麦克斯韦电磁场理论和电磁波
2013-2014学年高二物理配套课件:3.2 电磁场和电磁波(教科版选修3-4)

强度B随时间成正比例增加的变化磁场,设运动过程中小球的
带电荷量不变,那么
( ).
图3-2-4
A.小球对玻璃杯的压力不断增大 B.小球受到的磁场力不断增大 C.小球先沿逆时针方向做减速运动,过一段时间后,沿顺时针 方向做加速运动 D.磁场力对小球一直不做功
解析 因为玻璃圆环所在处有均匀变化的磁场,在周围产生稳定 的旋涡电场,对带正电的小球做功.由楞次定律,判断电场方向 为顺时针方向.在电场力作用下,小球先沿逆时针方向做减速运 动,后沿顺时针方向做加速运动.小球在水平面内沿轨迹半径方 向受两个力作用:环对小球的弹力N和磁场的洛伦兹力F=Bqv, 而且两个力的矢量和时刻等于小球做圆周运动的向心力.考虑到 小球速度大小的变化和方向的变化以及磁场强弱的变化,弹力N和 洛伦兹力F不一定始终在增大.磁场力始终与圆周运动的线速度方 向垂直,所以磁场力对小球不做功. 答案 CD
ΔΦ Δt
=429
V.设电子在加速器中绕行了N圈,则电场力做功NeE
应该等于电子的动能Ek.所以有N=
Ek Ee
,代入数据可得N=
2.8×105圈.所以正确答案为D.
答案 D
单击此处进入 课堂对点演练
单击此处进入 活页规范训练
一、麦克斯韦电磁场理论 克斯韦电磁场理论
19世纪60年代,英国物理学家麦克斯韦总结前人对电磁现象的 研究,建立了完整的电磁场理论,预言了电磁波的存在. (1)变化的磁场产生电场
图3-2-2
实验基础:实验装置如图3-2-2所示,麦克斯韦认为在变化的磁场 周围产生电场,是一种普遍存在的现象,跟闭合电路(导体环)是 否存在无关.导体环的作用只是用来显示电场的存在. 注意:在变化的磁场中产生的电场的电场线是闭合的;而静电场 中的电场线是不闭合的.
高中物理:第14章电磁波相对论简介

第14章电磁波相对论简介版块一知识点1变化的磁场产生电场、变化的电场产生磁场'电磁波的产生、发射、接收及其传播Ⅰ1.麦克斯韦电磁场理论:变化的磁场产生电场,变化的电场产生磁场。
2.电磁场:变化的电场和变化的磁场总是相互联系成为一个完整的整体,这就是电磁场。
3.电磁波:电磁场(电磁能量)由近及远地向周围传播形成电磁波。
(1)电磁波是横波,在空间传播不需要介质。
(2)v=λf对电磁波同样适用。
(3)电磁波能产生反射、折射、干涉和衍射等现象。
4.发射电磁波的条件(1)要有足够高的振荡频率;(2)电路必须开放,使振荡电路的电场和磁场分散到尽可能大的空间。
5.调制:有调幅和调频两种方法。
6.电磁波的传播(1)三种传播方式:天波、地波、空间波。
(2)电磁波的波速:真空中电磁波的波速与光速相同,c=3.0×108 m/s。
7.电磁波的接收(1)当接收电路的固有频率跟接收到的无线电波的频率相等时,激起的振荡电流最强,这就是电谐振现象。
(2)使接收电路产生电谐振的过程叫作调谐,能够调谐的接收电路叫作调谐电路。
(3)从经过调制的高频振荡中“检”出调制信号的过程叫作检波,检波是调制的逆过程,也叫作解调。
8.电磁波的应用电视和雷达。
知识点2电磁波谱Ⅰ1.定义按电磁波的波长从长到短分布是无线电波、红外线、可见光、紫外线、X射线和γ射线,形成电磁波谱。
最强医用治疗知识点3狭义相对论的基本假设质速关系、质能关系' 相对论质能关系式Ⅰ1.狭义相对论的两个基本假设(1)狭义相对性原理:在不同的惯性参考系中,一切物理规律都是相同的。
