统计过程控制(SPC)与休哈特控制图(一)
SPC统计过程管制与控制图

2、控制图的发展
1924年发明
W.A. Shewhart
1931发表
1931年Shewhart发表了 “Economic Control of Quality of
Manufacture Product”
1941~1942 制定成美国标准
4
Z1-1-1941 Guide for Quality Control Z1-2-1941 Control Chart Method for
输出
识别不断变化 的需求和期望
顾客的声音 8
三、基本的统计概念
1、数据的种类
计量型 计数型
2、波动(变差)——波动的概念、原理及波动的 种类
3、普通原因/异常原因
4、基础的统计量——平均值X、中位数X~、极差R
标准偏差、S
9
1、数据的种类
计量型 特点:可以连续取值,也称连续型数据。 如:零件的尺寸、强度、重量、时间、温度等。
有控制限的过程控制图。 (备注:管理用控制图必须要有控制限!)
19
3、“”及“”风险定义
根据控制限作出的判断也可能产生错误。可能产生的错
误有两类:
第一类错误是把正常判为异常,它的概率为,也就是
说,工序过程并没有发生异常,只是由于随机的原因引起了
数据过大波动,少数数据越出了控制限,使人误将正常判为
异常,从而虛发警报。由于徒劳地查找原因并为此采取了相
应的措施,从而造成损失。因此第一种错误又称为徒劳错误。
(X1+X2+……+Xn)/n
2、中位数~X
将数据按数值大小顺序排列后,位于中间位置的书,
称为中位数。
如:5,9,10,4,7,
X~=7;
统计过程控制(休哈特Shewhart控制图)(PPT91页)

深圳市共进电ห้องสมุดไป่ตู้有限公司
什么是质量?
• 全部功能和特性的产品或服务而承受的能力,以 满足特定需求。 ( ASQC ) • 目标一致 (戴明) • 适应性 (约瑟夫朱兰) • 符合要求 (菲利普克劳士比) • 逆变异 (道格拉斯蒙哥马利)
深圳市共进电子有限公司
识别变化
• 固有的或正常的变化 由于累积的影响,许多小的不可避免的原因在不断的积累 下导致经营过程的唯一机会差异,被认为是“在控制中”
深圳市共进电子有限公司
设置控制界限
• 六西格玛方法 控制界限通常设置为3w ,远离中心线的部分有0.27%的 一类错误,这种控制界限被称为3 控制界限。 • 概率极限方法 控制界限设置为3.09 ,远离中心线部分为0.2 % 一类错 误,这种控制界限被称为0.1 %的概率界限
深圳市共进电子有限公司
Center Line
Lower Control Limit Sample Number or Time
深圳市共进电子有限公司
控制图和中心极限定理
• 中心极限定理: 如果样本大小为n个抽取k个观察,样本x1, x2, . . . , xk将 近似N(x,x)的分布,有:
x i1 k x n
设置警告界限
• 3 控制界限(或0.1 %的概率界限)也可以叫做行为界限, 也就是当一个点处于这些界限以外时,这个过程需要调查和纠正。 有时设置2 的警告界限可以增加控制图的灵敏度。相应的2.5 % 的概率界限会偏离中心线1.96 。
深圳市共进电子有限公司
合理分组
• 一个分组是样本的一次小范围的测量,以代表某一特定时候 或产品内的工序的特征。
深圳市共进电子有限公司
_
统计过程控制(SPC)

CD
AP
CD
AP
AP
CD
CD
统计过程控制(SPC)
SPC的基本概念 控制图原理 常规(休哈特)控制图 控制图的判断准则 常用控制图的计算 通用控制图 过程能力与过程能力指数
统计过程控制(SPC)
SPC的基本概念
• SPC的涵义 SPC是英文Statistical Process Control(统计过程控制)
C B A
准则:连续9点落在中心线同一側。
LCL
准则:连续6点递增或递减。
准则:连续14点中相邻点上下交替。
准则:连续3点中有2点落在中心线同一側的B区之外。
准则:连续5点中有4点落在中心线同一側的C区之外。
准则:连续15点在C区的中心线上下。
准则:连续8点在中心线两側,但无一在C区中。
统计过程控制(SPC)
统计过程控制(SPC)
• 控制图的作用 控制图的作用是:及时告警。体现SPC与SPD的贯彻
预防原则。 控制图是SPC与SPD的重要工具,用以直接控制与诊断 过程,故为质量管理七个工具的核心。
