_______.答案:16分析:根据指数幂的运算性质直接求解即可.27−13−(−17)−2+25634−3−1+(√2−1)0=(33)−13−(−7)2+(44)34−13+1=13−49+64−13+1=16. 所以答案是:16.16、若f (x )=1+a3x +1(x ∈R )是奇函数,则实数a =___________.答案:−2分析:利用f(0)=0可求得a,验证可知满足题意.∵f(x)定义域为R,且f(x)为奇函数,∴f(0)=1+a2=0,解得:a=−2;当a=−2时,f(x)=1−23x+1=3x−13x+1,∴f(−x)=3−x−13−x+1=1−3x1+3x=−f(x),∴f(x)为R上的奇函数,满足题意;综上所述:a=−2.所以答案是:−2.解答题17、已知函数f(x)=ln(2x2+ax+3).(1)若f(x)是定义在R上的偶函数,求a的值及f(x)的值域;(2)若f(x)在区间[−3,1]上是减函数,求a的取值范围.答案:(1)a=0,[ln3,+∞);(2)a∈(−5,−4]解析:(1)根据偶函数的定义,求出a=0,得f(x)=ln(2x2+3),验证定义域是否关于原点对称,求出真数的范围,再由对数函数的单调性,即可求出值域;(2)u(x)=2x2+ax+3,g(u)=lnu,由条件可得,u(x)=2x2+ax+3在[−3,1]上是减函数,且u(x)>0在[−3,1]上恒成立,根据二次函数的单调性,得出参数a的不等式,即可求解.解:(1)因为f(x)是定义在R上的偶函数,所以f(x)=f(−x),所以ln(2x2+ax+3)=ln(2x2−ax+3),故a=0,此时,f(x)=ln(2x2+3),定义域为R,符合题意.令t=2x2+3,则t⩾3,所以lnt⩾ln3,故f(x)的值域为[ln3,+∞).(2)设u(x)=2x2+ax+3,g(u)=lnu.因为f(x)在[−3,1]上是减函数,所以u(x)=2x2+ax+3在[−3,1]上是减函数,且u(x)>0在[−3,1]上恒成立,故{−a4⩾1,u(x)min =u(1)=5+a >0,解得−5<a ≤−4,即a ∈(−5,−4].小提示:本题考查函数的性质,涉及到函数的奇偶性、单调性、值域,研究函数的性质要注意定义域,属于中档题.18、定义在D 上的函数f(x),如果满足:对任意x ∈D ,存在常数M >0,都有|f(x)|≤M 成立,则称f(x)是D 上的有界函数,其中M 称为函数f(x)的上界,已知函数f(x)=14x+a 2x+1.(1)当a =-1时,求函数f(x)在(-∞,0)上的值域,并判断函数f(x)在(-∞,0)上是否为有界函数,请说明理由; (2)若函数f(x)在[0,+∞)上是以3为上界的有界函数,求实数a 的取值范围. 答案:(1)(1,+∞),函数f(x)在(-∞,0)上不是有界函数,理由见解析; (2)[-5,1].分析:(1)应用换元法及二次函数的性质求y =t 2-t +1在(1,+∞)上的值域,即知f(x)的值域,进而判断f(x)是否为有界函数.(2)将问题转化为−(t +4t)≤a ≤2t−t 对t ∈(0,1]恒成立,求a 的取值范围.(1)当a =-1时,y =f(x)=(12)2x −(12)x +1 (x <0),令t =(12)x ,x <0,∴t >1,y =t 2-t +1=(t −12)2+34,∴y >1,即函数f(x)在(-∞,0)上的值域为(1,+∞), ∴不存在常数M >0,使得|f(x)|≤M 成立. ∴函数f(x)在(-∞,0)上不是有界函数. (2)由题意知,|f(x)|≤3对x ∈[0,+∞)恒成立,即-3≤f(x)≤3对x ∈[0,+∞)恒成立, 令t =(12)x ,x ≥0,则t ∈(0,1].∴−(t +4t)≤a ≤2t−t 对t ∈(0,1]恒成立,即[−(t +4t)]max ≤a ≤(2t−t)min .设h (t )=−(t +4t ),p (t )=2t −t ,t ∈(0,1],∵h(t)在(0,1]上递增,p(t)在(0,1]上递减,∴h(t)在(0,1]上的最大值为h(1)=-5,p(t)在(0,1]上的最小值为p(1)=1. ∴实数a的取值范围为[-5,1].。
指数函数与对数函数专项训练(解析版)

指数函数与对数函数专项训练一、单选题1.(23-24高一下·云南玉溪·期末)函数()()2lg 35f x x x =-的定义域为()A .()0,∞+B .50,3⎛⎫⎪C .()5,0,3∞∞⎛⎫-⋃+ ⎪D .5,3⎛⎫+∞ ⎪【答案】C【详解】由题意知,2350x x ->,即(35)0x x ->,所以0x <或53x >.故选:C.2.(23-24高一上·云南昭通·期末)函数()327x f x x =+-的零点所在的区间是()A .()0,1B .31,2⎛⎫ ⎪⎝⎭C .3,22⎛⎫⎪D .()2,3【答案】B【详解】∵3x y =和27y x =-均在R 上单调递增,∴()327x f x x =+-在R 上单调递增;又()12f =-,327402f ⎛⎫=-> ⎪⎝⎭,∴()f x 在31,2⎛⎫ ⎪⎝⎭上有唯一的零点,故选:B.3.(23-24高一上·云南昆明·期末)滇池是云南省面积最大的高原淡水湖,一段时间曾由于人类活动的加剧,滇池水质恶化,藻类水华事件频发.在适当的条件下,藻类的生长会进入指数增长阶段.滇池外海北部某年从1月到7月的水华面积占比符合指数增长,其模型为23 1.65x y -=⨯.经研究“以鱼控藻”模式能有效控制藻类水华.如果3月开始向滇池投放一定量的鱼群后,鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,将两函数模型放在同期进行比较,如图所示.下列说法正确的是(参考数据:671.6520.2,1.6533.3≈≈)()A .水华面积占比每月增长率为1.65B .如果不采取有效措施,到8月水华的面积占比就会达到60%左右C .“以鱼控藻”模式并没有对水华面积占比减少起到作用D .7月后滇池藻类水华会因“以鱼控藻”模式得到彻底治理【答案】B【详解】对于A ,由于模型23 1.65x y -=⨯呈指数增长,故A 错误;对于B ,当8x =时,8220.63 1.605326.y -⨯==⨯≈,故B 正确;对于C ,因为鱼群消耗水华面积占比呈现一次函数 5.213.5y x =-,所以“以鱼控藻”模式对水华面积占比减少起到作用,故C 错误;对于D ,由两函数模型放在同期进行比较的图象可知,7月后滇池藻类水华并不会因“以鱼控藻”模式得到彻底治理,故D 错误.故选:B.4.(23-24高一上·云南昭通·期末)()()1log 14a f x x =-+(0a >且1a ≠)的图象恒过定点M ,幂函数()g x 过点M ,则12g ⎛⎫⎪⎝⎭为()A .1B .2C .3D .4【答案】D【详解】()()1log 14a f x x =-+,令11x -=,得2x =,()124f =,则()()1log 14a f x x =-+(0a >且1a ≠)恒过定点12,4M ⎛⎫⎪⎝⎭,设()g x x α=,则124α=,即2α=-,即()2g x x -=,∴142g ⎛⎫= ⎪⎝⎭,故选:D.5.