(2)光速不变原理:真空中的光速在不同的惯性参考系中都是相同的,光速与光源、观测者间的相对运动没有关系。
2.相对论的质速关系(1)物体的质量随物体速度的增加而增大,物体以速度v 运动时的质量m 与静止时的质量m 0之间有如下关系: m =m 01-⎝ ⎛⎭⎪⎫v c 2。
(2)物体运动时的质量m 总要大于静止时的质量m 0。
麦克斯韦电磁理论

麦克斯韦电磁理论
麦克斯韦电磁理论是电磁学的重要理论基础,由苏格兰物
理学家詹姆斯·麦克斯韦在19世纪提出。
这个理论结合了电学和磁学的观点,描述了电磁场的性质和它们与电荷和电
流的相互作用。
麦克斯韦电磁理论的主要内容包括:
1. 麦克斯韦方程组:这是描述电磁场中电荷和电流行为的
一组方程。
它包括四个方程,分别是麦克斯韦的电场定律、麦克斯韦的磁场定律、法拉第电磁感应定律和安培环路定律。
2. 电磁波:麦克斯韦的方程组预言了电磁波的存在,即电
磁场以波的形式传播,这一点后来由赫兹的实验证实。
电
磁波是光和其他电磁辐射的基础,它们在真空中以光速传播。
3. 基于麦克斯韦电磁理论的光学:麦克斯韦电磁理论揭示
了光是电磁波的性质,并成功地解释了光的干涉、衍射、
偏振等现象,为现代光学的发展奠定了基础。
麦克斯韦电磁理论的提出对电磁学的发展产生了深远影响,并成为物理学的基本理论之一。
它不仅成功地统一了电学
和磁学,而且为后来的相对论和量子力学的建立打下了基础。
第三课时电磁场和电磁波讲课文档

典例剖析
【例2】 电磁波与声波比较( )
A.电磁波的传播不需要介质,声波的传播需要介质 B.由空气进入水中时,电磁波速度变小,声波速度变大 C.由空气进入水中时,电磁波波长变小,声波波长变大 D.电磁波和声波在介质中的传播速度,都是由介质决定,与频率无关
第29页,共43页。
[解析] 可以根据电磁波的特点和声波的特点进行分析选项A、B 均与事实相符,所以A、B项正确.根据λ= ,电磁波速v度变小, 频率不变,波长变小;声波速度变大,频率不变,波长变大,所f 以选项 C正确.电磁波在介质中的速度,与介质有关,也与频率有关,在同 一种介质中,频率越大,波速越小,所以选项D错误,故选ABC.
传播方 式 地波
地波和 天波 天波
主要用途
超远程无 线电 通信和导 航 调幅无线 电广播、电 报、通信
第12页,共43页。
微 米波 波
分米 波 厘米 波 毫米 波
10 m~1 m 30 MHz~300 MHz
近似 直线 传播
1 m~0.1 m 300 MHz~3000 直线
MHz
传播
10 cm~1 3000
(2)雷达用的是微波波段,因为电磁波波长越短,传播的直线性越好,反
射性越强.活学活用
第20页,共43页。
3.雷达是利用电磁波来测定物体的位置和速度的设备,它可以向一定 方向发射不连续的电磁波,当遇到障碍物时要发生反射.雷达在发射
和接收电磁波时,在荧光屏上分别呈现出一个尖形波.某型号防 空雷达发射相邻两次电磁波之间的时间间隔为5×10-4 s.现在
第31页,共43页。
典例剖析 【例3】 雷达向远处发射无线电波,每次发射的时间是1μs,两次发
14.4-5--麦克斯韦电磁场理论-电磁波

三、麦克斯韦方程组的积分形式
稳恒 情况 的电 磁场 规律
DdS qi
任意电场
Edl 0
BdS 0
变化磁场 产生电场 任意电流
变化电场
H dl Ii 产生磁场
DdS qi EEdldl(EeEiB)tdldS
B dS 0 BdS 0
BdS 0
☆人们赞美
麦克斯韦方程组 象一首美丽的诗 !