质量管理七个工具:因果图(Cause-effect diagram), 排列图(Pareto diagram),直方图(Histogram),散 步图(Scatter diagram),控制图(Control chart),分 层法(Stratification),检查表(Check list)。 贯彻预防原则的“20字方针”:
u控制图的控制线为:
UCL = u + 3 u / n CL = u
LCL = u - 3 u / n
式 否中则:控u制=线 呈ci /凹凸ni 状,。ci为样本的不合格数。样本容量n最好恒定,
统计过程控制

1、统计过程控制(SPC)包含两方面:①利用控制图分析过程的稳定性;②计算过程能力指数,对过程质量进行评价。
主要工具就是控制图。
2、SPC发源于美国。
休哈特《加工产品质量的经济控制》标志着过程控制的开始。
3、统计过程诊断(SPD)是20世纪80年代发展起来的。
4、世界上第一张控制图是美国休哈特在1924年提出来的不合格率(p)控制图5、小概率事件原理:小概率事件在一次实验中几乎不可能发生,若发生判断为异常。
6、控制图是用于监控过程质量是否处于统计控制过程的图7、常规控制图包括中心线、控制限、描点序列。
控制限的作用就是区分偶然波动与异常波动。
8、偶因是过程固有的,始终存在的,对质量的影响微小,但难以除去。
异因不是过程国有的,有时存在,有时不存在,对质量影响打,但不难除去。
9、过程处于统计状态控制时,只有偶因,而无异因产生的变异;点子落在控制限外的概率很小。
10、为控制产品不合格数,可选用的控制图有p图和np图11、为控制产品有瑕疵数,可选用的控制图有c图和u图12、根据5M1E内容,当人、机、料、法、测、环任何一个变动时,控制限需重新制定。
一、常规控制图的分类及应用场合:计数值控制图包括计件值和计点值控制图二、X−R图:(国标规定先作R图)计算步骤:1、取预备数据①取20~25个子组②子组大小一般为4或5,过程稳定性好的话,子组间隔可以扩大。
③同一子组的数据必须在同样的生产条件下取得,故要求在短间隔内来取。
2、计算各个子组的平均是X i和极差R i3、计算样本总均值X̿与平均样本极差R4、计算R图控制限、X控制限,并作图。
5、将子组中的预备数据(R i)在R图中打点,判稳。
若稳进行步骤6;若不稳,除去可查明原因后转入步骤3,即重新计算X̿与R6、将子组中的预备数据(X i)在X图中打点,判稳。
若稳进行步骤;若不稳,除去可查明原因后转入步骤3,即重新计算X̿与R7、计算过程能力指数并检验其是否满足技术要求若过程能力指数满足技术要求,则转入步骤8;若过程能力指数不满足技术要求,则需调整过程直至满足技术要求为止;8、延长X−R的控制线,作控制用控制图,进行日常管理。
SPC1简介及控制图

2
质量管理的第二阶段
统计质量控制阶段(20世纪40年代— 50年代) (1925年)休哈特博士,提出统计过程控制理论; 道奇提出了抽样检查理论;强调用数据说话,开 始将统计学应用于质量管理 特点: 是SPC的初级阶段,主要是运用统计手段分析 研究结果,尚未系统地应用分析工具如柏拉图等。
3
质量管理的第三阶段
课程(控制图 (3)分析手法介绍 (4)过程能力分析
Statistical (统计) Process (过程) Control (控制)
• 以概率统计学为基础,用科学的方法分析数据、 得出结论; ——使用数据分析
• 有输入、输出的一系列活动——分析研究过程
全面品质管理阶段(20世纪60年代—) 20世纪50年代,戴明提出了品质改进理论;朱兰和 费根堡姆提出了全面品质管理理念。全面品质管理 理念在日本取得了巨大的成功,日本70年代的 经济增长很大程度上得益于其产品品质的改善,日 本人称之为品质革命。 特点: 发明了更多的SPC管控工具,强调全员、全过程、 实时监控的品质保证,SPC与体系管理相结合。
( xi x) 2 /( n 1)
i 1 n
数据点
控制线
中心线
SPC控制图的控制限
一个控制图通常有三条线 <1> 中心线(Central line)简称CL线,位置与正态分布 均值重合. <2> 上控制限(Upper Control Limit)简称UCL ,位置在 μ+3δ处. <3> 下控制限(Lower Control limit)简称LCL ,位置在 μ-3δ处.