(23-24高一下·云南楚雄·期末)已知0.320.3lo g 3,2,lo g 2a b c -===,则()A .c b a <<B .<<b c aC .<<c a bD .a b c<<【答案】A【详解】因为2log y x =在(0,)+∞上单调递增,且234<<,所以222log 2log 3log 4<<,所以21log 32<<,即12a <<,因为2x y =在R 上递增,且0.30-<,所以0.300221-<<=,即01b <<,因为0.3log y x =在(0,)+∞上单调递减,且12<,所以0.30.3log 1log 2>,所以0.3log 20<,即0c <,所以c b a <<.故选:A6.(23-24高一上·云南·期末)若()21()ln 1||f x x x =+-,设()0.3(3),(ln2),2a f b f c f =-==,则a ,b ,c 的大小关系为()A .c a b >>B .b c a >>C .a b c >>D .a c b>>【答案】D【详解】由题意知()(),00,x ∈-∞⋃+∞,由()()()21ln 1f x x f x x⎡⎤-=-+-=⎣⎦-,所以()f x 为偶函数,图象关于y 轴对称,当0x >时,由复合函数的单调性法则知()f x 随x 的增大而增大,即()0,x ∈+∞,()21()ln 1||f x x x =+-单调递增,因为()()33a f f =-=,()0.3(ln2),2b f c f ==,且00.3112222=<<=,0ln2lne 1<<=,所以0.3ln 223<<,所以()()()0.3ln223f f f <<-,即b c a <<,也就是a c b >>.故选:D7.(23-24高一下·云南·期末)设222,0()log ,0x x f x x x ⎧+≤⎪=⎨>⎪⎩,若关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则实数a 的取值范围是()A .[]1,2B .(2,3]C .()2,+∞D .()3,+∞【答案】B【详解】方程2[()](2)()20f x a f x a -++=化为[()2][()]0f x f x a --=,解得()2f x =或()f x a =,函数()f x 在(,0]-∞上单调递增,函数值的集合为(2,3],在(0,1]上单调递减,函数值的集合为[0,)+∞,在[1,)+∞上单调递增,函数值的集合为[0,)+∞,在同一坐标系内作出直线2,y y a ==与函数()y f x =的图象,显然直线2y =与函数()y f x =的图象有两个交点,由关于x 的方程2[()](2)()20f x a f x a -++=恰有5个不同实数解,则直线y a =与函数()y f x =的图象有3个交点,此时23a <≤,所以实数a 的取值范围是(2,3].故选:B8.(23-24高一下·云南昆明·期末)若()12:lo g 11,:39a p a q --<<,则p 是q 的()条件A .充分不必要B .必要不充分C .充要D .既不充分也不必要【答案】A【详解】对于()22:log 11log 2p a -<=,则012a <-<,解得13a <<;对于1:39a q -<,则12a -<,解得3a <;因为{}|13a a <<是{}|3a a <的真子集,所以p 是q 的充分不必要条件.故选:A.二、多选题9.(23-24高一上·云南迪庆·期末)已知函数()()2ln 2f x x x =-,则下列结论正确的是()A .函数()f x 的单调递增区间是[)1,+∞B .函数()f x 的值域是RC .函数()f x 的图象关于1x =对称D .不等式()ln 3f x <的解集是()1,3-【答案】BC【详解】对于A ,当1x =时,2210x x -=-<,此时()()2ln 2f x x x =-无意义,故A 错误;对于B ,由于()22y g x x x ==-的值域为[)1,-+∞,满足()[)0,1,+∞⊆-+∞,所以函数()f x 的值域是R ,故B 正确;对于C ,由题意()()()22ln 2ln 11f x x x x ⎡⎤=-=--⎣⎦,且定义域为()(),02,-∞+∞ ,它满足()()()21ln 11f x x f x+=-=-,即函数()f x 的图象关于1x =对称,故C 正确;对于D ,由于()f x 的定义域为()(),02,-∞+∞ ,故D 错误.故选:BC.10.(23-24高一上·云南昆明·期末)已知函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩,若1234x x x x <<<,且()()()()1234fx fx fx fx ===,则下列结论中正确的是()A .122x x +=-B .1204x x <<C .()41,4x ∈D .342x x +的取值范围是332,4⎡⎫⎪⎢⎣⎭【答案】BC【详解】作出函数2212,0()2|log ,0x x x f x x x ⎧--≤⎪=⎨⎪⎩的图像如图.对于选项A,根据二次函数的对称性知,12()224x x +=⨯=--,故A 项错误;对于选项B ,因120x x <<,由上述分析知124x x +=-,则21212120()()()42x x x x x x --<=-⋅-≤=,因12x x ≠,故有1204x x <<,即B 项正确;对于选项C ,如图,因0x ≤时,2211()2(2)2222f x x x x =--=-++≤,0x >时,2()|log |f x x =,依题意须使20|log |2x <<,由2|log |0x >得1x ≠,由2|log |2x <解得:144x <<,故有3411,144x x <<<<,即C项正确;对于选项D ,由图知2324log log x x -=,可得341x x =,故431x x =,则343322x x x x ++=,3114x <<,不妨设21,(,1)4y x x x =+∈,显然函数2y x x =+在(1,14)上单调递减,故23334x x <+<,即342x x +的取值范围是(333,4),故D 项错误.故选:BC.11.(23-24高一上·云南昆明·期末)关于函数()ln f x x x =+,以下结论正确的是()A .方程()0f x =有唯一的实数解c ,且(0,1)c ∈B .对,0,()()()x y f xy f x f y ∀>=+恒成立C .对()1212,0x x x x ∀>≠,都有()()1212f x f x x x ->-D .