1.麦克斯 韦方程组:
D dS qi
(1)
BEHdddSll0IBtDdtSdS
(2) (3) (4)
2.各方程的物理意义:
Id所激发的磁场H(B)与其成右手螺旋关系:
jd
D
H (B)
D
t
0
jd // D
jd
D
H (B)Leabharlann 4、传导电流与位移电流的比较
D t
0
jd D
共同点—— Ic 和Id以共同的形式激发磁场。
不同点—— 1. 传位导移电电流流IIcd和的电实荷质的是宏变观化定电向场运!动D有t 关0,,而jD 0 2. Ic产生焦耳热而Id不产生焦耳热!
dq dt
q S2 极板
dq极板 dt
d dt
s2 DdS
I
S1
S2
2若.定S义2面:不随Id 时 间dIdst1t变D 化s2:DtDtdSdS
d s2
dt 位移电流
有电流 的量纲
位移电流密度:
jd
D
麦克斯韦电磁场理论

麦克斯韦电磁场理论
麦克斯韦电磁场理论是关于电磁学的基本理论之一,由苏
格兰物理学家詹姆斯·克拉克·麦克斯韦于19世纪提出。
该
理论描述了电磁场的本质、电磁波的传播和电磁相互作用
的规律。
根据麦克斯韦电磁场理论,电磁场由电场和磁场组成,它
们是彼此相互关联的。
电场是由电荷引起的空间中的场,
磁场则是由电流引起的空间中的场。
通过麦克斯韦方程组,可以描述电磁场的行为。
麦克斯韦方程组包括四个方程,分别是:
1. 高斯定律:描述电场与电荷的关系,即电场线通过任意
闭合曲面的总面积是电荷的代数和的1/ε₀倍,其中ε₀是真
空介电常数。
2. 安培定律:描述磁场与电流的关系,即磁场线通过任意
闭合曲面的总环路是电流的代数和的μ₀倍,其中μ₀是真空磁导率。
3. 法拉第电磁感应定律:描述磁场变化引起的电场感应现象,即磁场变化率和曲面上的电场感应的环路积分成正比。
4. 麦克斯韦-安匹尔电磁感应定律:描述电场变化引起的磁场感应现象,即电场变化率和曲面上的磁场感应的环路积
分成正比。
这四个方程完整地描述了电场和磁场的行为,并且可以推
导出电磁波的存在和传播。
麦克斯韦电磁场理论在电磁学
的研究和应用中起到了重要的作用,被广泛应用于电子技术、通信、光学等领域。
麦克斯韦电磁理论和电磁波

下图是一偶极振子,假定振子中的电流作正弦变化并设:
i(t) I0 sin(t 900 )
则在两端积累的电荷q为
q(t)
i(t)dt
I0
sin t
K
q0
sin t
K
式中K为积分常数。在非稳恒情况下可以不考虑与时间
无关的常量,因此可以令K=0。这样电偶极矩为
q(t)
p ql
l
l i(t)
(q0 sin t)l
H
j0
D
t
以上是麦克斯韦方程组的微分形式。通常所说的麦克斯 韦方程组,大都是指它的微分形式。
2021/4/11
16
将麦克斯韦方程组再加上三个物质性质的方程就
构成了一组完整的说明电磁场性质的方程组,对于各 向同性介质来说这三个方程:
D B
r0E r 0 H
(ⅱ)
j0 E
(ⅰ)和(ⅱ)式是宏观电动力学的基本方程组,应用以上 方程,加上 场量应满足的边界条件以及它们的起始条
按键
PCBA
开关键
传统机械按键设计要点:
1.合理的选择按键的类型,尽量选择 平头类的按键,以防按键下陷。
2.开关按键和塑胶按键设计间隙建议 留0.05~0.1mm,以防按键死键。 3.要考虑成型工艺,合理计算累积公 差,以防按键手感不良。
上由式上中式v可是以电看磁出波,传在播辐的射速区度,,场强的v位称相为滞相后位于常激数励。源
的电源位相,这是由于电磁波以有限的速度传播所表现 出来的推迟效应。在辐射区中磁场强度 H 位于与赤道 面平行的平面内而电场强度 E 位于子午面内,二者相 互垂直,且都垂直于半径r(如下图)。
2021/4/11
28
上图中描绘了某一瞬间 H 线在空间的分布。不管
第3章 3.1 麦克斯韦的电磁场理论+3.2 电磁波的发现

