2013届山东省各地市高考模拟试题汇编:精装版
山东省2013届高三最新文科模拟试题精选(26套含一、二模)分类汇编2:函数

山东省2013届高三最新文科模拟试题精选(26套含一、二模)分类汇编2:函数一、选择题错误!未指定书签。
.(山东省日照市2013届高三第一次模拟考试数学(文)试题)函数()()lg 1f x x =-的大致图象是【答案】B 解析:答案B .易知()f x 为偶函数,故只考虑0x >时()lg(1)f x x =-的图象,将函数lg y x =图象向x 轴正方向平移一个单位得到()lg(1)f x x =-的图象,再根据偶函数性质得到()f x 的图象错误!未指定书签。
.(山东省临沂市2013届高三3月教学质量检测考试(一模)数学(文)试题)函数121xf (x )ln x x =+-的定义域为( )A .(0,+∞)B .(1,+∞)[来源:] C .(0,1) D .(0,1) (1,+∞)【答案】要使函数有意义,则有001x x x ≥⎧⎪⎨>⎪-⎩,即0(1)0x x x ≥⎧⎨->⎩,所以解得1x >,即定义域为(1,]+∞,选B . [来源:]错误!未指定书签。
.(山东省淄博市2013届高三3月第一次模拟考试数学文试题)设定义在R 上的奇函数)(x f y =,满足对任意R t ∈都有)1()(t f t f -=,且]21,0[∈x 时,2)(x x f -=,则)23()3(-+f f 的值等于 ( )A .21-B .31-C .41-D .51-【答案】C错误!未指定书签。
.(山东省烟台市2013届高三3月诊断性测试数学文)函数f(x)=1nx-212x 的图像大致是【答案】【答案】B 函数的定义域为{0}x x >,函数的导数微微211'()x f x x x x -=-=,由21'()0x f x x -=>得,01x <<,即增区间为(0,1).由21'()0x f x x -=<得,1x >,即减区间为(1,)+∞,所以当1x =时,函数取得极大值,且1(1)02f =-<,所以选 B .错误!未指定书签。
2013山东省高考数学(理科)模拟题及答案_1

2013山东省高考数学(理科)模拟题1本试卷分第I 卷和第II 卷两部分,共4页。
满分150分。
考试用时120分钟。
考试结束后,将本试卷和答题卡一并交回。
注意事项:1.答卷前,考生务必用0.5毫米黑色墨水签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上。
2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号。
3.第II 卷必须用0.5毫米黑色签字笔作答,答案必须写在答题卡各题目指定区域内的位置,不能写在试卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带。
不按以上要求作答的答案无效。
4.填空题请直接填写答案,解答题应写出文字说明、证明过程或演算步骤。
选择题部分(共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合},0|{2<-=x x x M }2|{<=x x N ,则( ) A .φ=⋂N M B .M N M =⋂C .M N M =⋃D .R N M =⋃2.已知,x y R ∈,i 为虚数单位,且(2)1x i y i --=-+,则(1)x yi ++的值为( )A .4B .4+4iC .4-D .2i3.下列判断错误的是( ) A .“22bm am <”是“a < b ”的充分不必要条件B .命题“01,23≤--∈∀x x R x ”的否定是“01,23>--∈∃x x R x ”C .在残差图中,残差点分布的带状区域的宽度越狭窄,其模型拟合的精度越高D .若q p Λ为假命题,则p ,q 均为假命题4.已知函数f (x )=2,01,0x x x x ⎧>⎨+≤⎩,若f (a )+f (1)=0,则实数a 的值等于( )A .-3B .1C .3D .-15.从5位男实习教师和4位女实习教师中选出3位教师派到3个班实习班主任工作,每班派一名,要求这3位实习教师中男女都要有,则不同的选派方案共有( )A .210B .420C .630D .8406、在)2()1(6x x --的展开式中,3x 的系数为( )A .-25B .45C .-55D .257、在△ABC 中,已知D 是AB 边上一点,若CB CA CD DB AD λ+==31,2,则λ等于( )A .32B .31C .31-D .32-8、已知函数x x x x x f cos sin 21)cos (sin 21)(--+=,则)(x f 的值域是( )A .[]1,1-B .⎥⎦⎤⎢⎣⎡-1,22C .⎥⎦⎤⎢⎣⎡-22,1 D .⎥⎦⎤⎢⎣⎡--22,1 9、如图,三行三列的方阵有9个数)3,2,1,3,2,1(==j i a ij 从中任取三个数,则至少有两个数位于同行或同列的概率是( )⎪⎪⎪⎭⎫⎝⎛333231232221131211a a a a a a a a a A .73 B .74 C .141 D .141310、如图在矩形ABCD 中,E BC AB ,1,32=+=为线段DC 上一动点,现将△AED 沿AE 折起,使点D 在面ABC 上的射影K 在直线AE 上,当E 从D 运动到C ,则K 所形成轨迹的长度为( )A .125πB .12πC .426+ D .226+11.已知,11,11≤≤-≤≤-b a 则关于x 的方程022=++b ax x 有实根的概率是( )A .41B .21 C .81 D .10112.已知函数f (x )= ax 2+bx-1(a ,b∈R 且a >0)有两个零点,其中一个零点在区间(1,2)内,则a b -的取值范围为( )A .(-1,1)B .(-∞,-1)C .(-∞,1)D .(-1,+∞)非选择题部分(共90分)二、填空题:本大题共7小题,每小题4分,共28分13、已知2)(3++=bx ax x f ,若3)12(=-f ,则=)12(f 14、如果执行下面的程序框图,那么输出的S 等于15.在ABC ∆中,如果sin A C =, 30=B ,2=b ,则ABC ∆的面积为 .16.设n x x )3(2131+的二项展开式中各项系数之和为t ,其二项式系数之和为h ,若h+ t=272,则二项展开式为x 2项的系数为 。