对12,0x x ∀>,均有()()121222f x f x x x f ++⎛⎫≤⎪【答案】AC【详解】A 选项,由于1y x =在R 上单调递增,2ln y x =在()0,∞+上单调递增,故()ln f x x x =+在定义域()0,∞+上单调递增,又()11ln 30,11033f f ⎛⎫=-<=> ⎪⎝⎭,故由零点存在性定理可得,方程()0f x =有唯一的实数解c ,且(0,1)c ∈,A 正确;B 选项,()ln f xy xy xy =+,()()ln ln ln f x f y x x y y x y xy +=+++=++,显然,0x y ∀>,由于xy 与x y +不一定相等,故()()f x f y +与()f xy 不一定相等,B 错误;C 选项,由A 选项可知,()ln f x x x =+在定义域()0,∞+上单调递增,对()1212,0x x x x ∀>≠,都有()()12120f x f x x x ->-,C 正确;D 选项,12,0x x ∀>,均有121212ln 222x xx x x x f +++⎛⎫=+ ⎪⎝⎭,()()12112212121212ln ln ln ln 22222f x f x x x x x x x x x x x x x ++++++==+=+,由于12122x x x x +≥,当且仅当12x x =时,等号成立,故1212ln ln 2x x x x +≥,即()()121222f x f x x x f ++⎛⎫≥ ⎪⎝⎭,D 错误.故选:AC 三、填空题12.(23-24高一上·云南昆明·期末)()()2,(1)29,1x a x f x x ax a x ⎧>⎪=⎨-++-≤⎪⎩是R 上的单调递增函数,则实数a 的取值范围为.【答案】[]2,5【详解】因为在R 递增,则112129a a a a a⎧⎪⎪≥⎨⎪-++-≤⎪⎩>,解得:25a ≤≤,故答案为:[]2,513.(23-24高一下·云南昆明·期末)设函数()ln(1)f x x =+,2()g x x a =-+,若曲线()y f x =与曲线()y g x =有两个交点,则实数a 的取值范围是.【答案】(0,)+∞【详解】当0x ≥时,()ln(1),f x x =+当0x <时()ln(1),f x x =-+函数图象示意图为则2()g x x a =-+与()ln (1)f x x =+有两个零点知a 的取值范围是(0,)+∞.故答案为:(0,).+∞14.(23-24高一下·云南玉溪·期末)苏格兰数学家纳皮尔(J.Napier ,1550-1617)在研究天文学的过程中,经过对运算体系的多年研究后发明的对数,为当时的天文学家处理“大数”的计算大大缩短了时间.即就是任何一个正实数N 可以表示成10(110,)n N a a n =⨯≤<∈Z ,则lg lg (0lg 1)N n a a =+≤<,这样我们可以知道N 的位数为1n +.已知正整数M ,若10M 是10位数,则M 的值为.(参考数据:0.9 1.1107.94,1012.56≈≈)【答案】8或9【详解】依题意可得910101010M ≤<,两边取常用对数可得91010lg10lg lg10M ≤<,即910lg 10M ≤<,所以0.9lg 1M ≤<,即0.91010M ≤<,又M 为正整数,所以8M =或9M =.故答案为:8或9四、解答题15.(23-24高一上·云南昆明·期末)设函数()log (3)(,10a f x x a =-+>且1)a ≠.(1)若(12)3f =,解不等式()0f x >;(2)若()f x 在[4,5]上的最大值与最小值之差为1,求a 的值.【答案】(1)10(,)3+∞(2)2a =或12a =【详解】(1)由(12)3f =可得log (123)13a -+=,解得3a =,即3()log (3)1,(3)f x x x =-+>,则()0f x >,即3log (3)10x -+>,即310,1333x x x >⎧⎪∴>⎨->⎪⎩,故不等式()0f x >的解集为10(,)3+∞;(2)由于()f x 在[4,5]上的最大值与最小值之差为1,故log 11(log 21)1a a +-+=,即log 21,2a a =∴=或12a =,即a 的值为2a =或12a =.16.(23-24高一上·云南昭通·期末)化简求值:(1)()13103420.027π4160.49--++;(2)ln22311lg125lg40.1e log 9log 1632-+++⨯.【答案】(1)8(2)9【详解】(1)()13103420.027π4160.49--++()()()1313423420.3120.7⎡⎤⎡⎤⎡⎤=-++⎣⎦⎣⎦⎣⎦0.3180.78=-++=;(2)ln22311lg125lg4lg 0.1e log 9log 1632-++++⨯3211112lg34lg2lg5lg23222lg2lg3=+-++⨯lg 5lg28=++9=.17.(23-24高一上·云南·期末)已知定义域为R 的函数()11333xx m f x +-⋅=+是奇函数.(1)求m 的值并利用定义证明函数()f x 的单调性;(2)若对于任意t ∈R ,不等式()()22620f t t f t k -+-<恒成立,求实数k 的取值范围.【答案】(1)1m =,证明见解析(2)3k <-【详解】(1)因为()f x 是奇函数,函数的定义域为R ,所以(0)0f =,所以1033m-=+,所以1m =,经检验满足()()f x f x -=-易知()11312133331x x x f x +-⎛⎫==-+ ⎪++⎝⎭设12x x <,则2112122(33)()()3(31)(31)x x x x f x f x --=++因为3x y =在实数集上是增函数,故12()()0f x f x ->.所以()f x 在R 上是单调减函数(2)由(1)知()f x 在(,)-∞+∞上为减函数.又因为()f x 是奇函数,所以()()22620f t t f t k -+-<等价于()()2262f t t f k t-<-,因为()f x 为减函数,由上式可得:2262t t k t ->-.即对一切t R ∈有:2360t t k -->,从而判别式361203k k ∆=+<⇒<-.所以k 的取值范围是3k <-.18.(23-24高一下·云南昆明·期末)已知函数1()xx f x a a ⎛⎫=- ⎪⎝⎭ (0a >且1a ≠).(1)讨论()f x 的单调性(不需证明);(2)若2a =,(ⅰ)解不等式3()2≤f x x;(ⅱ)若21()(22))2(x g f x t x x f +=-+在区间[]1,1-上的最小值为74-,求t 的值.【答案】(1)答案见解析(2)(ⅰ)(](],10,1-∞-⋃;(ⅱ)2t =-或2t =【详解】(1)若1a >,则1()()x xf x a a=-在R 上单调递增;若01a <<,则1()()x xf x a a=-在R 上单调递减.(2)(ⅰ)3()2≤f x x ,即132()022xx x --≤,设13()2()22xx g x x=--,则(1)0g =,()()g x g x -=-,所以()g x 为奇函数,当0x >时,()g x 单调递增,由()(1)g x g ≤,解得01x <≤,根据奇函数的性质,当0x <时,()(1)g x g ≤的解为1x ≤-,综上所述,3()2≤f x x的解集为(](],10,1-∞-⋃.