各类有机化合物红外吸收

合集下载

物质的红外吸收峰

物质的红外吸收峰

第四节各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1叔丁基1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢C=CH2在3075—3090 cm-1有强峰最易识别。

2、σC=C 吸收峰的位置在1670—1620 cm-1。

随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。

各类化合物的红外光谱特征讲解

各类化合物的红外光谱特征讲解

各类化合物的红外光谱特征讲解红外光谱是一种广泛应用于化学、生物、材料科学等领域的分析技术,通过检测样品吸收或散射的红外辐射来获取样品的结构信息。

不同类型的化合物在红外光谱中表现出不同的特征,下面将分别讲解有机化合物、无机化合物和生物大分子的红外光谱特征。

1.有机化合物有机化合物在红外光谱中显示出多个特征峰,主要包括C-H伸缩振动和C=O伸缩振动。

C-H伸缩振动出现在2800-3000 cm-1的范围内,不同类型的C-H键有不同的峰位,例如烷基的C-H伸缩振动通常在2850-3000 cm-1之间,而芳香族的C-H伸缩振动在3000-3100 cm-1之间。

C=O伸缩振动出现在1650-1800 cm-1的范围内,不同类型的C=O键有不同的峰位,酮和醛的C=O伸缩振动通常在1700-1750 cm-1之间,羧酸的C=O伸缩振动在1700-1725 cm-1之间。

除了C-H伸缩和C=O伸缩振动,有机化合物还表现出其他特征峰。

N-H伸缩振动通常出现在3100-3500 cm-1之间,-O-H伸缩振动通常出现在3200-3600 cm-1之间。

C-C键伸缩振动和C-C键弯曲振动出现在1200-1700 cm-1之间,其峰位和强度可以提供有关分子结构和取代基的信息。

2.无机化合物无机化合物的红外光谱特征主要来自于它们的晶格振动。

晶体振动通常发生在低频区域,比如300-400 cm-1之间的范围。

晶体振动提供了关于化学键的存在和类型的信息,比如金属-氧化物和金属-氮化物的化学键常常表现出特征峰。

此外,一些无机离子的拉曼活动频率也可以通过红外光谱观察到。

3.生物大分子生物大分子包括蛋白质、核酸和糖类等,它们在红外光谱中显示出独特的特征。

蛋白质和核酸的红外光谱特征主要来自于其各种化学键的振动。

蛋白质中的肽键C=O伸缩振动通常在1650-1675 cm-1之间,背景中峰位较强。

糖类的伸缩振动一般在1000-1200 cm-1之间,不同类型的糖类有不同的峰位和强度。

各类有机物的红外特征吸收5-4

各类有机物的红外特征吸收5-4

续前
(二)酰胺
C O (酰胺) 1680 ~ 1630 cm1(强)
NH (酰胺)3500 ~ 3100 cm (强)

1
注: 共轭 > 诱导 → 波数↓
伯酰胺:双峰

特征区分→ 仲酰胺: 尖锐单峰
叔酰胺:无 NH 峰
NH (酰胺)1640 ~ 1550 cm
1
示例
as s NH 3350, NH 3180 CO 1680 ~ 1630 C C 双 NH 1640 ~ 1550
一、脂肪烃类化合物
(一)烷烃 1. C-H伸缩振动
as CH 3
C H (饱和) 3000 ~ 2850 cm1 (强) s ~ 2960 cm1 (很强) CH 3 ~ 2870 cm1 (很强)
s 1 CH 2 ~ 2850 cm(强)
as 1 CH 2 ~ 2925 cm(强)
醇: 1100~1050 cm-1,强 酯: 1250~1100 cm-1,反对称 1160~1050 cm-1,对称 C—X C—F 1400~1000
酚: 1250~1100 cm-1,强 强
cm-1
C—Br C—I
700~500 cm-1 610~485 cm-1
C—Cl
800~600 cm-1
OH伸缩: NH伸缩: CH伸缩:
3200-3650cm-1 3300-3500cm-1 3000cm-1
饱和C的CH:<3000cm-1 不 饱 和C的CH:>3000cm-1
OH伸缩振动
游离 OH
缔合 OH
3600 (中)
3300 (强,宽)
NH伸缩振动
NH2