2013年普通高等学校招生全国统一考试模拟(山东卷)

A 面B 面2013年普通高等学校招生全国统一考试模拟(山东卷)理 科 综 合(二)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分240分,考试时间150分钟。
考试结束后,将答题卡和答题纸一并交回。
答卷前,考生务必将自己的姓名、准考证号、考试科目填涂在答题卡和答题纸规定的地方。
第Ⅰ卷(必做,共87分)注意事项:1.每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑。
如需改动,用橡皮擦干净以后,再涂写其他答案标号。
不涂在答题卡上,只答在试卷上不得分。
2.第Ⅰ卷共20小题,1-13题每小题4分,14-20题每题5分,共87分。
以下数据可供答题时参考:可能用到的相对原子质量:H —1 C —12 O —16 Na —23 S —32 Cl —35.5 Cu —64 一、选择题(本题包括13小题,每小题只有一个选项符合题意) 1.下列关于水在生物体内生理作用的叙述,正确的是 ( )A .基因表达的翻译过程没有水生成B .膝跳反射的兴奋传导离不开水C .用于留种的晒干种子中不含自由水D . 结合水的比例越高,人体细胞的代谢越旺盛2.下列有关细胞成分和基本结构的说法中,正确的是 ( ) A .原核细胞中的RNA 可作为遗传物质直接为合成蛋白质提供模板 B .氨基酸、葡萄糖和核苷酸分子均可自由通过核孔 C .变形虫对食物的摄取与体内线粒体有关D .水浴加热煮沸时,DNA 中的氢键和蛋白质中的肽键都会断裂,导致分子的空间结构改变3.下图所示实验能够说明 ( )A .效应T 淋巴细胞的作用B . 浆细胞产生杭体的作用C .病毒刺激淋巴细胞增殖的作用D . 病毒抗原诱导B 细胞分化的作用4.图示人体生长激素基因进行的某项生理活动,该基因中碱基T 为m 个,占全部碱基的比值为n 。
下列分析合理的是 ( ) A .该生理活动可发生在人体的所有细胞中 B .②与③结构的区别是所含的五碳糖不同 C .①中碱基的排列顺序改变均导致基因突变D .所产生的①中C 至少有(0.5n-1)m 5. 下列关于遗传变异的说法错误..的是 ( ) A .三倍体无子西瓜中偶尔出现一些可育的种子,原因是母本在进行减数分裂时,有可能形成正常的卵细胞B .染色体结构变异和基因突变都可使染色体上的DNA 分子碱基对排列顺序发生改变C .基因型AaBb 的植物自交,且遵循自由组合定律后代有三种表现型,则子代中表现型不同于亲本的个体所占比例可能为7/16D .八倍体小黑麦是由普通小麦(六倍体)和黑麦(二倍体)杂交后经染色体加倍后选育的,其花药经离体培养得到的植株是可育的6.下图为下丘脑某神经细胞的部分膜结构示意图,下列叙述正确的是A .若此图为突触后膜局部结构,则兴奋经过此处时的信号转换是:电信号→化学信号→电信号B .动作电位的形成与膜上的②、④等载体有关,A 面为正电位,B 面为负电位C .该细胞可参与形成体温调节中枢、呼吸中枢等重要的生命活动中枢D .此细胞可以分泌促进水重吸收的激素且该激素一经靶细胞接受并起作用后就被灭活了7.化学与生产、生活、社会密切相关。
山东省2013届高三高考模拟卷(二)文科数学含答案

山东省2013届高三高考模拟卷(二)数学(文科)一、选择题:本大题共12个小题;每小题5分,共60分.在每小题给出的四个选项中,有且只有一项是符合题目要求的.1.已知集合{2,0}x M y y x ==>,{N y y ==,则M N 等于A .∅B .{1}C .{1}y y >D .{1}y y ≥2.已知复数2ii ia b -=+(a ,b ∈R ,i 为虚数单位),则2a b -= A. 1 B. 2 C. 3 D.43.下列函数中,在其定义域内既是奇函数又是增函数的是A. 3,y x x R =∈ B. sin ,y x x R =∈ C. lg ,0y x x => D. 3(),2x y x R =∈4.命题“对任意的01,23≤+-∈x x x R ”的否定是 A .不存在01,23≤+-∈x x x R B .存在01,23≤+-∈x x x RC .存在01,23>+-∈x x x RD .对任意的01,23>+-∈x x x R5.向量a ,b 的夹角为60︒,且||1a =,||2b =,则|2|a b -等于A.1D.2 6.如图,在边长为2的菱形ABCD 中,∠BAD =60︒,E 为BC 的中点, 则AE BD =A .3-B .1-C .0D .17.已知椭圆的中心在原点,离心率21=e ,且它的一个焦点与抛物线x y 42-=的焦点重合, 则此椭圆方程为A .13422=+y xB .16822=+y xC .1222=+y xD .1422=+y x 8.等比数列{}n a 的各项均为正数,且21813a a =,则313335319log log log log a a a a +++⋅⋅⋅+=A. 5B. 5-C. 53D.1039.把函数)2,0(),sin(πφωφω<>+=x y 的图像向左平移3π个单位,所得曲线的一部分如图示,则,ωϕ的值分别为 A .3,1πB .3,1π-C .3,2πD . 3,2π-10.已知()f x '是函数()f x 的导函数,如果()f x '(1,1),那么曲线()f x 上任一点处的切线的倾斜角α的取值范围是A. (1,]4πB. [,)42ππC. 3(,]24ππD.[,)4ππ 11.若0,0>>b a 且4=+b a ,则下列不等式恒成立的是A .211>abB .111≤+ba C .2≥ab D .81122≤+ba12.已知函数()f x 对定义域R 内的任意x 都有()f x =(4)f x -,且当2x ≠时,其导函数()f x '满足()2()xf x f x ''>,若24a <<,则有A. 2(2)(3)(l o g )af f f a << B. 2(3)(log )(2)af f a f <<C. 2(l o g )(3)(2)af a f f<< D. 2(log )(2)(3)af a f f <<第二部分 非选择题(共90分)二、填空题:本大题共4个小题,每小题4分,满分16分.13.