(ⅱ)2122()2(2)2()222(22)x x x x x g x f x tf x t +--=-+=++-,令22x x m --=,因为[]1,1x ∈-,则33,22m ⎡⎤∈-⎢⎥⎣⎦,所以2()()22g x h m m tm ==++,其图象为开口向上,对称轴为m t=-的抛物线,①当32t -≤-,即32t ≥时,min 39177()()3232444h m h t t =-=-+=-=-,解得2t =.②当3322t -<-<,即3322t -<<时,222min 7()()2224h m h t t t t =-=-+=-+=-,解得1152t =,2152t =-矛盾.③当32t -≥,即32t ≤-时,min 39177()()3232444h m h t t ==++=+=-,解得2t =-.综上所述,2t =-或2t =.19.(23-24高一上·云南昆明·期末)函数()e (0)x f x mx m =-<.(1)求(1)f -和(0)f 的值,判断()f x 的单调性并用定义加以证明;(2)设0x 是函数()f x 的一个零点,当1em <-时,()02f x k >,求整数k 的最大值.【答案】(1)1(1)e f m --=+,(0)1f =,()f x 在定义域R 上单调递增,证明见解析,(2)整数k 的最大值为1-【详解】(1)1(1)e f m --=+,(0)1f =,判断()f x 在定义域R 上单调递增,证明如下:在R 上任取1x ,2x ,且12x x <,则1212121212()()e (e )(e e )()x x x x f x f x mx mx m x x -=---=---,因为12x x <,0m <,所以12e e x x <,120x x -<,0m ->,所以12e e 0x x -<,12()0m x x --<,所以1212(e e )()0x x m x x ---<,即12())0(f x f x -<,所以12()()f x f x <,所以()f x 在定义域R 上单调递增.(2)由题意得0()0f x =,即00e 0x mx -=,1em <-,则10e m +<,即0(1)0()f f x -<=,由()f x 是R 上的增函数,所以01x -<,又0(0)10()f f x =>=,所以010x -<<,0200(2)e 2x f x mx =-002e 2e x x =-,令01e (ext =∈,1),则22()2(1)1g t t t t =-=--,所以()g t 在1(e ,1)上单调递减,所以()()11g t g >=-,即0(2)1f x >-,当1em <-时,0(2)f x k >,所以1k ≤-,所以整数k 的最大值为1-.。
(精选试题附答案)高中数学第四章指数函数与对数函数真题

(名师选题)(精选试题附答案)高中数学第四章指数函数与对数函数真题单选题1、设a=log2π,b=log6π,则()A.a−b<0<ab B.ab<0<a−bC.0<ab<a−b D.0<a−b<ab答案:D分析:根据对数函数的性质可得a−b>0,ab>0,1b −1a<1,由此可判断得选项.解:因为a=log2π>log22=1,0=log61<b=log6π<log66=1,所以a>1,0<b<1,所以a−b>0,ab>0,故排除A、B选项;又1b −1a=a−bab=logπ6−logπ2=logπ3<logππ<1,且ab>0,所以0<a−b<ab,故选:D.2、若函数f(x)=x3+x2−2x−2的一个正零点附近的函数值用二分法计算,其参考数据如下:那么方程x3+x2−2x−2=0的一个近似根(精确度0.1)为().A.1.2B.1.4C.1.3D.1.5答案:B分析:根据二分法求零点的步骤以及精确度可求得结果.解:因为f(1)<0,f(1.5)>0,所以f(1)f(1.5)<0,所以函数在(1,1.5)内有零点,因为1.5−1=0.5>0.1,所以不满足精确度0.1;因为f(1.25)<0,所以f(1.25)f(1.5)<0,所以函数在(1.25,1.5)内有零点,因为1.5−1.25=0.25>0.1,所以不满足精确度0.1;因为f(1.375)<0,所以f(1.375)f(1.5)<0,所以函数在(1.375,1.5)内有零点,因为1.5−1.375=0.125>0.1,所以不满足精确度0.1;因为f(1.4375)>0,所以f(1.4375)f(1.375)<0,所以函数在(1.375,1.4375)内有零点,因为1.4375−1.375=0.0625<0.1,所以满足精确度0.1;所以方程x 3+x 2−2x −2=0的一个近似根(精确度0.05)是区间(1.375,1.4375)内的任意一个值(包括端点值),根据四个选项可知选B . 故选:B3、已知55<84,134<85.设a =log 53,b =log 85,c =log 138,则( ) A .a <b <c B .b <a <c C .b <c <a D .c <a <b 答案:A分析:由题意可得a 、b 、c ∈(0,1),利用作商法以及基本不等式可得出a 、b 的大小关系,由b =log 85,得8b =5,结合55<84可得出b <45,由c =log 138,得13c =8,结合134<85,可得出c >45,综合可得出a 、b 、c 的大小关系.由题意可知a 、b 、c ∈(0,1),a b =log 53log 85=lg3lg5⋅lg8lg5<1(lg5)2⋅(lg3+lg82)2=(lg3+lg82lg5)2=(lg24lg25)2<1,∴a <b ;由b =log 85,得8b =5,由55<84,得85b <84,∴5b <4,可得b <45; 由c =log 138,得13c =8,由134<85,得134<135c ,∴5c >4,可得c >45.综上所述,a <b <c . 故选:A.小提示:本题考查对数式的大小比较,涉及基本不等式、对数式与指数式的互化以及指数函数单调性的应用,考查推理能力,属于中等题.4、已知函数f (x )={a +a x ,x ≥03+(a −1)x,x <0(a >0 且a ≠1),则“a ≥3”是“f (x )在R 上单调递增”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案:A分析:先由f(x)在R 上单调递增求得a 的取值范围,再利用充分条件,必要条件的定义即得. 若f(x)在R 上单调递增, 则{a >1a −1>0a +1≥3 , 所以a ≥2,由“a ≥3”可推出“a ≥2”,但由“a ≥2”推不出 “a ≥3”, 所以“a ≥3”是“f(x)在R 上单调递增”的充分不必要条件. 