红外--各类有机物的红外吸收峰

红外--各类有机物的红外吸收峰

各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱与烷烃IR光谱主要由C-H键得骨架振动所引起,而其中以C—H键得伸缩振动最为有用、在确定分子结构时,也常借助于C-H键得变形振动与C -C键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845cm-1范围,包括甲基、亚甲基与次甲基得对称与不对称伸缩振动2、δC—H在1460 cm—1与1380cm-1处有特征吸收,前者归因于甲基及亚甲基C—H得σas,后者归因于甲基C—H得σs。

1380 cm—1峰对结构敏感,对于识别甲基很有用。

共存基团得电负性对1380cm-1峰位置有影响,相邻F中此峰移至1475cm-1。

基团电负性愈强,愈移向高波数区,例如,在CH3异丙基1380 cm—1裂分为两个强度几乎相等得两个峰1385cm-1、1375 cm—1叔丁基1380 cm—1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多就是前者得两倍,在1250 cm-1、1200 cm—1附近出现两个中等强度得骨架振动。

-1范围内,因特征性不强,用处不大。

3、σC-C在1250—800cm4、γC—H分子中具有—(CH2)n—链节,n大于或等于4时,在722cm-1有一个弱吸收峰,随着CH2个数得减少,吸收峰向高波数方向位移,由此可推断分子链得长短。

二、烯烃烯烃中得特征峰由C=C-H键得伸缩振动以及C=C-H键得变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H烯烃双键上得C-H键伸缩振动波数在3000cm-1以上,末端双键氢在3075—3090 cm-1有强峰最易识别。

2、σC=C 吸收峰得位置在1670—1620cm-1。

随着取代基得不同,σC=C吸收峰得位置有所不同,强度也发生变化。

3、δC烯烃双键上得C-H键面内弯曲振动在1500-1000cm—1,对结=C—H构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700cm—1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况与构型。

红外--各类有机物的红外吸收峰

红外--各类有机物的红外吸收峰

各类有机化合物红外吸收光谱σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动一、烷烃饱和烷烃IR光谱主要由C-H键的骨架振动所引起,而其中以C-H键的伸缩振动最为有用。

在确定分子结构时,也常借助于C-H键的变形振动和C-C 键骨架振动吸收。

烷烃有下列四种振动吸收。

1、σC-H在2975—2845 cm-1范围,包括甲基、亚甲基和次甲基的对称与不对称伸缩振动2、δC-H在1460 cm-1和1380 cm-1处有特征吸收,前者归因于甲基及亚甲基C-H的σas,后者归因于甲基C-H的σs。

1380 cm-1峰对结构敏感,对于识别甲基很有用。

共存基团的电负性对1380 cm-1峰位置有影响,相邻基团电负性愈强,愈移向高波数区,例如,在CH3F中此峰移至1475 cm-1。

异丙基1380 cm-1裂分为两个强度几乎相等的两个峰1385 cm-1、1375 cm-1叔丁基1380 cm-1裂分1395 cm-1、1370cm-1两个峰,后者强度差不多是前者的两倍,在1250 cm-1、1200 cm-1附近出现两个中等强度的骨架振动。

3、σC-C在1250—800 cm-1范围内,因特征性不强,用处不大。

4、γC-H分子中具有—(CH2)n—链节,n大于或等于4时,在722 cm-1有一个弱吸收峰,随着CH2个数的减少,吸收峰向高波数方向位移,由此可推断分子链的长短。

二、烯烃烯烃中的特征峰由C=C-H键的伸缩振动以及C=C-H键的变形振动所引起。

烯烃分子主要有三种特征吸收。

1、σC=C-H 烯烃双键上的C-H键伸缩振动波数在3000 cm-1以上,末端双键氢C=CH2在3075—3090 cm-1有强峰最易识别。

2、σC=C 吸收峰的位置在1670—1620 cm-1。

随着取代基的不同,σC=C吸收峰的位置有所不同,强度也发生变化。

3、δC=C-H烯烃双键上的C-H键面内弯曲振动在1500—1000 cm-1,对结构不敏感,用途较少;而面外摇摆振动吸收最有用,在1000—700 cm-1范围内,该振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判断双键取代情况和构型。