第3章 3.1 麦克斯韦的电磁场理论+3.2 电磁波的发现3.1 麦克斯韦的电磁场理论3.2 电磁波的发现学习目标知识脉络1.理解麦克斯韦电磁理论的两个要点,了解电磁场与电磁波的联系与区别,以及电磁波的特点.(重点)2.了解麦克斯韦理论在物理发展史上的意义.3.了解LC振荡电路中电磁振荡的产生过程.(难点)4.了解电磁振荡的周期和频率,会求LC电路的周期和频率.(重点)麦克斯韦电磁场理论[先填空]1.英国物理学家麦克斯韦创立了电磁场理论,并预言了电磁波的存在.2.变化的磁场产生电场不均匀变化的磁场产生变化的电场;均匀变化的磁场产生稳定的电场.3.变化的电场产生磁场不均匀变化的电场产生变化的磁场;均匀变化的电场产生稳定的磁场.4.电磁场理论——伟大的丰碑(1)不均匀变化的磁场和电场相互耦连,形成不可分离的统一的电磁场.(2)变化的电场与变化的磁场相互激发,由近及远地向周围空间传播,就形成了电磁波.麦克斯韦在理论上预言了电磁波的存在.(3)在电磁波的传播过程中,电场和磁场方向相互垂直并都垂直于传播的方向,即电磁波是横波.(4)电磁波在真空中的传播速度等于光速.[再判断]1.变化的电场一定产生变化的磁场.(×)2.恒定电流周围产生磁场,磁场又产生电场.(×)1.关于电磁场理论的叙述,正确的是()A.变化的磁场周围一定存在着电场,与是否有闭合电路无关B.周期性变化的磁场产生同频率变化的电场C.变化的电场和变化的磁场相互关联,形成一个统一的场,即电磁场D.电场周围一定存在磁场E.磁场周围一定存在电场【解析】【答案】ABC2.根据麦克斯韦的电磁场理论,以下叙述中正确的是()A.教室中亮着的日光灯周围空间必有磁场和电场B.工作时的电磁打点计时器周围必有磁场和电场C.稳定的电场产生稳定的磁场,稳定的磁场产生稳定的电场D.电磁波在传播过程中,电场方向、磁场方向和传播方向相互垂直E.均匀变化的电场周围一定产生均匀变化的磁场【解析】教室中亮着的日光灯、工作时的电磁打点计时器用的振荡电流,在其周围产生振荡磁场和电场,故选项A、B正确;稳定的电场不会产生磁场,故选项C错误;电磁波是横波,电场方向、磁场方向和传播方向相互垂直,故选项D正确.均匀变化的电场周围会产生恒定不变的磁场,E错误.【答案】ABD3.如图3-1-1所示,在变化的磁场中放置一个闭合线圈.图3-1-1(1)你能观察到什么现象?(2)这种现象说明了什么?【解析】(1)灵敏电流计的指针发生偏转,有电流产生.(2)变化的磁场产生了电场,使闭合线圈的自由电荷发生了定向运动而形成了电流.【答案】见解析判断是否产生电场或磁场的技巧1.变化的电场或磁场能够产生磁场或电场.2.均匀变化的场产生稳定的场.3.非均匀变化的场产生变化的场.4.周期性变化的场产生同频率的周期性变化的场.5.稳定不变的场不能产生新的场.赫兹实验与电磁振荡[先填空]1.赫兹实验(1)实验分析和高压感应线圈相连的抛光金属球间产生电火花时,空间出现了迅速变化的电磁场,这种变化的电磁场以电磁波的形式传到了导线环,导线环中激发出感应电动势,使与导线环相连的金属球间也产生了电火花.这个导线环实际上是电磁波的检测器.(2)实验结论赫兹实验证实了电磁波的存在,检验了麦克斯韦电磁场理论的正确性.2.电磁振荡(1)振荡电流:大小和方向都随时间做周期性迅速变化的电流.(2)振荡电路:能够产生振荡电流的电路.最基本的振荡电路为LC振荡电路.(3)电磁振荡:在LC振荡电路中,电容器极板上的电荷量,电路中的电流,电场和磁场周期性相互转变的过程也就是电场能和磁场能周期性相互转化的过程.(4)电磁振荡的周期与频率①周期:电磁振荡完成一次周期性变化需要的时间.②频率:1 s内完成周期性变化的次数.振荡电路里发生无阻尼振荡时的周期和频率分别叫做固有周期、固有频率.③周期和频率公式:T=2πLC,f=12πLC.[再判断]1.在振荡电路中,电容器充电完毕磁场能全部转化为电场能.(√)2.电容器放电完毕,电流最大.(√)3.L和C越大,电磁振荡的频率越高.(×)[后思考]1.在LC振荡电路一次全振动的过程中,电容器充电几次?