故选:A.5、已知9m =10,a =10m −11,b =8m −9,则( ) A .a >0>b B .a >b >0C .b >a >0D .b >0>a 答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出. [方法一]:(指对数函数性质) 由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b . [方法二]:【最优解】(构造函数) 由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1, 令f ′(x)=0,解得x 0=m11−m,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x)在(1,+∞)上单调递增,所以f(10)>f(8),即a>b,又因为f(9)=9log910−10=0,所以a>0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法;法二:利用a,b的形式构造函数f(x)=x m−x−1(x>1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、已知函数f(x)={2,x>mx2+4x+2,x≤m,若方程f(x)−x=0恰有三个根,那么实数m的取值范围是()A.[−1,2)B.[−1,2]C.[2,+∞)D.(−∞,−1]答案:A分析:由题意得,函数y=f(x)与函数y=x有三个不同的交点,结合图象可得出结果.解:由题意可得,直线y=x与函数f(x)=2(x>m)至多有一个交点,而直线y=x与函数f(x)=x2+4x+2(x≤m)至多两个交点,函数y=f(x)与函数y=x有三个不同的交点,则只需要满足直线y=x与函数f(x)=2(x>m)有一个交点直线y=x与函数f(x)=x2+4x+2(x≤m)有两个交点即可,如图所示,y=x与函数f(x)=x2+4x+2的图象交点为A(−2,−2),B(−1,−1),故有m≥−1.而当m≥2时,直线y=x和射线y=2(x>m)无交点,故实数m的取值范围是[−1,2).故选:A.7、已知x ,y ,z 都是大于1的正数,m >0,log x m =24,log y m =40,log xyz m =12,则log z m 的值为( ) A .160B .60C .2003D .320答案:B分析:根据换底公式将log x m =24,log y m =40,log xyz m =12,化为log m x =124,log m y =140,log m xyz =112,再根据同底数的对数的加减法运算即可得解. 解:因为log x m =24,log y m =40,log xyz m =12, 所以log m x =124,log m y =140,log m xyz =112,即log m x +log m y +log m z =112,∴log m x =112−log m y −log m z =112−124−140=160, ∴log z m =60. 故选:B .8、下列函数中是增函数的为( )A .f (x )=−xB .f (x )=(23)xC .f (x )=x 2D .f (x )=√x 3答案:D分析:根据基本初等函数的性质逐项判断后可得正确的选项. 对于A ,f (x )=−x 为R 上的减函数,不合题意,舍. 对于B ,f (x )=(23)x为R 上的减函数,不合题意,舍. 对于C ,f (x )=x 2在(−∞,0)为减函数,不合题意,舍.对于D,f(x)=√x3为R上的增函数,符合题意,故选:D.9、已知函数f(x)={a x,x<0(a−3)x+4a,x≥0满足对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,则a的取值范围为()A.(0,14]B.(0,1)C.[14,1)D.(0,3)答案:A分析:根据给定不等式可得函数f(x)为减函数,再利用分段函数单调性列出限制条件求解即得.因对任意x1≠x2,都有(x1-x2)[f(x1)-f(x2)]<0成立,不妨令x1<x2,则f(x1)>f(x2),于是可得f(x)为R上的减函数,则函数y=a x在(−∞,0)上是减函数,有0<a<1,函数y=(a−3)x+4a在[0,+∞)上是减函数,有a−3<0,即a<3,并且满足:a0≥f(0),即4a≤1,解和a≤14,综上得0<a≤14,所以a的取值范围为(0,14].故选:A10、如图所示,函数y=|2x−2|的图像是()A.B.C.D.答案:B分析:将原函数变形为分段函数,根据x=1及x≠1时的函数值即可得解.∵y=|2x−2|={2x−2,x≥12−2x,x<1,∴x=1时,y=0,x≠1时,y>0. 故选:B.填空题11、化简:(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)=________.答案:2−1263分析:分析式子可以发现,若在结尾乘以一个(1−12),则可以从后到前逐步使用平方差公式进行计算,为保证恒等计算,在原式末尾乘以(1−12)×2即可﹒原式=(1+1232)(1+1216)(1+128)(1+124)(1+122)(1+12)×(1−12)×2=(1+1232)(1+1216)(1+128)(1+124)(1+122)×(1−122)×2 =(1+1232)(1+1216)(1+128)(1+124)×(1−124)×2=(1+1232)(1+1216)(1+128)×(1−128)×2=(1+1232)(1+1216)×(1−1216)×2=(1+1232)×(1−1232)×2=(1−1264)×2=2−1263所以答案是:2−1263﹒12、不等式log4x≤12的解集为___________.答案:(0,2]分析:根据对数函数的单调性解不等式即可. 由题设,可得:log 4x ≤log 4412,则0<x ≤412=2, ∴不等式解集为(0,2]. 所以答案是:(0,2].13、在用二分法求函数f (x )的零点近似值时,若第一次所取区间为[−2,6],则第三次所取区间可能是______.(写出一个符合条件的区间即可) 答案:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可). 分析:根据二分法的概念,可求得结果.第一次所取区间为[−2,6],则第二次所取区间可能是[−2,2],[2,6];第三次所取区间可能是[−2,0],[0,2],[2,4],[4,6].所以答案是:[−2,0]或[0,2]或[2,4]或[4,6](写一个即可).14、设函数f(x)={2x +1,x ≤0|lgx |,x >0,若关于x 的方程f 2(x )−af (x )+2=0恰有6个不同的实数解,则实数a 的取值范围为______. 