各类有机物的红外特征吸收

各类有机物的红外特征吸收
各类有机物的红外 特征吸收
汇报人:XX
目录
• 红外光谱基本原理 • 烷烃类有机物红外特征吸收 • 烯烃类有机物红外特征吸收 • 炔烃和芳香烃类有机物红外特征吸收 • 含氧官能团有机物红外特征吸收 • 其他类型有机物红外特征吸收
01
红外光谱基本原理
红外光谱定义及作用
定义
红外光谱(Infrared Spectroscopy, IR)是研究物质在红外光区的吸收和 发射特性的光谱学分支。
实例分析:典型烯烃类有机物红外光谱图
• 以乙烯为例,其红外光谱图在1650cm-1处出现强吸收峰,对 应于C=C伸缩振动;在3020cm-1处出现中等强度吸收峰,对 应于C-H伸缩振动;在1460cm-1处出现弱吸收峰,对应于CC伸缩振动;在965cm-1和870cm-1处出现弱吸收峰,分别 对应于面外弯曲振动。这些特征吸收峰可用于鉴别乙烯及其 他烯烃类有机物。
C-C伸缩振动
位于约1460-1380 cm^-1^和 1100-1000 cm^-1^范围内,表 现为中等强度吸收峰。随着碳链 长度的增加,吸收峰向低波数方 向移动。
C-H弯曲振动
位于约1460-1380 cm^-1^范围 内,表现为弱吸收峰。随着碳链 长度的增加,吸收峰向低波数方 向移动。
实例分析:典型烷烃类有机物红外光谱图
02
烷烃类有机物红外特征吸 收
烷烃类有机物概述
烷烃类有机物定义
烷烃是一类仅由碳和氢两种元素 组成的有机化合物,分子中的碳 原子之间以单键相连,其余价键 均与氢原子结合。
烷烃类有机物种类
根据碳链的长度和形状,烷烃可 分为直链烷烃、支链烷烃和环烷 烃等。
红外特征吸收峰位置及强度
C-H伸缩振动
位于约3000-2800 cm^-1^范围 内,表现为强吸收峰。随着碳链 长度的增加,吸收峰向低波数方 向移动。

各类物质的红外吸收峰

烯烃中的特征峰由 C=C-H 键的伸缩振动以及 C=C-H 键的变形振动所引 起。烯烃分子主要有三种特征吸收。 1、σC=C-H 烯烃双键上的 C-H 键伸缩振动波数在 3000 cm-1 以上,末端双键氢
C=CH2 在 3075—3090 cm-1 有强峰最易识别。 2、σC=C 吸收峰的位置在 1670—1620 cm-1。随着取代基的不同,σC=C 吸收 峰的位置振动在 1500—1000 cm-1,对结构不 敏感,用途较少;而面外摇摆振动吸收最有用,在 1000—700 cm-1 范围内,该 振动对结构敏感,其吸收峰特征性明显,强度也较大,易于识别,可借以判
1,4-二取代苯 860~800 cm-1(VS) 五、卤化物
随着卤素原子的增加,σC-X 降低。如 C-F(1100~1000 cm-1);C-C(l 750~700 cm-1);C-Br(600~500 cm-1);C-I(500~200 cm-1)。此外,C-X 吸收峰的频率 容易受到邻近基团的影响,吸收峰位置变化较大,尤其是含氟、含氯的化合 物变化更大,而且用溶液法或液膜法测定时,常出现不同构象引起的几个伸 缩吸收带。因此 IR 光谱对含卤素有机化合物的鉴定受到一定限制。 六、醇和酚 醇和酚类化合物有相同的羟基,其特征吸收是 O-H 和 C-O 键的振动频率。 1、 σO-H 一般在 3670~3200 cm-1 区域。游离羟基吸收出现在 3640~3610 cm-1, 峰形尖锐,无干扰,极易识别(溶剂中微量游离水吸收位于 3710 cm-1)。OH 是个强极性基团,因此羟基化合物的缔合现象非常显著,羟基形成氢键的缔 合峰一般出现在 3550~3200 cm-1。
第四节 各类有机化合物红外吸收光谱
σ伸缩振动,δ面内弯曲振动,γ面外弯曲振动 一、烷烃