直线0323=-+y x 截圆422=+y x 所得的弦长是 .14.已知:l m ,是不同的直线,βα,是不同的平面,给出下列五个命题: ①若l 垂直于α内的两条直线,则α⊥l ; ②若α//l ,则l 平行于α内的所有直线; ③若,,βα⊂⊂l m 且,m l ⊥则βα⊥; ④若,β⊂l 且,α⊥l 则βα⊥;⑤若βα⊂⊂l m ,且,//βα则l m //.其中正确命题的序号是15.已知,x y 满足约束条件224200x y x y y ⎧+≤⎪-+≥⎨⎪≥⎩,则目标函数2z x y =+的最大值是 .16.已知偶函数()y f x =(x R ∈),满足:(1)(1)f x f x +=-,且[]0,1x ∈时,()f x x =,则函数()y f x =与函数3|log |y x =图象的交点个数为 .三、解答题:本大题共6小题,共76分.解答须写出文字说明、证明过程或演算步骤.17.(本题满分12分)在ABC ∆中,a 、b 、c 分别是角A 、B 、C 的对边,3cos 5B =,且符合21AB BC ⋅=-. (Ⅰ)求ABC ∆的面积;(Ⅱ)若7a =,求角C .18.(本小题满分12分) 从某学校的800名男生中随机抽取50名测量身高,被测学生身高全部介于155cm 和195cm 之间,将测量结果按如下方式分成八组:第一组[155,160),第二组[160,165),…,第八组[190,195],右图是按上述分组方法得到的频率分布直方图的一部分,已知第一组与第八组人数相同,第六组的人数为4人.(Ⅰ)求第七组的频率;(Ⅱ)估计该校的800名男生的身高的中位数以及身高在180cm 以上(含180cm )的人数; (Ⅲ)若从身高属于第六组和第八组的所有男生中随机抽取两名男生,记他们的身高分别为,x y ,事件=E {5x y -≤},事件F ={15->x y },求()P E F .19.(本小题满分12分)数列}{n a 是首项14a =的等比数列,且3S ,2S ,4S 成等差数列. (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)若2log n n b a =,设n T 为数列⎭⎬⎫⎩⎨⎧+11n n b b 的前n 项和,若1n n T b λ+≤对一切*n ∈N 恒成立,求实数λ的最小值. 20.(本题满分12分)如图,四边形ABCD 中,AB ⊥AD ,AD ∥BC ,AD =6,BC =4,AB =2,E 、F 分别在BC 、AD 上,EF ∥AB .现将四边形ABEF 沿EF 折起,使得平面ABEF ⊥平面EFDC .(Ⅰ) 当1BE =,是否在折叠后的AD 上存在一点P ,且AP PD λ=,使得CP ∥平面ABEF ?若存在,求出λ的值;若不存在,说明理由;(Ⅱ) 设BE =x ,问当x 为何值时,三棱锥A -CDF 的体积有最大值?并求出这个最大值.21.(本题满分13分)已知椭圆2222:1(0)x y C a b a b+=>>.(Ⅰ)设椭圆的半焦距1c =,且222,,a b c 成等差数列,求椭圆C 的方程;(Ⅱ)设(1)中的椭圆C 与直线1y kx =+相交于P Q 、两点,求OP OQ 的取值范围.22.(本小题满分13分)已知函数2()8ln f x x x =-,2()14g x x x =-+. (Ⅰ) 求函数()f x 在点(1,(1))f 处的切线方程;(Ⅱ) 若函数()f x 与()g x 在区间(),1a a +上均为增函数,求a 的取值范围; (Ⅲ) 若方程()()f x g x m =+有唯一解,试求实数m 的值.数学(文科)参考答案一、选择题:1.A 2.C 3. A 4.C 5. D 6. C 7. A 8 .B 9. D10. B 11. D 12. C二、填空题:A B C D E F E F A B C D13. 2 14.④ 15.16. 3三、解答题:17.【解析】(Ⅰ)21cos()21AB BC AB BC B π⋅=-⇒⋅⋅-=- ………………2分 cos 21c a B ⇒⋅⋅=. …………………………………………………………… 3分又3cos 5B =,故35ac =. ………………………………………………4分由3cos 5B =可推出4sin 5B == ………………………………………5分1sin 14.2ABC S ac B ∆∴== ………………………………………6分(Ⅱ)7,35a ac ==由,可得5c=, ………………………………………7分又2223cos 2cos 325B b a c ac B b =∴=+-=⇒= ………………8分cos 2C ∴==, ………………10分 又(0,)C π∈ ,4C ∴=. ………………12分18.【解析】(Ⅰ)第六组的频率为40.0850=,所以第七组的频率为 10.085(0.00820.0160.0420.06)0.06--⨯⨯++⨯+=; ……………………………4分 (Ⅱ)身高在第一组[155,160)的频率为0.00850.04⨯=, 身高在第二组[160,165)的频率为0.01650.08⨯=, 身高在第三组[165,170)的频率为0.0450.2⨯=, 身高在第四组[170,175)的频率为0.0450.2⨯=,由于0.040.080.20.320.5++=<,0.040.080.20.20.520.5+++=> 估计这所学校的800名男生的身高的中位数为m ,则170175<<m 由0.040.080.2(170)0.040.5+++-⨯=m 得174.5=m所以可估计这所学校的800名男生的身高的中位数为174.5 …………………………6分由直方图得后三组频率为0.060.080.00850.18++⨯=,所以身高在180cm 以上(含180cm )的人数为0.18800144⨯=人. ………………8分(Ⅲ)第六组[180,185)的人数为4人,设为,,,a b c d ,第八组[190,195]的人数为2人, 设为,A B ,则有,,,,,,ab ac ad bc bd cd ,,,,,,,,aA bA cA dA aB bB cB dB AB 共15种情况,因事件=E {5x y -≤}发生当且仅当随机抽取的两名男生在同一组,所以事件E 包含的基本事件为,,,,,,ab ac ad bc bd cd AB 共7种情况,故7()15P E =. ……………………10分 由于max 19518015x y -=-=,所以事件F ={15->x y }是不可能事件,()0P F =, 由于事件E 和事件F 是互斥事件,所以7()()()15P EF P E P F =+=………12分 19.