答案:(2√2,3)分析:作出函数f(x)的图象,令f(x)=t ,结合图象可得,方程t 2−at +2=0在(1,2]内有两个不同的实数根,然后利用二次函数的性质即得;作出函数f(x)={2x +1,x ≤0|lgx |,x >0的大致图象,令f (x )=t ,因为f 2(x )−af (x )+2=0恰有6个不同的实数解, 所以g (t )=t 2−at +2=0在区间(1,2]上有2个不同的实数解,∴{Δ=a 2−8>01<a2<2g (1)=3−a >0g (2)=6−2a ≥0 , 解得2√2<a <3,∴实数a 的取值范围为(2√2,3). 所以答案是:(2√2,3).15、函数y =log a (kx −5)+b (a >0且a ≠1)恒过定点(2,2),则k +b =______. 答案:5分析:根据对数函数的图象与性质,列出方程组,即可求解. 由题意,函数y =log a (kx −5)+b 恒过定点(2,2),可得{2k −5=1b =2 ,解得k =3,b =2,所以k +b =3+2=5.所以答案是:5. 解答题16、(1)计算:(1100)−12−√(1−√2)2−8×(√5−√3)0+816;(2)已知x +x −1=4,求x 12+x −12. 答案:(1)3;(2)x 12+x −12=√6.分析:(1)根据指数幂的运算法则进行计算,求得答案; (2)先判断出x >0,然后将x 12+x −12平方后结合条件求得答案. (1)原式=[(100)−1]−12−(√2−1)−8+(23)16,=10012−√2+1−8+212=10+1−8=3.(2)由于x +x−1=4>0,所以x >0,(x 12+x −12)2=x +x −1+2=6,所以x 12+x −12=√6.17、(1)证明对数换底公式:log b N =log a N log a b(其中a >0且a ≠1,b >0且b ≠1,N >0)(2)已知log 32=m ,试用m 表示log 3218. 答案:(1)证明见解析;(2)log 3218=2+m 5m.分析:(1)将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. (2)利用换底公式将等号左边化为以3为底的对数,然后根据对数运算法则化简即得. (1)设log b N =x ,写成指数式b x =N . 两边取以a 为底的对数,得xlog a b =log a N .因为b >0,b ≠1,log a b ≠0,因此上式两边可除以log a b ,得x =log a N log a b.所以,log b N =log a N log a b.(2)log 3218=log 318log 332=log 332+log 32log 325=2+log 325log 32=2+m 5m.小提示:本题考查换底公式的证明和应用,属基础题,关键是将对数式转化为指数式,然后两边取对数,利用对数函数的应算法则,即可证明. 18、已知函数f (x )=a x −1a x +1(a >0,且a ≠1). (1)若f (2)=35,求f (x )解析式; (2)讨论f (x )奇偶性.答案:(1)f (x )=2x −12x +1;(2)奇函数.分析:(1)根据f (2)=35,求函数的解析式;(2)化简f (−x ),再判断函数的奇偶性. 解:(1)∵f (x )=a x −1a x +1,f (2)=35.即a 2−1a 2+1=35,∴a =2.即f (x )=2x −12x +1.(2)因为f (x )的定义域为R ,且f (−x )=a −x −1a −x +1=1−a x1+a x =−f (x ),所以f (x )是奇函数.19、如图,某中学准备在校园里利用院墙的一段,再砌三面墙,围成一个矩形花园ABCD ,已知院墙MN 长为25米,篱笆长50米(篱笆全部用完),设篱笆的一面AB 的长为x 米.(1)当AB 的长为多少米时,矩形花园的面积为300平方米?(2)若围成的矩形ABCD 的面积为 S 平方米,当 x 为何值时, S 有最大值,最大值是多少?答案:(1)15米;(2)当 x 为12.5米时, S 有最大值,最大值是312.5平方米.分析:(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,根据“矩形花园的面积为300平方米”列一元二次方程,求解即可;(2)根据题意,可得S =x(50−2x),根据二次函数最值的求法求解即可.(1)设篱笆的一面AB 的长为 x 米,则BC =(50−2x)m ,由题意得,x(50−2x)=300,解得x 1=15,x 2=10,∵50−2x ≤25,∴x ≥12.5,∴x=15,所以,AB的长为15米时,矩形花园的面积为300平方米;(2)由题意得,S=x(50−2x)=−2x2+50x=−2(x−12.5)2+312.5,12.5≤x<25∴x=12.5时,S取得最大值,此时,S=312.5,所以,当x为12.5米时,S有最大值,最大值是312.5平方米.。
指数函数对数函数专练习题含答案(1)

指数函数对数函数专练习题含答案(1)指数函数和对数函数是高中数学中的重要内容,在函数中成为了必学的一部分。
这两种函数在数学中应用非常广泛,除了在数学中,还常常运用于其他学科和实际生活中。
下面是介绍和练习这两种函数的一些题目及其答案。
一、指数函数:1. 求 f(x) = 2^(x+1) - 2^x 的零点。
答:f(x) = 2^(x+1) - 2^x = 2^(x+1) - 2^(x+1-1) = 2^(x+1) -2^x= 2^x * (2 - 1) = 2^x所以,f(x) = 0 时, x = 0。
2. 求解 3^x - 4^x + 3 = 0,其中 x 取值范围为 R。
答:将 4^x 用 2^x 表示,得到 3^x - (2^x)^2 + 3 = 0这是一个二次方程,需要使用求根公式解出 xD = b^2 - 4ac = 16 - 4*3*3 = 16 - 36 = -20由于 D < 0,因此无实数解。
3. 求解 2^(2x+1) - 2^(2x-2) = 12,其中 x 取值范围为 R。
答:将方程两边都取对数,得到(2x+1)log2 - (2x-2)log2 = log2(12)化简得到 2xlog2 + log2 - 4log2 + 3log2 = log2(12) 即 2xlog2 - log2 = log2(12) - 3log2即 2x = log2(4) + log2(3) - 3即 x = 1/2*log2(3) - 7/4二、对数函数:1. 解方程 log(a-1)x = logax + 1,其中 a>1。
答:由于 a>1,因此 a-1 > 0两边同时取指数,得到 x = a^2 / (a-1)2. 如果 a > 1,b > 1,且 a^logb = b,那么 loga b 是多少?答:将等式两边取对数,得到 loga (b^(logb a)) = loga a 即 (logb a) * loga b = 1即 loga b = 1 / logb a当 a^logb = b 时, loga b = 1 / logb a = 1 / (loga b / loga e)再次化简得到 loga b = logb a3. 求解方程 2log(x+1) + log(x-1) = log(x+2),其中 x > 1。