各类有机化合物的红外光谱


4. 芳烃
芳烃的特征吸收:(与烯烃类似) 芳烃的特征吸收:(与烯烃类似) :(与烯烃类似
• υ=C-H 3000~3100 cm-1 (芳环C-H伸缩振动) 3000~ 芳环C 伸缩振动) =C- • υC=C =C 1650~ 芳环骨架伸缩振动) 1650~1450 cm-1(芳环骨架伸缩振动) • γ面外=C-H 900~650 cm-1 用于确定芳烃取代类型 900~ 用于确定 确定芳 取代类型 C 芳环取代基性质无关 而与取代个数有关, 取代基性质无关, (与芳环取代基性质无关,而与取代个数有关,取代 基个数越多, 芳环上氢数目越少, 基个数越多,即芳环上氢数目越少,振动频率越 低。) • γ面外=C-H C 2000~ 倍频 2000~1600 cm-1(w) 用于确定芳 用于确定芳烃取代类型
C4H9-O-C4H9 -
丁醚的红外光谱图
1210-1000cm –1是醚键的不对称伸缩振动 υC-O-C 是醚键的不对称伸缩振动 -
7. 胺和铵盐
CH3CH2CH2CH2NH2
丙胺的红外光谱图
CH3CH2CH2NH3+Cl-
丙胺盐的红外光谱图
8.羰基化合物 8.羰基化合物 • 因υC=O 非常特征,羰基化合物易与其他 非常特征, 有机物区分。 有机物区分。 • 不同的羰基化合物的区分主要依据: 不同的羰基化合物的区分主要依据: • υC=O 位置 • 其他辅助信息
3. 炔烃
端基炔烃有两个主要特征吸收峰: 端基炔烃有两个主要特征吸收峰: 一是叁键上不饱和C 伸缩振动υ 约在3300cm 一是叁键上不饱和C-H伸缩振动υ≡C-H约在3300cm-1处产 叁键上不饱和 生一个中强的尖锐峰 二是C 伸缩振动υ 吸收峰在2140 二是C≡C伸缩振动υ≡C-C吸收峰在2140 ~2100cm-1。 位于碳链中间则只有υ 若C≡C位于碳链中间则只有υ≡C-C在2200cm-1左右一个尖 在对称结构中, 峰,强度较弱。如果在对称结构中,则该峰不出现。 强度较弱。如果在对称结构中 则该峰不出现。