【解析】(Ⅰ)当1q =时,32412816S S S ===,,,不成等差数列……………1分当1q ≠时,234111(1)(1)(1)2111a q a q a q q q q---=+--- ,∴2342q q q =+ ,…………3分∴220q q +-=,∴2q =-, …………………………………………………………4分∴114(2)(2)n n n a -+=-=-.………………………………………………………………5分(Ⅱ)122log log (2)1n n n b a n +==-=+,………………………………………… 6分11111(1)(2)12n n b b n n n n +==-++++, ………………………………………… 7分 11111111233412222(2)n n T n n n n =-+-+⋅⋅⋅⋅⋅⋅+-=-=++++, ………………8分1n n T b λ+≤,∴(2)2(2)n n n λ≤++,∴22(2)nn λ≥+, …………………… 10分又211142(2)2(44)162(4)n n n n=≤=++++,∴λ的最小值为116. ……… 12分 20.【解析】(Ⅰ)存在P 使得满足条件CP ∥平面ABEF ,且此时32λ=.…………… 2分下面证明:当32λ=时,即此时32AP PD =,可知35AP AD =,过点P 作MP ∥FD ,与AF 交于点M ,则有35MP FD =,又FD =5,故MP =3,又因为EC =3,MP ∥FD ∥EC ,故有MP //=EC ,故四边形MPCE 为平行四边形,所以PC ∥ME ,又CP ⊄平面ABEF ,ME ⊂平面ABEF ,故有CP ∥平面ABEF 成立.……………………… 6分(Ⅱ)因为平面ABEF ⊥平面EFDC ,平面ABEF 平面EFDC =EF ,又AF ⊥EF ,所以AF ⊥平面EFDC .由已知BE =x ,,所以AF =x (0<x …4),FD =6-x .故222111112(6)(6)[(3)9](3)332333A C D F V x x x x x x -=⋅⋅⋅-⋅=-=--+=--+.所以,当x =3时,A CDF V -有最大值,最大值为3. ……………………… 12分21.【解析】(Ⅰ)由已知:221a b =+,且2221b a =+,解得223,2a b ==, ……4分所以椭圆C 的方程是22132x y +=. …………………………5分 (Ⅱ)将1y kx =+代入椭圆方程,得22(1)132x kx ++=, …………………………6分 化简得,()2232630k x kx ++-= …………………………7分设()()1122,,,P x y Q x y ,则12122263,3232k x x x x k k +=-=-++, …………………8分 所以,()()()()21212121212121111OP OQ x x y y x x kx kx k x x k x x =+=+++=++++EFA B C D M P()22222223166131232323232k k k k k k k -+--=-+==-+++++, ………………………10分 由222233310,322,0,22322322k k k k ≥+≥<≤-<-+≤-++,…………………12分所以OP OQ 的取值范围是1(2,]2--. …………………………13分22.【解析】(Ⅰ)因为8()2f x x x'=-,所以切线的斜率(1)6k f '==- …………2分又(1)1f =,故所求切线方程为16(1)y x -=--,即67y x =-+ …………4分 (Ⅱ)因为2(2)(2)()x x f x x+-'=,又x >0,所以当x >2时,()0f x '>;当02x <<时, ()0f x '<.即()f x 在(2,)+∞上递增,在(0,2)上递减 ……………………………………………5分又2()(7)49g x x =--+,所以()g x 在(,7)-∞上递增,在(7,)+∞上递减 ………6分欲()f x 与()g x 在区间(),1a a +上均为增函数,则217a a ≥⎧⎨+≤⎩,解得26a ≤≤ ……8分(Ⅲ) 原方程等价于228ln 14x x x m --=,令2()28ln 14h x x x x =--,则原方程即为()h x m =. ……………………9分 因为当0>x 时原方程有唯一解,所以函数()y h x =与y m =的图象在y 轴右侧有唯一的交点……………………10分又82(4)(21)()414x x h x x x x-+'=--=,且0x >, 所以当4x >时,()0h x '>,函数()h x 单调递增;当04x <<时, ()0h x '<,函数()h x 单调递减. 故()h x 在4x =处取得最小值. ……………12分 从而当0>x 时原方程有唯一解的充要条件是(4)16ln 224m h ==--. ………13分0z =。
2013年山东省高三语文高考模拟考试试卷二及答案

2013年山东省高三语文高考模拟考试试卷二及答案山东省2013届高三高考模拟卷(二)语文本试卷分第1卷和第Ⅱ卷两部分,共10页。
满分150分,考试用时150分钟。
第Ⅰ卷(选择题,共36分)一、(15分,每小题3分)1.下列词语中加点的字,每对读音都不相同的一组是()A.勾结/勾当扫除/扫帚咽气/狼吞虎咽兴奋/兴高采烈B.奔跑/投奔空气/空闲累赘/罪行累累丧礼/丧心病狂C.栏杆/竹竿侪辈/肚脐投缘/不容置喙俘虏/饿殍遍野D.宣布/渲染凄怆/呛人旺盛/矫枉过正假装/久假不归2.下列词语中没有错别字的一组是()A.怄气和事老指手画脚苦思冥想B.坐阵绩优股礼义廉耻涣然冰释C.表率黄梁梦千古之谜弥天大谎D.通缉急就章钟灵毓秀额首称庆3.依次填入下列各句中横线处的词,最恰当的一组是()①据《2012中国微博年度报告》,中国微博用户的井喷式增长将出现于2013年、2014年,市场也将进入成熟期。
②春节后,争抢农民工——中国劳动力市场这一场没有硝烟的战争,已然从珠三角、长三角局部地区到包括中、西部在内的全中国。