序号 测量值 序号 测量值 序号 测量值 序号 测量值 1 1495 11 1500 21 1505 31 1499 2 1496 12 1502 22 1498 32 1503 3 1502 13 1504 23 1497 33 1497 4 1504 14 1496 24 1495 34 1504 5 1498 15 1501 25 1511 35 1500 6 1501 16 1503 26 1503 36 1505 7 1503 17 1498 27 1504 37 1499 8 1508 18 1502 28 1505 38 1507 9 1502 19 1495 29 1506 39 1501 10 1497 20 1503 30 1492 40 1506
统计过程控制(SPC)

第一节 统计过程控制概述
一、过程控制的基本概念
为实现产品生产过程质量而进行的有组 织、有系统的过程管理活动
主要内容
(1)对过程进行分析并建立控制标准 (2)对过程进行监控和评价 (3)对过程进行维护和改进
二、统计过程控制 应用统计技术对过程中的各个阶段进行评 估和监控,建立并保持过程处于可接受的 并且稳定的水平,从而保证产品与服务符 合规定的要求的一种质量管理技术。 内容 (1)利用控制图分析过程的稳定性,对 过程存在的异常原因进行预警; (2)计算过程能力指数分析稳定的过程 能力满足技术要求的程度,对过程质量进行 评价。-可接受性
2 K T/ 2 T
(0<K<1)
K: μ对M的偏移度,ε=|M-μ|
T 则:C pK 1 K C p 1 K 6
其中:ε——μ与公差中心M偏移量 T——公差带宽 T=TU—TL
(四)Cp和Cpk的比较与说明 Cp—— 反映过程加工的一致性,即 “质量能力”
或
1 5 n P P
P0 :给定标准值 P :未给定标准值 2. 计算样本不合格品率
3. 算P图的控制限
P 1 P UCLP P 3 n
CLP P
P1 P LCLP P 3 n
4. 样本不合格品率描点 5. 判稳/判异
6. 关于样本量ni的说明 ( 1 )若样本量 n 大小相等,则 P 图控制限为两条直线。 ( 2 )若样本量 ni 不全相等,则 P 图 控制限呈凹凸状。
分析过程若失控或异常,找出原因, 进行纠正,防止再发生。
7. 计算 X 图控制限并作图,判断状态。
8. 计算过程能力指数验证是否符合要求 9. 延长控制限,作控制用控制图,进行日 常管理
统计过程控制(SPC)

5-41
[例]设有某工序的上公差TU为0.2190, 下公差TL为0.1250,现场抽查的数据如 下表,其图如下图1.由图1可见,工序失控, 经过执行20字方针后,重新做图得到休 整后的图2.由图2可见,工序已经达到稳 态.故现在可对过程能力进行评价.
5-42
子组序号
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.06 0.0086 0.0227 0.0135
0.01 5-43
0.22
0.21
UCL=0.2
133
0.2
平均值
0.19
X =0.19
0.18
状态III
状态IV(最不理想) 状态IV达到I的途径: ► IVIII ► IVIIII
调整过程即质量不断 改进过程
5-28
在控制状态下〔异因 消除,只有偶因〕
时间
下公差限
大小
上公差限
〔偶因的变异 减少〕
时间
在控制状态下,但工程 能力不足 〔偶因的变异太大〕
5-29
〔二〕控制用控制图 ► 当过程达到了我们所确定的状态后, 才能将分析用控制图的控制线延长作为控 制用控制图,应有正式交接手续. ► 判异准则 判稳准则 ► 进入日常管理后,关键是保持所确 定的状态.
偶然波动:偶因引起质量的波动 ,简称偶波;
异常波动:异因引起质量的 波动,简称异波. 5-16
2.控制图的第二种解释 假定现在异波均已消除,只剩下偶波,则此偶波的波动将
是最小波动,即正常波动.根据这正常波动,应用统计学 原理设计出控制图相应的控制界限,当异常波动发生 时,点子就会落在界外.因此点子频频出界就表明异波 存在. 控制图上的控制界限就是区分偶波与异波的科学界限.