各类化合物的红外光谱特征

各类化合物的红外光谱特征红外光谱是一种常用的分析技术,可以用于识别和表征不同化合物的结构和功能团。

不同类型的化合物在红外光谱中显示出特定的吸收峰,这些峰对应于特定的振动模式和化学键。

有机化合物的红外光谱特征:1. 烷烃:烷烃的红外光谱特征主要包括C-H伸缩振动峰和C-H弯曲振动峰。

在3000-2850 cm-1区域,烷烃显示出强的C-H伸缩振动峰。

在1450-1375 cm-1区域,烷烃显示出C-H弯曲振动峰。

2. 卤代烃:卤代烃的红外光谱特征主要包括C-X伸缩振动峰和C-H弯曲振动峰。

在3000-2850 cm-1区域,卤代烃显示出C-H伸缩振动峰。

在700-600 cm-1区域,卤代烃会显示出C-X伸缩振动峰(X表示卤素)。

3. 醇:醇的红外光谱特征主要包括O-H伸缩振动峰和C-O伸缩振动峰。

在3650-3200 cm-1区域,醇显示出非常强的O-H伸缩振动峰。

在1050-1000 cm-1区域,醇会显示出C-O伸缩振动峰。

4. 酸:酸的红外光谱特征主要包括O-H伸缩振动峰和C=O伸缩振动峰。

在3650-3200 cm-1区域,酸显示出非常强的O-H伸缩振动峰。

在1750-1690 cm-1区域,酸会显示出C=O伸缩振动峰。

5. 醛和酮:醛和酮的红外光谱特征主要包括C=O伸缩振动峰和C-H伸缩振动峰。

在1750-1690 cm-1区域,醛和酮会显示出强的C=O伸缩振动峰。

在3000-2850 cm-1区域,醛和酮显示出C-H伸缩振动峰。

6. 酯:酯的红外光谱特征主要是C=O伸缩振动峰和C-O伸缩振动峰。

在1750-1690 cm-1区域,酯显示出强的C=O伸缩振动峰。

在1250-1100 cm-1区域,酯会显示出C-O伸缩振动峰。

7. 醚:醚的红外光谱特征主要是C-O伸缩振动峰。

在1250-1100cm-1区域,醚会显示出C-O伸缩振动峰。

8. 腈:腈的红外光谱特征主要是C≡N伸缩振动峰。

在2250-2100cm-1区域,腈会显示出C≡N伸缩振动峰。

各类有机化合物的红外吸收


一、第一峰区(4000 ~2500 cm-1)
为X-H伸缩振动区,X可以是O、N、 C 或 S 等原子。
1、O--H的伸缩振动
出现在3650 ~3200 cm-1 范围内,它可以 作为判断有无醇类、酚类和有机酸类的重要 依据。
(1)醇和酚 游离态:在3650 ~3590 cm-1 处出现中等强 度吸收带,峰形尖锐。 缔合态:在3350 cm-1 出现一个宽而强的吸 收峰。 (2) 羧酸 缔合态:在3300~2500 cm-1 出现一个宽吸 收峰。
甲苯
四、第四峰区( 1500 ~ 600 cm-1)
为X-C(X≠H)键的伸缩振动及各类 弯曲振动区。 1、C-H弯曲振动 烷烃:
-CH3 as 1450 cm-1(m), s 1380 cm-1(w)
烯烃:
=C-H的面外弯曲振动 对判断双键的取代类型有用 CH面外弯曲振动吸收位置 (cm-1) 990(反),910(顺) 890 730-650 970
1-己炔
正丁腈
三、第三峰区(2000~1500 cm-1)
为双键伸缩振动区和N-H的弯曲振动区。
该区域主要包括三种伸缩振动: 1、C=O伸缩振动 出现在1900~1650 cm-1 ,是红外光谱中特 征的且往往是最强的吸收,以此很容易判断酮 类、醛类、酸类、酯类以及酸酐等有机化合物。
羰基化合物的C=O伸缩振动吸 收峰位置
2、 N-H伸缩振动
胺和酰胺的N-H伸缩振动出现在 3500~3150 cm-1 弱或中等强度的吸收带。 胺类: 伯胺----- 3500,3400 cm-1 仲胺----- 3400 cm-1 酰胺类: 伯酰胺----- 3350,3150 cm-1 仲酰胺----- 3200 cm-1 铵盐:3200~2200 cm-1 强、宽、散吸收带
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

化合物类型
吸收峰位置(cm-1)