③无论是设计创新、服务创新,还是营销创新,想消费者所想,满足广大顾客的个性化需求,企业才能赢得更多的青睐。
A.预测漫延只要B.预算蔓延只要C.预算漫延只有D.预测蔓延只有4.下列句子中,加点的成语使用不恰当的一项是()A.有些中小网站为换取更多的商业利益,不惜大打擦边球,放任黄、赌、毒及虚假信息,炒作耸人听闻的传言,以迎合一些网民的猎奇八卦心理。
B.“厉行勤俭节约,反对铺张浪费”不会一阵风刮过了事,餐饮企业不能幻想公款等高消费卷土重来,要在经营方向、策略、方式进行全方位调整。
C.婚庆典礼本是一件欢天喜地的好事,可是因为目前婚庆司仪的能力和素质鱼龙混杂,致使很多新人在选择婚庆公司时倍感头疼。
D.金融是现代经济的核心,从事经济工作的同志,对央行货币政策任何细微的变化,都应十分敏感,见微知著,了然于心。
5.下列语句中,没有语病的一项是()A.权力部门应当善待媒体,善用媒体,信任媒体,以便使媒体更好地发挥引导社会热点、通达社情民意、搞好舆论监督的作用。
山东2013高考模拟卷(二)-理综(精)

山东省2013届高三高考模拟卷(二)理科综合本试卷分第I卷和第II卷两部分,共12页。
满分240分。
考试用时150分钟。
答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、考生号、县区和科类填写在试卷和答题卡规定的位置。
考试结束后,将本试卷和答题卡一并交回。
第I卷(必做,共87分)注意事项:1.第I卷共20小题。
1~13题每小题4分,14~20题每小题5分,共87分。
2.每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
不涂在答题卡上,只答在试卷上不得分。
以下数据可供答题时参考:相对原子质量:H -1 C-12 N-14 O-16 Fe-56 Cu-64一、选择题(本题包括13小题,每小题只有一个选项符合题意)1.细胞增殖是生物体的一项重要生命活动,下列说法正确的是A.蓝藻细胞增殖过程中可能会发生基因重组B.玉米细胞增殖过程中可能会发生伴性遗传C.果蝇细胞增殖过程中其性染色体之间可能会发生易位D.洋葱根尖细胞经秋水仙素处理可能会发生基因突变2.在通常情况下,下列描述的变化趋势与图示曲线相符的是横坐标纵坐标变化趋势A pH值酶促反应速率胰蛋白酶B 物种丰富度生态系统稳定性抵抗力稳定性C O2浓度呼吸速率酵母菌D Aa豌豆自交代数基因频率基因a3.动脉粥样硬化、急性胰腺炎等疾病是由细胞坏死引起的。
研究表明,人体内的一种名为RIP3的蛋白激酶能够将细胞凋亡转换成细胞坏死,通过调控这个酶的合成,可以调控细胞的死亡方式。
下列叙述错误的是A.细胞的坏死对人体也有益处,比如被病原体感染的细胞在免疫系统的作用下死亡B.抑制RIP3的活性,能在一定程度上对急性胰腺炎有治疗、防御的作用C.人体的癌细胞中,也可能存在控制RIP3合成的基因D.从以上分析可知细胞坏死过程中存在基因的选择性表达4.下列实验叙述中,比较合理的是A.用健那绿试剂染色,可以观察细胞中DNA的分布B.用口腔上皮细胞作材料,可以制备较为纯净的细胞膜C.用类比推理法,可以构建生物膜的流动镶嵌模型D. 用同位素标记法,可以探究生物的遗传物质5.下图是甲、乙细胞间的信息交流模型,a表示信号分子,下列分析与之相符的是A. 若甲是甲状腺细胞,乙是下丘脑细胞,则a是促甲状腺激素B. 若甲是精子,乙是卵细胞,则a是雄性激素C. 若甲是T细胞,乙是B细胞,则a是淋巴因子D. 若甲是胰岛A细胞,乙是肝细胞,则a是胰岛素6.某课题小组在燕麦胚芽鞘切面一侧放置含不同浓度生长素的琼脂块,测定各胚芽鞘弯曲角度α,记录如下表。
山东省2013届高三高考模拟卷(二)理科数学.pdf

山东省2013届高三高考模拟卷(二) 数学()本试卷分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分全卷满分150分考试时间120分钟 第Ⅰ卷 一选择题:本大题共1小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 满足,那么复数的虚部为 A.1 B. C. D. 2.已知集合,,,,,则 A.P=M B.Q=S 3.某日用品按行业质量标准分成五个等级,等级系数X依次为1,2,3,4,5.现从一批该种日用品中随机抽取200件,对其等级系数进行统计分析,得到频率的分布表如下: 则在所取的200件日用品中,等级系数X=1的件数为 A.40 B.20 C.30 D.60 :,,则 A.:, B.:, C.:, D.:, 5.如图所示,已知向量,,,,则下列等式中成立的是 A. B. C. D. 6.如图,若程序框图输出的S是254,则判断框①处应为 A. B. C. D. 7.在△ABC中角A,B,C的对边分别为,已知,且,,则△ABC的面积为 A. B. C. D. 8.已知函数是定义在R上的奇函数,当时,为常数),则函数的大致图象为 9.箱中装有标号为1,2,3,4,5,6且大小相同的6个球,从箱中一次摸出两个球,记下号码并放回,如果两球号码之积是4的倍数,则获奖.现有4人参与摸奖,恰好有3人获奖的概率是 A. B. C. D. 10.设O为坐标原点,点M的坐标为(2,1),若点满足不等式组,则使取得最大值的点N有 A.1个 B.2个 C.3个 D.无数个 11.若P是双曲线:和圆:的一个交点且,其中是双曲线的两个焦点,则双曲线的离心率为 A. B. C.2 D.3 12.已知函数,若存在正实数,使得方程在区间(2,+)上有两个根,其中,则的取值范围是 A. B. C. D. 第Ⅱ卷二、填空题:本大题共小题,每小题分. 13.设,则曲线在点处的切线的斜率为__________. 14.已知一个三棱锥的三视图如图所示,其中俯视图是等腰直角三角形,该三棱锥的外接球的半径为2,则该三棱锥的体积为_______. 15.的展开式中各项系数的和为1458,则该展开式中项的系数为_______. 16.设函数,其中表示不超过的最大整数,如,,若直线与函数的图象有三个不同的交点,则的取值范围是__________. 三、解答题:解答应写文字说明证明过程或演算步骤. 已知函数. (1)求的最小正周期及其单调增区间: (2)当时,求的值域. 18.