它们的充电电流方向相同吗?【提示】充电两次,充电电流方向不相同.2.在电磁振荡的过程中,电场能与磁场能相互转化,什么时候磁场能最大?【提示】放电刚结束时,电场能全部转化成了磁场能.[核心点击]1.各物理量变化情况一览表时刻(时间)工作过程q E i B 能量0→T4放电过程q m→0E m→00→i m0→B mE电→E磁T 4→T2充电过程0→q m0→E m i m→0B m→0E磁→E电T 2→3T4放电过程q m→0E m→00→i m0→B mE电→E磁3T4→T 充电过程0→q m0→E m i m→0B m→0E磁→E电2.(如图3-1-2所示)图3-1-23.板间电压u、电场能E E、磁场能E B随时间变化的图像(如图3-1-3所示)图3-1-3u、E E规律与q-t图像相对应;E B规律与i-t图像相对应.4.分类分析(1)同步关系在LC振荡回路发生电磁振荡的过程中,电容器上的物理量:电量q、电场强度E、电场能E E是同步变化的,即:q↓→E↓→E E↓(或q↑→E↑→E E↑)振荡线圈上的物理量:振荡电流i、磁感应强度B、磁场能E B也是同步变化的,即:i↓→B↓→E B↓(或i↑→B↑→E B↑)(2)同步异变关系在LC振荡过程中,电容器上的三个物理量q、E、E E与线圈中的三个物理量i、B、E B是同步异向变化的,即q、E、E E同时减小时,i、B、E B同时增大,且它们的变化是同步的,也即:q、E、E E↑同步异向变化,i、B、E B↓.注意:自感电动势E的变化规律与q-t图像相对应.4.LC振荡电路中,某时刻磁场方向如图3-1-4所示,则下列说法正确的是()图3-1-4A.若磁场正在减弱,则电容器上极板带正电B.若电容器正在充电,则电容器下极板带正电C.若电容器上极板带正电,则线圈中电流正在增大D.若电容器正在放电,则自感电动势正在阻碍电流增大E.若电容器正在充电,则自感电动势正在阻碍电流增大【解析】本题考查各物理量发生变化的判断方法.由电流的磁场方向和安培定则可判断振荡电流方向,由于题目中未标明电容器两极板的带电情况,可分两种情况讨论:(1)若该时刻电容器上极板带正电,则可知电容器处于放电阶段,电流增大,则C对,A错;(2)若该时刻电容器下极板带正电,可知电容器处于充电状态,电流在减小,则B对,由楞次定律可判定D对,E错.故正确答案为B、C、D.【答案】BCD5.如图3-1-5所示,LC电路的L不变,C可调,要使振荡的频率从700 Hz 变为1 400 Hz,则把电容________到原来的________.图3-1-5【解析】由题意,频率变为原来的2倍,则周期就变为原来的12,由T=2πLC,L不变,当C=14C0时符合要求.【答案】减小1 46.如图3-1-6所示,L为一电阻可忽略的线圈,D为一灯泡,C为电容器,开关S处于闭合状态,灯D正常发光,现突然断开S,并开始计时,画出反映电容器a极板上电荷量q随时间变化的图像(q为正值表示a极板带正电).图3-1-6【解析】开关S处于闭合状态时,电流稳定,又因L电阻可忽略,因此电容器C两极板间电压为0,所带电荷量为0,S断开的瞬间,D灯立即熄灭,L、C组成的振荡电路开始振荡,由于线圈的自感作用,此后的T4时间内,线圈给电容器充电,电流方向与线圈中原电流方向相同,电流从最大逐渐减为0,而电容器极板上电荷量则由0增为最大,根据电流流向,此T4时间里,电容器下极板b带正电,所以此T4时间内,a极板带负电,由0增为最大.【答案】LC振荡电路充、放电过程的判断方法1.根据电流流向判断:当电流流向带正电的极板时,电容器的电荷量增加,磁场能向电场能转化,处于充电过程;反之,当电流流出带正电的极板时,电荷量减少,电场能向磁场能转化,处于放电过程.2.根据物理量的变化趋势判断:当电容器的带电量q(电压U、场强E)增大或电流i(磁场B)减小时,处于充电过程;反之,处于放电过程.3.根据能量判断:电场能增加时充电,磁场能增加时放电.