高中数学指数函数和对数函数练习题(带答案和解释)

高中数学指数函数和对数函数练习题(带答案和解释)一、选择题1.下列函数:①y=3x2(xN+);②y=5x(xN+);③y=3x +1(xN+);④y=32x(xN+),其中正整数指数函数的个数为()A.0B.1C.2D.3【解析】由正整数指数函数的定义知,只有②中的函数是正整数指数函数.【答案】 B2.函数f(x)=(14)x,xN+,则f(2)等于()A.2 B.8C.16 D.116【解析】∵f(x)=(14x)xN+,f(2)=(14)2=116.【答案】 D3.(2019阜阳检测)若正整数指数函数过点(2,4),则它的解析式为()A.y=(-2)x B.y=2xC.y=(12)x D.y=(-12)x【解析】设y=ax(a>0且a1),由4=a2得a=2.【答案】 B4.正整数指数函数f(x)=(a+1)x是N+上的减函数,则a 的取值范围是()A.a B.-10C.01 D.a-1【解析】∵函数f(x)=(a+1)x是正整数指数函数,且f(x)为减函数,0a+11,-10.【答案】 B5.由于生产电脑的成本不断降低,若每年电脑价格降低13,设现在的电脑价格为8 100元,则3年后的价格可降为() A.2 400元 B.2 700元C.3 000元 D.3 600元【解析】1年后价格为8 100(1-13)=8 10023=5 400(元),2年后价格为5 400(1-13)=5 40023=3 600(元),3年后价格为3 600(1-13)=3 60023=2 400(元).【答案】 A二、填空题6.已知正整数指数函数y=(m2+m+1)(15)x(xN+),则m =______.【解析】由题意得m2+m+1=1,解得m=0或m=-1,所以m的值是0或-1.【答案】0或-17.比较下列数值的大小:(1)(2)3________(2)5;(2)(23)2________(23)4.【解析】由正整数指数函数的单调性知,(2)3(2)5,(23)2(23)4.【答案】(1) (2)8.据某校环保小组调查,某区垃圾量的年增长率为b,2019年产生的垃圾量为a吨,由此预测,该区下一年的垃圾量为________吨,2020年的垃圾量为________吨.【解析】由题意知,下一年的垃圾量为a(1+b),从2019年到2020年共经过了8年,故2020年的垃圾量为a(1+b)8. 【答案】a(1+b) a(1+b)8三、解答题9.已知正整数指数函数f(x)=(3m2-7m+3)mx,xN+是减函数,求实数m的值.【解】由题意,得3m2-7m+3=1,解得m=13或m=2,又f(x)是减函数,则01,所以m=13.10.已知正整数指数函数f(x)的图像经过点(3,27),(1)求函数f(x)的解析式;(2)求f(5);(3)函数f(x)有最值吗?若有,试求出;若无,说明原因.【解】(1)设正整数指数函数为f(x)=ax(a0,a1,xN+),因为函数f(x)的图像经过点(3,27),所以f(3)=27,即a3=27,解得a=3,所以函数f(x)的解析式为f(x)=3x(xN +).(2)f(5)=35=243.(3)∵f(x)的定义域为N+,且在定义域上单调递增,f(x)有最小值,最小值是f(1)=3;f(x)无最大值.11.某种细菌每隔两小时分裂一次(每一个细菌分裂成两个,分裂所需时间忽略不计),研究开始时有两个细菌,在研究过程中不断进行分裂,细菌总数y是研究时间t的函数,记作y=f(t).(1)写出函数y=f(t)的定义域和值域;(2)在坐标系中画出y=f(t)(06)的图像;(3)写出研究进行到n小时(n0,nZ)时,细菌的总个数(用关于n的式子表示).【解】(1)y=f(t)的定义域为{t|t0},值域为{y|y=2m,mN+)};(2)06时,f(t)为一分段函数,y=2,02,4,24,8,46.图像如图所示.(3)n为偶数且n0时,y=2n2+1;n为奇数且n0时,y=2n-12+1.。
高一数学《指数函数与对数函数》测试题及答案

高一数学《指数函数与对数函数》测试题及答案1、已知$f(10)=x$,则$f(5)$的值为(B)。
2、对于$a>0,a\neq1$,正确的说法是(①③)。
3、集合$S=\{y|y=3,x\in R\}$,$T=\{y|y=x-1,x\in R\}$,则$S\cap T$的值为(D)。
4、函数$y=2+\log_2x(x\geq1)$的值域为($[2,+\infty)$)。
5、设$y_1=4,y_2=80.90,y_3=\frac{1}{2^{-1.5}}$,则$y_3>y_1>y_2$。
6、在$b=\log_{a-2}(5-a)$中,实数$a$的取值范围为($2<a<3$)。
7、计算$\log_2(2\cdot5)+2\log_2(2\times5)$的值为(2)。
8、已知$a=\log_32$,则$\log_3(8)-2\log_3(6)$用$a$表示为($5a-2$)。
9、若$10^{2x}\cdot2^{2}=10^{5}\cdot5^{50}$,则$10^{-x}$的值为($\frac{1}{625}$)。
10、若函数$y=(a-5a+5)\cdot a$是指数函数,则$a>0$,且$a\neq1$。
11、当$a>1$时,在同一坐标系中,函数$y=a$与$y=\log_ax$的图像如下图(B)所示。
12、与$\log_3x+\log_4x+\log_5x$相等的式子是($3^{\log_6x}$)。
13、若函数$f(x)=\log_ax(0<a<1)$在区间$[a,2a]$上的最大值是最小值的3倍,则$a=\frac{1}{4}$。
14、根据图象可知,a<b<1<c<d,故选项A正确。
15、要使函数|1-x|+m与x轴有公共点,必须满足|m|≤1,故选项B正确。
16、将指数式化为根式式,即将指数分子和分母分别开方,得到√(3a^4/b^4),故填入的答案为√(3a^4/b^4)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学对数函数指数函数经典题型练习
一、选择题
1.(多选题)设a,b,c为实数且a>b,则下列不等式一定成立的是()
A.1
a >1
b
B.2020a-b>1
C.lna>lnb D.a(c²+1)>b(c²+1)
2.已知函数f(x)=ln(x+√x²+1)+1,若正实数a,b满足分f(4a)+f(b-1)
=2,则1
a
+1
b
的最小值为()
A.4 B.8
C.9 D.13
3.已知函数,g(x)=f(x)- x+a,若g(x)恰有3个零点,
则实数a的取值范围是()
A.a<-1 B.a>0
C.-1<a<0 D.a>1
4.(多选题)已知a>b>0,且a+b=1,则()
A.log
a b>log
b
a B.