(本小题满分12分) 如图,在三棱锥A-BCD中,△ABD和△BCD是两个全等的等腰直角三角形,O为BD的中点,且AB=AD=CB=CD=2,AC=. (1)当时,求证:AO⊥平面BCD; (2)当二面角的大小为时,求二面角的正切值. 19.(本小题满分12分) 某批发市场对某种商品的日销售量(单位:吨)进行统计,最近50天的统计结果如下表: 日销售量(吨)11.52天数102515(1)计算这50天的日平均销售量; (2)若以频率为概率,且每天的销售量相互独立. ①求5天中该种商品恰有2天的销售量为1.5吨的概率; ②已知每吨该商品的销售利润为2万元,X表示该种商品两天销售利润的和,求X的分布列和数学期望. 20.(本小题满分12分) 已知等差数列的首项,公差,且第2项、第5项、第14项分别是等比数列的第2项、第3项、第4项. (1)求数列、的通项公式; (2)设数列对任意的,均有成立,求. 21.(本小题满分13分) 已知中心在原点的椭圆C:的一个焦点为,为椭圆C上一点,的面积为. (1)求椭圆C的方程; (2)是否存在平行于OM的直线,使得直线与椭圆C相交于A,B两点,且以线段AB为直径的圆恰好经过原点?若存在,求出直线的方程;若不存在,请说明理由. 22.(本小题满分13分) 已知函数,. (1)若,求函数的单调区间; (2)若恒成立,求实数的取值范围; (3)设,若对任意的两个实数满足,总存在,使得成立,证明:. 数学() 一选择题: 14.2 15.61 16. 三、计算题 17.【解析】 . (1)函数的最小正周期. 由正弦函数的性质知,当, 即时,函数为单调增函数,所以函数的单调增区间为,. (2)因为,所以,所以, 所以,所以的值域为[1,3]. 18.【解析】(1)根据题意知,在△AOC中,,, 所以,所以AO⊥CO. 因为AO是等腰直角E角形ABD的中线,所以AO⊥BD. 又BDCO=O,所以AO⊥平面BCD. (2)法一 由题易知,CO⊥OD.如图,以O为原点, OC、OD所在的直线分别为轴、轴建立如图所示的空间直角坐标系, 则有O(0,0,0),,,. 设,则,. 设平面ABD的法向量为, 则即 所以,令,则. 所以. 因为平面BCD的一个法向量为, 且二面角的大小为,所以, 即,整理得. 因为,所以, 解得,,所以, 设平面ABC的法向量为, 因为,, 则即 令,则,.所以. 设二面角的平面角为,则 . 所以,即二面角的正切值为. 法二 在△ABD中,BD⊥AO,在△BCD中,BD⊥CO, 所以∠AOC是二面角的平面角,即∠AOC=. 如图,过点A作CO的垂线交CO的延长线于点H, 因为BD⊥CO,BD⊥AO,且COAO=O, 所以BD⊥平面AOC. 因为AH平面AOC,所以BD⊥AH. 又CO⊥AH,且COBD=O,所以AH⊥平面BCD. 过点A作AK⊥BC,垂足为K,连接HK. 因为BC⊥AH,AKAH=A,所以BC⊥平面AHK. 因为HK平面AHK,所以BC⊥HK, 所以∠AKH为二面角的平面角. 在△AOH中,∠AOH=,,则,, 所以. 在Rt△CHK中,∠HCK=,所以. 在Rt△AHK中,, 所以二面角的正切值为. 19.【解析】(1)日平均销售量为(吨). (2)①日销售量为1.5吨的概率. 设5天中该商品有Y天的销售量为1.5吨,则, 所以. ②X的所有可能取值为4,5,6,7,8.又日销售量为1吨的概率为,日销售量为2吨的概率为,则 ; ; ; ; . 所以X的分布列为 数学期望. 20.【解析】(1)由已知得,,, 所以,解得或. 又因为,所以. 所以. 又,,所以等比数列的公比, 所以. (2)由 ①,得当时, ②, ①-②,得当时,,所以2). 而时,,所以.所以. 所以 . 21.【解析】(1)因为椭圆C的一个焦点为, 所以,则椭圆C的方程为, 因为,所以,解得. 故点M的坐标为(1,4). 因为M(1,4)在椭圆上,所以,得, 解得或(不合题意,舍去),则. 所以椭圆C的方程为. (2)假设存在符合题意的直线与椭圆C相交于,两点,其方程为(因为直线OM的斜率, 由消去,化简得. 进而得到,. 因为直线与椭圆C相交于A,B两点, 所以, 化简,得,解得. 因为以线段AB为直径的圆恰好经过原点, 所以,所以. 又, , 解得. 由于,所以符合题意的直线存在,且所求的直线的方程为或. 22.【解析】(1)当时,函数, 则. 当时,,当时,1, 则函数的单调递减区间为(0,1),单调递增区间为(1,. (2)恒成立,即恒成立,整理得恒成立. 设,则,令,得.当时,,函数单调递增,当时,,函数单调递减,因此当时,取得最大值1,因而. (3),. 因为对任意的总存在,使得成立, 所以, 即, 即 . 设,其中,则,因而在区间(0,1)上单调递增,,又. 所以,即.。
【数学】山东省2013届高三高考模拟卷(二)(文)

山东省2013届高三高考模拟卷(二)数学(文科)、选择题:本大题共12个小题;每小题5分,共60分•在每小题给出的四个 选项中,有且只有一项是符合题目要求的.1.已知集合 M ={ y y =2x , x >0}, N ={y y = J2x-x 2},则 M 门 N 等于 A . 0B . {1}C . {y y>1}D . {y y ^1}2.a —2i已知复数 ------ =b+i ( a ,ib w R , i 为虚数单位), 贝y a —2b =A. 1B. 2C. 3D. 43. 下列函数中, 在其定义域内既是奇函数又是增函数的是A. 3.一y =x ,xR B. y =sin x,x 壬 RC. y =ig x, x >03 xD. y =(:)x,xw R4 •命题“对任意的 x • R , x 1 2 3 - x 2 • 1岂0”的否定是 A.不存在x R , x -X • 1乞0 B .存在x R ,x -X ・1岂0C.存在 x R ,x 3 -x 2 • 1 • 0D.对任意的 x R ,x 3 - x 2 • 1 • 0则此椭圆方程为2 21—141且玄2玄18, 则35. 向量a ,b 的夹角为60,且| a 1, A. 16. 如图 B. \ 2 ,在边长为2的菱形ABCD 中, |b|=2,则 |2a - b|等于 C. .. 3 / BAD =60, 则 AELBD 二 A . -37.已知椭圆的中心在原点, 离心率e = 1,且它的一个焦点与抛物线 2D.2y 2 =_4X 的焦点重合,oag 1I QO g3! Q s go =gA. B.-5C.D.®39. 