第三章 统计过程控制(SPC)与常规控制图

两个重要的参数:
• µ (mu)--- 位置参数和平均值(mean value) ,表 示 分布的中心位置和期望值 • (sigma) --- 尺度参数,表示分布的分散程度和标 准偏差 (standard deviation),
20字真经 查出异因, 采取措施, 保证消除, 不再出现, 纳入标准。
5. 统计控制状态
任何技术控制都有一个标准作为基准。 统计 过程控制(SPC)的基准是统计控制状态 (State in Statistical Control) 简称控制状态(state in control)或稳态(stable state): 指过程中只有偶因(而无异因)产生 的变异状态。 当过程仅受随机因素影响时,过程处于统计 控制状态(简称受控状态);当过程中存在 系统因素的影响时,过程处于统计失控状态 (简称失控状态)。由于过程波动具有统计 规律性,当过程受控时,过程特性一般服从 稳定的随机分布;而失控时,过程分布将发 生改变。SPC正是利用过程波动的统计规律 性对过程进行分析控制的。 通过对过程不断调整,从理论上讲,控制状 态是可以达到的,虽然质量变异不能完全消 除,应用控制图使得质量变异成为最小的有 效工具。
• 本步骤最困难,最费时。 制订过程控制标准 对过程进行监控 对过程进行诊断并采取措施解决问题
5.推行ISO9000国际标准与推行SPC和 SPD的关系
在ISO9000族标准中运用统计技术的目 的在于:通过对统计技术的适当运用以 解决组织的问题和做出有效决策,提高 管理效率并促进质量管理体系的持续改 进和产品质量的不断提高。推行SPC和 SPD是推行ISO9000国际标准的一项重 要基础工作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
统计过程控制(SPC)与休哈特控制图(一)这里介绍SPC,控制图的重要性,控制图原理,判稳及判异准则,休哈特控制图,通用控制图。
第一章统计过程控制(SPC)一、什么是SPCSPC是英文Statistical Process Control的字首简称,即统计过程控制。
SPC就是应用统计技术对过程中的各个阶段进行监控,从而达到改进与保证质量的目的。
SPC强调全过程的预防。
SPC给企业各类人员都带来好处。
对于生产第一线的操作者,可用SPC方法改进他们的工作,对于管理干部,可用SPC方法消除在生产部门与质量管理部门间的传统的矛盾,对于领导干部,可用SPC方法控制产品质量,减少返工与浪费,提高生产率,最终可增加上缴利税。
SPC的特点是:(1)SPC是全系统的,全过程的,要求全员参加,人人有责。
这点与全面质量管理的精神完全一致。
(2) SPC强调用科学方法(主要是统计技术,尤其是控制图理论)来保证全过程的预防。
(3)SPC不仅用于生产过程,而且可用于服务过程和一切管理过程。
二、SPC发展简史过程控制的概念与实施过程监控的方法早在20世纪20年代就由美国的休哈特(W. A.Shewhart)提出。
今天的SPC与当年的休哈特方法并无根本的区别。
在第二次世界大战后期,美国开始将休哈特方法在军工部门推行。
但是,上述统计过程控制方法尚未在美国工业牢固扎根,第二次世界大战就已结束。
战后,美国成为当时工业强大的国家,没有外来竞争力量去迫使美国公司改变传统方法,只存在美国国内的竞争。
由于美国国内各公司都采用相似的方法进行生产,竞争性不够强,于是过程控制方法在1950~1980年这一阶段内,逐渐从美国工业中消失。
反之,战后经济遭受严重破坏的日本在1950年通过休哈特早期的一个同事戴明(W. Ed- wards Deming)博士,将SPC的概念引入日本。
从1950~1980年,经过30年的努力,日本跃居世界质量与生产率的领先地位。
美国著名质量管理专家伯格(Roger W. Berger)教授指出,日本成功的基石之一就是SPC。
在日本强有力的竞争之下,从80年代起,SPC在西方工业国家复兴,并列为高科技制(之一。