2
a
+1
b
>6
C.ab<ba D.2a-2b>2-b-2-a
5.下列函数中,其图象与函数y=ln(x+1)的图象关于直线x=1对称的是()
A.y=ln(1-x) B.y=ln(3-x)
C.y=ln(1+x) D.y=ln(3+x)
6.已知a=243,b=e13ln3 ,c=323,则()
A. c<b<a
B. b<c<a
C. c<a<b
D. b<a<c
7.若t=log
2x=log
3
y=log
5
z ,且t<-2则()
A.5z<2x<3y
B.5z<3y<2x
C.3y<2x<5z
D. 2x<3y<5z
8.已知函数f(x)=log 1
3
(-x²+2x+3),则f(x)的递减区间是()A.(-∞,1) B.(-3,-1)
C.(-1,1)
D.(1,﹢∞)
9.已知x=20.2,y=log
2
0.2,z=0.20.3则下列结论正确的是()
A.x<y<z
B.y<z<x
C.z<y<x
D.z<x<y
10函数f(x)=2x +log1
2
x -3的零点所在区间()
A.(0,1)
B.(1,2)
C. (2,3)
D.(3,4)
11.已知函数f(x)={|log2x|,0<x≤8
−1
2
x+5, x>8
,若a、b、c互不相等,且f(a)=f
(b)=f(c),则abc的取值范围是()
A. (5,10)
B. (5,8)
C. (6,8)
D. (8,10)
12.若,,,则三个数的大小关系是
A. B.
C. D.
13已知,则之间的大小关系是()A. B.
C. D.
14.设,,,则()
A. B.
C. D.
15.函数的定义域是( )
A. B.
C. D.
16.计算(lg2)2+(lg5)2+lg4•lg5等于()
A. 0
B. 1
C. 2
D. 3
17.函数的单调递减区间为()
A. B.
C. D.
18.函数(a>0且a≠1)一定经过的定点是( )
A.(0,1)
B.(1,3)
C.(1,2)
D.(1,1)
19.已知是定义在上的奇函数,且当时,,则()
20.已知,,,则的大小关系是()A. B.
C. D.
二、填空题
1..
2.函数的值域是________.
3.已知函数,则______.
4.———.
5.函数的单调递增区间为______________.
三、计算题
1.化简、计算:
(1)
(2)
2.求的值.
四、解答题
1.计算下列各式的值:
(1);
(2).
2.已知函数,且.(1)求使成立的的值;
(2)若,试判断函数的奇偶性.
参考答案
一、选择题
1、【答案】BD
【解】
对于,若,则,所以错误;
对于,因为,所以,故正确;
对于,函数的定义域为,而,不一定是正数,所以错误;对于,因为,所以,所以正确.
故选:BD
2、【答案】C
【解】
解:由函数,设,知,所以是奇函数,则,又因为正实数,满足,
,所以,
,当且仅当,时取到等号.
故选:C.
3、【答案】D
【解】由恰有个零点,即方程恰有个实数根.
即函数的图像与的图像有三个交点,如图.
与函数的图像恒有一个交点,即函数与
有两个交点.
设与函数相切于点,由
所以,得,所以切点为,此时,切线方程为
将向下平移可得与恒有两个交点,
所以
故选:D
4、【答案】ABD
【解】
A.由已知可得,由对数函数性质可知y=logax,y=logbx为单调递减函数,因为a>b>0,,,所以logab>logba,正确;
B. 由a>b>0,a+b=1,所以,正确;
C. 由已知可得,由指数函数性质可知都是单调递减函数,幂函数是单调递减函数,因为a>b>0,,错误;
D.令,由知为偶函数,
当时,令,,,,所以,所以当
时,是单调递增函数,因为a>b>0,所以. 2a+2-a >2b +2-b,即2a-2b>2-b-2-a,正确.
故选:A B D.
5、【答案】B
【解】
设为所求曲线上一点,
关于对称点,
,
与关于对称,
故选:B.
6、【答案】B
【解】由题意,,
因为函数在上单调递增,所以,即.
故选:B.
7、【答案】B
【解】,
,
,
,单调递减,
,
.
故选:.
8、【答案】C
【解】
令,则是上的减函数,而
的递增区间是,根据复合函数的同增异减原则知,
的递减区间是,故选C.
9、【答案】B
【解】∵x=20.2>20=1,
=0,
,
∴y<z<x.
故选:B.
10、【答案】B
【解】由题意,可得函数在定义域上为增函数,,
,
所以,根据零点存在性定理,的零点所在区间为
故选B.
11、【答案】D
【解】函数的图像如图所示:
不相等,令,
因为,由图知:
,解得.
又因为,所以.
故选
12、【答案】C
13、【答案】D
14、【答案】A
15、【答案】D
【解】:可因式分解为,则或解得或,
所以函数的定义域为.
16、【答案】B
17、【答案】A
18、【答案】B
19、【答案】C
20、【答案】B
二、填空题
1、
2、
3、解:
. 4、
5、
三、计算题
1、(1)π
(2)5
2、原式
.
四、解答题
1、
解:(1)
(2)
2、
(1)由可求得,再由可得,进一步求
解即可;
(2)先判断函数的定义域,再结合奇偶函数的判定性质证明即可;
【详解】(1)由,
∴可化,∴或,均符合.
(2)∵,定义域关于原点对称,
∴,因此是奇函数.。