把函数 =sin®x + $), >0^ <-)的图像向左平移如图示,则 ji ■,:的值分别为C . 2,—3B. 1, 'a兀D .2,3兀2xy 2 =1 C .10•已知f (x)是函数f(x)的导函数,如果f (x)是二次函数,f (x)的图象开口向上,顶 点坐标为(1,1),那么曲线f(x)上任一点处的切线的倾斜角 :-的取值范围是A.(FB.Tl[4Tl 空)-3 二°(「4 ]D .[4"11.若 a 0,b 0且a b=4, 则下列不等式恒成立的是1 111 /—~ 亠11A. —> - B . 一 +1C . .ab _ 2D.- 2 2<-ab 2aba b812.已知函数f (x)对定义域R 内的任意x 都有f(x) =f(4-x),且当x = 2时,其导函数f (x)满足 xf (x) 2 f (x),若 2 a ::: 4,则有A. f(2 )< f (3) f (2loag ) C. f (loga ) f (3) f a (2 )第二部分 非选择题(共90 分)二、填空题:本大题共4个小题,每小题4分,满分16分.13•直线・.3x • y -2..3 =0截圆x 2 y^ 4所得的弦长是 _______________________ .14 .已知:m,l 是不同的直线,是不同的平面,给出下列五个命题: ① 若l 垂直于爲内的两条直线,则l ;② 若l // :•,则l 平行于:内的所有直线;③ 若m 二用,丨二卜,且l _ m,则為丄1 ;④ 若l'-,且l _ :,则亠I “ ;⑤ 若m : , l [且〉// '-,则m//l .其中正确命题的序号是 _________________________x 2 y 2 乞 415 .已知x, y 满足约束条件 x - y • 2 — 0 ,则目标函数z =2x y 的最大值[y 兰。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年四川省高考模拟试题132013.11.28山东省高考模拟试题汇编山东省2014届高三理科数学备考之2013届名校解析试题精选分类汇编1:函数一、选择题1.(山东省潍坊市2013届高三上学期期末考试数学理(A .)已知函数⎩⎨⎧>≤+=0,10,2)(x nx x kx x f ()k R ∈,若函数()y f x k =+有三个零点,则实数k 的取值范围是( )A .2k ≤B .10k -<<C .21k -≤<-D .2k ≤-【答案】D【解析】由()0y f x k =+=,得()f x k =-,所以0k ≤.做出函数()y f x =的图象如图,要使函数()y f x k =+有三个零点,则由2k -≥,即2k ≤-,选D .2错误!未指定书签。
.(山东省威海市2013届高三上学期期末考试理科数学)对于函数()f x ,如果存在锐角θ使得()f x 的图象绕坐标原点逆时针旋转角θ,所得曲线仍是一函数,则称函数()f x 具备角θ的旋转性,下列函数具有角4π的旋转性的是 ( )A .y x =B .ln y x =C .1()2x y =D .2y x =【答案】C 设直线y x b =+,要使()f x 的图像绕坐标原点逆时针旋转角4π,所得曲线仍是一函数,则函数y x b =+与()f x 不能有两个交点.由图象可知选 C .3错误!未指定书签。
.(山东省潍坊市2013届高三第二次模拟考试理科数学)某学校要召开学生代表大会,规定根据班级人数每10人给一个代表名额,当班级人数除以10的余数大于6时,再增加一名代表名额.那么各班代表人数y 与该班人数x 之间的函数关系用取整函数[]y x =([x]表示不大于*的最大整数)可表示为 ( )A .[]10x y = B .3[]10x y += C .4[]10x y += D .5[]10x y += 【答案】B 法一:特殊取值法,若x=56,y=5,排除 C .D,若x=57,y=6,排除A,所以选B法二:设)90(10≤≤+=ααm x ,,时⎥⎦⎤⎢⎣⎡==⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+≤≤10103103,60x m m x αα 1101103103,96+⎥⎦⎤⎢⎣⎡=+=⎥⎦⎤⎢⎣⎡++=⎥⎦⎤⎢⎣⎡+≤<x m m x αα时当,所以选B 4错误!未指定书签。
.(山东省滨州市2013届高三第一次(3月)模拟考试数学(理)试题)定义在R 上的奇函数()f x ,当x ≥0时, ))12log (1),0,1,()1|3|,1,,x x f x x x ⎧+∈⎡⎣⎪=⎨⎪--∈+∞⎡⎣⎩则关于x 的函数()()F x f x a =-(0<a <1)的所有零点之和为 ( )A .1-2aB .21a-C .12a--D .21a--【答案】A当01x ≤<时,()0f x ≤.当1x ≥时,函数()1|3|f x x =--,关于3x =对称,当1x ≤-时,函数关于3x =-对称,由()()0F x f x a =-=,得(),y f x y a ==.所以函数()()F x f x a =-有5个零点.当10x -≤<,时,01x <-≤,所以122()log (1)log (1)f x x x -=-+=--,即2()log (1)f x x =-,10x -≤<.由2()log (1)f x x a =-=,解得12a x =-,因为函数()f x 为奇函数,所以函数()()F x f x a =-(0<a <1)的所有零点之和为12a x =-,选A .5错误!未指定书签。
.(山东省威海市2013届高三上学期期末考试理科数学)已知函数()f x 的定义域为(32,1)a a -+,且(1)f x +为偶函数,则实数a 的值可以是 ( )A .23B .2C .4D .6【答案】B 因为函数(1)f x +为偶函数,所以(1)(1)f x f x -+=+,即函数()f x 关于1x =对称,所以区间(32,1)a a -+关于1x =对称,所以32112a a -++=,即2a =,所以选B .二、填空题1错误!未指定书签。
.(山东省实验中学2013届高三第一次诊断性测试数学(理)试题)函数|1|()2x f x -=的递增区间为_______________________.【答案】[1,)+∞【解析】令1t x =-,则2ty =在定义域上单调递增,而1,111,1x x t x x x -≥⎧=-=⎨-<⎩,在1x ≥上单调递增,所以函数|1|()2x f x -=的递增区间为[1,)+∞.2错误!未指定书签。