例如,加拿大钢铁公司(STELCO)在1988年列出的该公司七大高科技方向如下:(1)连铸,(2) 炉外精炼钢包冶金站,(3) 真空除气,(4) 电镀钵流水线,(5) 电子测量,(6) 高级电子计算机,(7) SPC。
美国从20世纪80年代起开始推行SPC。
美国汽车工业已大规模推行了SPC,如福特汽车公司,通用汽车公司,克莱斯勒汽车公司等,上述美国三大汽车公司在ISO9000的基础上还联合制定了QS9000标准,在与汽车有关的行业中,颇为流行。
美国钢铁工业也大力推行了SPC,如美国LTV钢铁公司,内陆钢铁公司,伯利恒钢铁公司等等。
三、什么是SPCD与SPCDA?SPC迄今已经经历了三个发展阶段,即:SPC,SPCD及SPCDA。
1.第一阶段为SPC。
SPC是美国休哈特在20世纪二、三十年代所创造的理论,它能以便人们采取措施,消除异常,恢复过程的稳定。
这就是所科学地区分出生产过程中产品质量的偶然波动与异常波动,从而对过程的异常及时告警,谓统计过程控制。
2.第二个阶段为SPCD。
SPCD是英文Statistical Process Control and Diagnosis的字首简称,即统计过程控制与诊断。
SPC虽然能对过程的异常进行告警,但是它并不能告诉我们是什么异常,发生于何处,即不能进行诊断。
1982年我国张公绪首创两种质量诊断理论,突破了传统的美国休哈特质量控制理论,开辟了统计质量诊断的新方向。
从此SPC上升为SPCD,SPCD是SPC 的进一步发展,也是SPC的第二个发展阶段。
1994年张公绪教授与其博士生郑慧英博士提出多元逐步诊断理论,1996年张公绪教授又提出两种质量多元诊断理论,解决了多工序、多指标系统的质量控制与诊断问题。
目前SPCD已进入实用性阶段,我国仍然居于领先地位。
3.第三个阶段为SPCDA。
SPCD也是英文Statistical Process Control,Diagnosis and Adjustment 的字首简称,即统计过程控制、诊断与调整。
正如同病人确诊后要进行治疗,过程诊断后自然要加以调整,故SPCDA是SPCD的进一步发展,也是SPC的第三个发展阶段。
这方面国外刚刚起步,他们称之为ASPC(Algorithmic Statistical Process Control,算法的统计过程控制),目前尚无实用性的成果。
张公绪教授与他的博士生也正在进行这方面的研究。
四、SPC和SPCD的进行步骤进行SPC和SPCD有下列步骤:步骤1::培训SPC和SPCD。
培训内容主要有下列各项:SPC的重要性,正态分布等统计基本知识,质量管理七种工具,其中特别是要对控制图深入学习,两种质量诊断理论,如何制订过程控制网图,如何制订过程控制标准等等。
步骤2:确定关键变量(即关键质量因素)。
具体又分为以下两点:(1)对全厂每道工序都要进行分析(可用因果图),找出对最终产品影响最大的变量,即关键变量(可用排列图)。
如美国LTV钢铁公司共确定了大约20000个关键变量。
(2)找出关键变量后,列出过程控制网图。
所谓过程控制网图即在图中按工艺流程顺序将每道工序的关键变量列出。
步骤3:提出或改进规格标准。
具体又分为以下两点:(1)对步骤2得到的每一个关键变量进行具体分析。
(2)对每个关键变量建立过程控制标准,并填写过程控制标准表。
过程控制标准表本步骤最困难,最费时间,例如制定一个部门或车间的所有关键变量的过程控制标准,大约需要两个多人年(即一个人要工作量年多)。
步骤4:编制控制标准手册,在各部门落实。
将具有立法性质的有关过程控制标准的文件编制成明确易懂、便于操作的手册,使各道工序使用。
如美国LTV公司共编了600本上述手册。
步骤 5:对过程进行统计监控。
主要应用控制图对过程进行监控。
若发现问题,则需对上述控制标准手册进行修订,及反馈到步骤4。
步骤6::对过程进行诊断并采取措施解决问题。
可注意以下几点:(1)可以运用传统的质量管理方法,如七种工具,进行分析。
(2)可以应用诊断理论,如两种质量诊断理论,进行分析和诊断。
(3)在诊断后的纠正过程中有可能引出新的关键质量因素,即反馈到步骤2,3,4 。