电磁波的发射和电磁波的特点[先填空]1.发射条件有效地发射电磁波,振荡电路必须具有两个特点:第一,要有足够高的振荡频率,频率越高,发射电磁波的本领越大;第二,应采用开放电路,振荡电路的电场和磁场必须分散到足够大的空间.2.电磁波的特点(1)电磁波中的电场E与磁场B相互垂直,而且二者均与波的传播方向垂直.因此电磁波是横波.(2)电磁波在真空中的传播速度等于光速c,光的本质是电磁波.(3)电磁波具有波的一般特征,波长(λ)、周期(T)或频率(f)与波速(v)间关系为v=λT=λf.(4)电磁波和其他波一样也具有能量,电磁波的发射过程就是辐射能量的过程.[再判断]1.振荡频率足够高的开放电路才能发射电磁波.(√)2.电磁波的传播速度等于光速c.(×)3.电磁波的传播不需要介质,可以在真空中传播.(√)[后思考]1.怎样才能形成开放电路?【提示】在振荡电路中,使电容器变成两条长的直导线,一条深入高空成为天线,另一条接入地下成为地线,形成开放电路.2.雷雨天气,从调至中波段的收音机中,会不断地传出很响的“咔嚓”声,这是为什么?【提示】雷雨天形成闪电时会发出很强的电磁波,收音机接收到后会感应出电流,引起扬声器发出声响,形成很响的“咔嚓”声.[核心点击]1.机械波与电磁波的共性机械波与电磁波是本质上不同的两种波,但它们有共同的性质:①都具有波的特性,能发生反射、折射、干涉和衍射等物理现象;②都满足v=λT=λf;③波从一种介质传播到另一种介质,频率都不变.2.电磁波与机械波的区别电磁波机械波不同点本质电磁现象力学现象产生机理由电磁振荡产生由机械振动产生周期性变化的量场强E与磁感应强度B随时间和空间作周期性变化质点的位移x、加速度a随时间和空间作周期性变化波的性质横波即有横波,又有纵波传播介质不需要介质,可在真空中传播只能在弹性介质中传播速度特点由介质和频率决定仅由介质决定A.机械波的频率、波长和波速三者满足的关系,对电磁波也适用B.机械波和电磁波都能产生干涉和衍射现象C.机械波的传播依赖于介质,而电磁波可以在真空中传播D.机械波只有横波E.电磁波只有纵波【解析】机械波和电磁波有相同之处,也有本质区别,但v=λf都适用,A说法对;机械波和电磁波都具有干涉和衍射现象,B说法对;机械波的传播依赖于介质,电磁波可以在真空中传播,C说法对;机械波有横波和纵波,而电磁波是横波,D、E说法错.【答案】ABC8.下列关于电磁波的叙述中,正确的是()A.电磁波是电磁场由发生区域向远处的传播B.电磁波在任何介质中的传播速度均为3×108 m/sC.电磁波由真空进入介质传播时,波长变短D.电磁波不能产生干涉、衍射现象E.电磁波具有波的一切特征【解析】电磁波是交替产生呈周期性变化的电磁场由发生区域向远处传播而产生,故A项正确;电磁波只有在真空中传播时,其速度为3×108m/s,故B项不正确;电磁波在传播过程中其频率f不变,由波速公式v=λf知,由于电磁波在介质中的传播速度比在真空中的传播速度小,所以可得此时波长变短,故C正确;电磁波是一种波,具有波的一切特性,能产生干涉、衍射等现象,故E项正确,D项不正确.【答案】ACE电磁波的特点1.电磁波有波的一切特点:能发生反射、折射现象;能产生干涉、衍射等现象.2.电磁波是横波.在电磁波中,每处的电场强度和磁感应强度方向总是互相垂直的,并且都跟那里的电磁波的传播方向垂直.3.电磁波可以在真空中传播,向外传播的是电磁能.第 11 页。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
麦克斯韦电磁场理论和电磁波电磁学电子教案第八章麦克斯韦磁场理论和电磁波三、麦克斯韦方程组一、电磁波的产生、传播三、电磁波的性质五、电磁波谱一、电磁场具有能量二、.电磁场理论的基本概念二、电磁波的辐射四、光的电磁理论二、次开发1电磁学电子教案第八章麦克斯韦磁场理论和电磁波电磁场的基本理论是麦克斯韦方程组。