.(山东省威海市2013届高三上学期期末考试理科数学)已知|||lg |,0()2,0x x x f x x >⎧=⎨≤⎩,则函数22()3()1y f x f x =-+的零点的个数为_______个.【答案】5 由22()3()10y f x f x =-+=解得()1f x =或1()2f x =.若()1f x =,当0x >时,由lg 1x =,得lg 1x =±,解得10x =或110x =.当0x ≤时,由21x =得0x =.若1()2f x =,当0x >时,由1lg 2x =,得1lg 2x =±,解得10x =或110x =.当0x ≤时,由122x=得1x =-,此时无解.综上共有5个零点.3错误!未指定书签。
.(山东省济宁市2013届高三第一次模拟考试理科数学 )函数(x)f 的定义域为D,若存在闭区间[a,b]⊆D,使得函数f (x )满足:(1) f (x )在[a,b]内是单调函数;(2)f (x )在[a,b]上的值域为[2a,2b],则称区间[a,b]为y=f (x )的“和谐区间”.下列函数中存在“和谐区间”的是_______ (只需填符合题意的函数序号) ①20f (x )x (x )=≥;②xf (x )e (x R )=∈; ③10f (x )(x )x =>;④2401xf (x )(x )x =≥+. 【答案】①③④【解析】①若2()f x x =,则由题意知()2()2f a a f b b =⎧⎨=⎩,即2222a a b b ⎧=⎪⎨=⎪⎩,解得02a b =⎧⎨=⎩时,满足条件.②若()xf x e =,则由题意知()2()2f a a f b b =⎧⎨=⎩,即22a be a e b⎧=⎪⎨=⎪⎩,即,a b 是方程2x e x =的两个根,由图象可知方程2x e x =无解时,所以不满足条件.③若1()f x x =,则由题意知()2()2f a b f b a =⎧⎨=⎩,即1212b a a b⎧=⎪⎪⎨⎪=⎪⎩,所以只要12ab =即可,所以满足条件.④若24()1xf x x =+,因为22244'()(1)x f x x -=+,则由题意知当01x ≤≤时,'()0f x >,函数递增,当1x >时,'()0f x <,函数递减.当01x ≤≤时由()2()2f a af b b =⎧⎨=⎩得22421421aa ab b b ⎧=⎪⎪+⎨⎪=⎪+⎩,由2421x x x =+,解得0x =或1x =,所以当0,1a b ==时,满足条件,即区间为[0,1].所以存在“和谐区间”的是①③④.山东省2014届高三理科数学备考之2013届名校解析试题精选分类汇编2:三角函数一、选择题1.(山东省潍坊市2013届高三第一次模拟考试理科数学)已知,(0,)2παβ∈,满足tan()4tan αββ+=,则tan α的最大值是( )A .14B .34C .324D .32【答案】B 由tan()4tan αββ+=tan tan 4tan 1tan tan αββαβ+=-,得23tan tan 14tan βαβ=+,因为(0,)2πβ∈,所以tan 0β>.所以333tan 1414tan 24tan tan tan αββββ=≤=+⋅,当且仅当14tan tan ββ=,即21tan 4β=,1tan 2β=时,取等号,所以tan α的最大值是34,所以选 B .错误!未指定书签。
2.(【解析】山东省济宁市2013届高三第一次模拟考试理科数学 )关于函数()=2()f x sin x -cos x cos x 的四个结论:P 1:最大值为2;P 2:把函数()221f x sin x =-的图象向右平移4π个单位后可得到函数2f (x )(sin x cos x )cos x =-的图象;P 3:单调递增区间为[71188k ,k ππππ++],k Z ∈; P 4:图象的对称中心为(128k ,ππ+-),k Z ∈.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】B【解析】因为2()=222212(2)14f x sin x cos x cos x sin x cos x sin x π-=--=--,所以最大值为21-,所以P 1错误.将()221f x sin x =-的图象向右平移4π个单位后得到()22()12(2)142f x sin x sin x ππ=--=--,所以P 2错误.由222242k x k πππππ-+≤-≤+,解得增区间为388k x k ,k Z ππππ-+≤≤+∈,即3[]88k ,k k Z ππππ-++∈,所以3p 正确.由24x k ,k Z ππ-=∈,得,28k x k Z ππ=+∈,所以此时的对称中心为(1)28k ,ππ+-,所以4p 正确,所以选B .3错误!未指定书签。
.(山东省烟台市2013届高三3月诊断性测试数学理试题)已知函数221()xf x e -=,若[cos()]12f πθ+=,则θ的值为( )A .4k ππ+B .4k ππ-C .24k ππ+ D .4k ππ-(其中k ∈Z)【答案】C由221()1xf x e -==,得2210x -=,即22cos ()102πθ+-=,所以cos 2()cos(2)cos 202πθπθθ+=+=-=,所以2,2k k Z πθπ=+∈,即,24k k Z ππθ=+∈,选 C .4错误!未指定书签。
.(山东省德州市2013届高三3月模拟检测理科数学)函数2cos ()4y x π=+的图象沿x轴向右平移a 个单位(0)a >,所得图象关于y 轴对称,则a 的最小值为 ( )A .πB .34π C .2πD .4π【答案】D 21cos(2)1sin 2112cos ()sin 242222x x y x x ππ++-=+===-,函数向右平移a 个单位得到函数为1111sin 2()sin(22)2222y x a x a =--=--,要使函数的图象关于y 轴对称,则有2,2a k k Z ππ-=+∈,即,42k a k Z ππ=--∈,所以当1k =-时,得a 的最下值为4π,选 D .5错误!未指定书签。