推行SPC的效果是显著的。
如美国率LTV公司1985年实施了SPC后,劳动生产率提高了20%以上。
五、宣贯ISO9000国际标准与推行SPC和SPCD的关系ISO9000一1994年新版与1987年初版相比校,有三个强调:(1) 强调“把一切都看成过程",(2) 强调“预防", (3) 强调“统计技术的应用是不可剪裁的"。
其实,这三者是互相联系、密切不可分的。
众所周知,质量管理这门学科有个重要的特点,即对质量管理所提出的原则、方针、目标都要有科学方法和科学措施来加以保证。
例如,强调预防就要应用统计方法(主要是应用SPC 和SPCD)和科学措施来保证它的实现。
这样,后两个强调是紧密联系着的。
其次,SPC即统计过程控制,故第一个强调也与后二者联系起来了。
所以这三个强调是互相联系、密不可分的。
企业推行ISO9000应该注意到这三个强调,在思想上应该明确:SPC和SPCD是推行ISO9000的基础。
第二章控制图原理一、控制图的重要性贯彻预防原则是依靠推行SPC和SPCD来实现的,而居QC七个工具核心地位的控制图是 SPC 和SPCD的重要工具。
1984年日本名古屋工业大学调查了115家日本各行各业的中小型工厂,结果发现平均每家工厂使用137张控制图,这个数字对于我们推行SPC和SPCD是有一定的参考意义的。
可以说,工厂中使用控制图的张数在某种意义上反映了管理现代化的程度。
二、什么是控制图控制图是对过程质量加以测定、记录从而进行控制管理的一种用科学方法设计的图。
图上有中心线(CL)、上控制界限(UCL)和下控制界限(LCL),并有按时间顺序抽取的样本统计量数值的描点序列,参见控制图示例图。
三、控制图原理的第一种解释假定某车间有部车床车制直径为10mm的机螺丝。
为了了解机螺丝的质量,从车制好的机螺丝中抽出100个,测量并记录其直径数据,如表所示。
机螺丝直径数据(mm)直方高度与该组的频数成正比。
机螺丝直径直方图直方图趋近光滑曲线将各组的频数用数据总和N=100除,就得到各组的频率,它表示机螺丝直径属于各组的可能性大小。
显然,各组频率之和为1。
若以直方面积来表示该组的频率,则所有直方分布曲线正态分布曲线面积总和也为1。
这时,直方的高=直方面积/组距=频率/组距=频数/(N×组距)。
因此,无论纵坐标取为频率或频率/组距,各直方的高都与频数成正比。
故机螺丝直径直方图所示的直方图仍可用,只要再作一条频率纵轴和一条直方面积表示频率的纵轴,见直方图趋近光滑曲线图。
如果数据越多,分组越密,则机螺丝直径直方图的直方图也越趋近一条光滑曲线,如直方图趋近光滑曲线图所示。
在极限情况下得到的光滑曲线即为分布曲线,它反映了产品质量的统计规律,如分布曲线图所示。
在质量特性值为连续值时,最常见的典型分布为正态分布。
例如机螺丝直径直方图中机螺丝直径的分布就是如此,它的特点是中间高、两头低、左右对称并延伸至无限。
正态分布可用两个参数即均值μ和标准差σ来决定。
正态分布有一个结论对质量管理很有用,即无论均值μ和标准差σ。
取何值,产品质量特性值落在μ±3σ之间的概率为99.73,于是落在μ±3σ之外的概率为100%一99.73%= 0.27%,而超过一侧,即大于μ-3σ或小于μ+3σ的概率为0.27%/2=0.135%≈1‰,如正态分布曲线图。
这个结论十分重要。
美国休哈特就根据这一事实提出了控制图。
控制图的演变过程参见控制图的演变图。
首先把正态分布曲线图按顺时针方向转90°成下图(控制图的演变a图),由于上下的数值大小不合常规,故再把控制图的演变图上下翻转180°而成下图(控制图的演变b图),这样就得到一张控制图,具体说是单值( χ)控制图。
现在结合机螺丝的例子来说明控制图的原理。
设已知机螺丝直径的标准差为0.26mm,现从上表的数据算得样本均值x=10.10mm,于是有μ+3σ≈x+3σ=10.00+3×0.26=10.78(mm)μ≈x=10.00(mm)μ-3σ≈x-3σ=10.00-3×0.26=9.22(mm)参见x控制图。
称μ+3σ为上控制界,记为UCL,称μ为中心线,记为CL,称μ-3σ为上控制界,记为LCL。