这是他在前人实践和理论的基础上对整个电磁现象作系统研究,特别对库仑、安培、法拉第等电磁学说加以总结、发展,提出了“涡旋”电场和“位移电流”的假说。
在1865年他预言了电磁波的存在,并计算出其传播速度等于光速,提出了光的统一电磁场理论。
麦克斯韦的电磁场理论把电、磁、光三个领域综合到一起,具有划时代意义,爱因斯坦评价麦克斯韦的工作,他说“这是自牛顿以来,物理学上经历的最深刻和最有成果的一次变革。
”§1 麦克斯韦电磁理论一. 位移电流位移电流的假说,是麦克斯韦对电磁理论所作重大贡献的核心,问题是由含有电容的交变电路引出。
我们知道,稳恒电流磁场的安培环路定理具有如下形势:H?dl????LS???0?dS??Io ?图中S1、S2是一曲线L为边线的两个曲面,在稳恒电路中,穿过S1,S2的电流I0相同。
但是在含有C的交流电路中,将安培环路定理应用于闭合曲线L上。
对于S1面:H?dl?i L??而对于S2面:H?dl?0 L??矛盾的焦点:在非稳恒情况下,H得环流应是怎样的表达式?麦克斯韦提出应满足下式:??D?dS H?dl???(?0?LS?t????其中S是以L为边线的任意曲面?D???D——位移电流密度(矢量)?t2 ?电磁学电子教案第八章麦克斯韦磁场理论和电磁波?D????dS?ID——位移电流(标量)?t??D ??(?0?)?dS ——全电流S?t???即I?I0?ID比较H?dl????LS?????0?dS??Io ????D?dS?I0?ID * H?dl???(?0?LS?t*式满足非稳恒,也满足稳恒,反映了新的物理规律——位移电流与传导电流在激发磁场方面是等效的。
不同方面:[例] 求平行板电容器中的位移电流(忽略边缘效应)解:在电容器充、放电的过程中,存在变化的电流?D?dDd?dq 1) ID??? ?dS?S?S?S?tdtdtdt二.电磁场理论的基本概念1.按照位移电流的概念,任何随t而变的电场都要在邻近空间激发磁场,因而总是与磁场的存在相联系变化电场周围空间的磁场H与???D成右旋关系?t???? q0?V(t)?? H(t)??D ? ID ? H(t) ?t?说明当电场发生加速运动时,在其周围除了磁场之外,还有随t变化的电场。
一把而言,随t变化的电场(位移电流)也是t的函数。
因此有它激发的磁场也随t变化。
此时,空间存在变化的磁场、变化的电场。
2.按照涡旋电场的概念,任何随t而变化的磁场要在邻近空间激发涡旋电场,因而总是和3电磁学电子教案第八章麦克斯韦磁场理论和电磁波电场的存在相联系。
变化的磁场周围空间的电场E与??B成右旋关系?tI??H(t)?H(t)?E(t) ???I(t)电流产生磁场,变化的电流产生变化的磁场。
一般而言,随t变化的磁场也是t的函数,因此变化磁场与变化电场相联系,即此时,空间充满变化的磁场,充满变化的电场。
可见,这连中变化的场相互联系,互为激发,互为影响,形成了电磁场。
三、麦克斯韦方程组麦克斯韦总结前人的工作(库仑定律、安培定律、法拉第电磁感应定律),在此基础上,大胆提出涡旋电场和位移电流两个假说,把电磁场方程推广到最一般形式,不但揭示了电磁场的运动定律,更揭示了电磁场可以独立与电和之外单独存在,加深了我们对电磁场物质性的认识。
麦克斯韦方程组有积分形式和微分形式两种D?dS??qS??0 B?dS?0 S?????D?D?H?dl???(?0?)?dS?I0????dS?H?dl??I0稳恒磁场LLSS?t?t??????环路定理???B?E?dl?????dS ?E?dl?0 静电场环路定理LLS?t???积分形式适用于一定范围电磁场,而不能适用于某一给定点上的电磁场,而在实际应用中,更重要的是要知道场中各点的场量,这就必须将积分形式变换未相应的微分形式。
在书上848页,介绍了食粮场的散度与旋度的概念。
1. 矢量场的通量和散度(矢量场的散度是个标量场)A?dS?AS?lim ??A?lim ???0?????0?????式中?V是S闭合面所包含的体积?V?0,?A?0此值有一极限值,为P点A之散度。