1735-1715

1720-1710

1770-1750

1745-1720
酰卤
1800
酸酐
1820和1760
酰卤:1800厘米-1,特征。 金刚烷酰氯
酸酐
有两个羰基伸缩振动偶合产生双峰, 相差60厘米-1,开链酸酐的高波数峰比低 波数峰强,环状酸酐两峰的相对强度正 好相反。
2-戊胺
二己胺
~3310cm-1:弱峰,N—H伸缩振动
三乙胺
吡嗪酰胺(抗结核病药)
3、 C-H伸缩振动
烃类化合物的C-H伸缩振动在3300 ~2700 cm-1。
不饱和烃:3300~3000 cm-1
饱和烃: 3000 ~2700 cm-1
炔烃: 3300 cm-1 (m),谱带尖锐。
烯烃: 3100~3000 cm-1 ,末端= CH2的吸收 出现在3085 cm-1附近。
R1CH=CHR2(反)
970
R1R2C=CHR3
840-800
芳香烃
振动类型
波数(cm-1)
说明Байду номын сангаас
芳环C-H伸缩振 动
骨架振动
C-H弯曲振动 (面外)
3050±50
强度不定
指纹区对于指认结构类似的化合 物很有帮助,而且可以作为化合物存 在某种基团的旁证。
一、第一峰区(4000 ~2500 cm-1)
为X-H伸缩振动区,X可以是O、N、 C 或 S 等原子。
1、O--H的伸缩振动
出现在3650 ~3200 cm-1 范围内,它可以 作为判断有无醇类、酚类和有机酸类的重要 依据。
1、C-H弯曲振动 烷烃:
-CH3 as 1450 cm-1(m), s 1380 cm-1(w)
烯烃:
=C-H的面外弯曲振动 对判断双键的取代类型有用
烯烃类型 R1CH=CH2
CH面外弯曲振动吸收位置 (cm-1)
990(反),910(顺)
R1R2C=CH2
890
R1CH=CHR2(顺)
730-650
为叁键和累积双键的伸缩振动区,谱 带为中等强度吸收或弱吸收。
1、 -CC伸缩振动 炔烃的伸缩振动出现在2280~2100 cm-1。
2、 -CN伸缩振动 腈基化合物中C N 的伸缩振动在
2250~2240 cm-1附近。当与不饱和键或芳 环共轭时,谱带向低波数位移20~30 cm-1。
1-己炔
正丁腈
三、第三峰区(2000~1500 cm-1)
为双键伸缩振动区和N-H的弯曲振动区。
该区域主要包括三种伸缩振动: 1、C=O伸缩振动
出现在1900~1650 cm-1 ,是红外光谱中特 征的且往往是最强的吸收,以此很容易判断酮 类、醛类、酸类、酯类以及酸酐等有机化合物。
羰基化合物的C=O伸缩振动吸 收峰位置
中红外光谱区可分成4000 ~1500cm-1和 1500 ~ 600 cm-1两个区域。
最有分析价值的基团频率在4000 ~ 1500 cm-1 之间,这一区域称为基团频率区、 官能团区或特征区。
区内的峰是由伸缩振动产生的吸收带, 比较稀疏,容易辨认,常用于鉴定官能团。
在1500 ~600 cm-1 区域内,除单键 的伸缩振动外,还有因变形振动产生 的谱带。这种振动与整个分子的结构 有关,称为指纹区。
醛酮
醛氢伸缩振动:2850-2720厘米-1有m或w 吸收,出现1~2条谱带,结合1720厘米-1 吸收,可判断醛基的存在。
正丁醛
~2720cm-1: 醛基C—H伸缩振动,特征;~1730cm-1:—C=O 伸缩振动
苯甲醛
2、 C=C伸缩振动
烯烃的C=C伸缩振动在1680~1610cm-1 , 一般很弱。
第四节 各类有机物的 红外特征吸收
红外光谱的分区
4000-2500cm-1:这是X-H单键的伸缩振动区。 2500-2000cm-1:此处为叁键和累积双键伸缩振动区 2000-1500cm-1:此处为双键伸缩振动区 1500-600cm-1:此区域主要提供C-H弯曲振动的信息
基团频率区和指纹区
3、 芳环骨架振动
芳环的的骨架伸缩振动位于1600 ~1450cm-1范围。于1600,1580,1500和 1450 cm-1附近出现3~4条谱带。常用此范围 的2~3条谱带来判断芳环及杂芳环的存在。
甲苯
四、第四峰区( 1500 ~ 600 cm-1)
为X-C(X≠H)键的伸缩振动及各类 弯曲振动区。
芳烃: 3100~3000 cm-1 多条谱带,比较尖 锐。
1-己炔
醛基: 2850 ~2720 cm-1C-H伸缩振动 1390 cm-1 C-H 弯曲振动 双谱带是醛基的特征吸收谱带。
4、 S-H伸缩振动 巯基: 2600 ~2500 cm-1 S-H伸缩振动, 谱带尖锐。
苯甲醛
二、第二峰区(2500~2000 cm-1 )
三甲基乙酸酐
邻苯二甲酸酐

乙酸甲酯
~1740cm-1:C=O伸缩振动
苯甲酸甲酯
羧酸和羧酸盐
2-甲基丙酸
3300~2500 cm-1:羧酸二聚体的O—H伸缩振动,峰形宽,散;1710 cm-1:C=O伸 缩振动
苯甲酸
3300~2500 cm-1:羧酸二聚体的O—H伸缩振动,峰形宽,散; ~1695 cm-1:C=O伸缩振动。
(1)醇和酚
游离态:在3650 ~3590 cm-1 处出现中等强 度吸收带,峰形尖锐。
缔合态:在3350 cm-1 出现一个宽而强的吸 收峰。
(2) 羧酸
缔合态:在3300~2500 cm-1 出现一个宽吸 收峰。
正丁醇的红外光谱
~3450cm-1:缔合O—H伸缩振动;~1350cm-1:O—H面内弯曲振动
苯酚的红外光谱图
2-甲基丙酸
3300~2500 cm-1:羧酸二聚体的O—H伸缩振动,峰形宽,散;1710 cm-1:C=O 伸缩振动
苯甲酸
3300~2500 cm-1:羧酸二聚体的O—H伸缩振动,峰形宽,散;
2、 N-H伸缩振动
胺和酰胺的N-H伸缩振动出现在 3500~3150 cm-1 弱或中等强度的吸收带。 胺类: 伯胺----- 3500,3400 cm-1 仲胺----- 3400 cm-1 酰胺类: 伯酰胺----- 3350,3150 cm-1 仲酰胺----- 3200 cm-1 铵盐:3200~2200 cm-1 强、宽、散吸收带
相关文档
最新文档