2. 矢量场的环量和旋度(矢量场的旋度也是个矢量场)???A?dlrAL?lim (??A)n?lim ?S?0?S?A?0?S?4电磁学电子教案第八章麦克斯韦磁场理论和电磁波式中?S是闭合曲线L所包围的面积,?S?0,rA?0此值有一极限值,为A的旋度在n上的投影??D??e 在任何电磁场的某点处,电位移的散度等于该处自由电荷的体密度(有源场)??B 电场强度的旋度,等于该处B对t变化率之负值??E???t???????B?0 磁感应强度之散度恒为零。
(无源场)???H??0????D 磁场强度的旋度等于该处的传导电流密度与位移电流密度之?t矢量和?§2 电磁波一. 电磁波的产生、传播1. 电磁波的产生自从1865年麦克斯韦提出电磁场理论,预见了电磁波的存在之后,经过23年,即1888年,赫兹用实验产生并接收到了电磁波。
电磁波是如何产生的呢?联系到机械波的两个要素:振源——电磁波的振源是什么?媒质任何LC振荡电路都可以作为发射电磁波的振源,因为电感上存在电阻,因此可视为RLC电路。
1)RLC振荡电路在电磁感应的暂态过程中,RLC振荡电路的微分方程为:d2qRdqq???0 2LdtLCdt?LdiR?iR??0 dtC在R较小时,解为:q?q0e???tcos(wt??)式中:???——阻尼因子R,w?2L1LC,f0?12?LC此为振幅衰减的阻尼震荡,能量消耗由于R的存在。
5电磁学电子教案第八章麦克斯韦磁场理论和电磁波为了在RLC电路中产生持续、等幅的电磁振荡,需补充能量。
2. 电源补充能量这正如机械表中的振动机构为维持稳幅振动,需要由发条补充能量一样。
实际中是将RLC电路与电子管或晶体管组成振荡器,靠直流电源补充能量。
3. 振源满足的条件首先,频率要足够高。
由于E?w,即发射出去的能量E与频率w的四次方成正比,w?,E?。
由于w?41LC,因而要求电路中L、C足够小。
第二,电路必须开放。
因为在LC电路中,电场的能量集中于L、C,即能量被限制在有限范围,因此要把电磁场能量释放出去必须改造电路,便于能量发散至空间。
综合以上两点,我们设法使C?,C??o?Sd,S?d?,还要使电路开放最后完全演化为一根直导线,电流在其中往复振荡,两端出现正负交替的等量异号电荷,称之为——振荡偶极子。
因而:振源?振荡电路?振荡偶极子?电荷加速运动媒质?电磁波在空气中(真空中)也可以传播。
二. 电磁波的辐射电磁波是变化的电场和变化的磁场在空间传播的过程。
电磁波有场源辐射出来,如果使电荷在不长的直线段里按正弦或余弦规律振动,在较近处,我们将得到球面波。
根据波的性质,已发射出去的电磁波即使波源消失了,淡泊仍然继续存在并向前传播,远处为平面波。
图中表示了电磁波在一直导线上传播,,电荷不断运动,电场的电力线(闭合的)也将随t而变,该变化的电场(即涡旋场)将产生变化的磁场。
因此,不难看出,电磁振荡能够在空间传播靠的是变化的电场激发涡旋磁场,变化的磁场激发涡旋电场。
?D??dS H?dl???LS?t????B?E?dl?????dS LS?t???6电磁学电子教案第八章麦克斯韦磁场理论和电磁波三. 电磁波的性质(平面电磁波)1. 振动方向垂直传播方向(横波)即E?k,H?k(k为传播方向的单位矢)2. E?k,同频率,同位相3.对某点,E、H的振幅成正比?????????0?E0??0?H01 4.电磁波的传播速度V?0??0?在真空中,???1,??1,?V?c?5.电磁波的频率=偶极子振动频率10?0?3?108m/s6. E、H的振幅与振荡偶极子频率的平方成正比??E0?w2H0?w27.辐射强度在各个方向不相同???/2 辐射强度最强赤道?sin???0,? 辐射强度=0,极轴称为辐射的角分布,表征了辐射的方向性,即偶极子辐射电磁波能量具有方向性。
四. 光的电磁理论光是一种电磁波,电磁场的基本粒子是光子c——真空中光的传播速度v——介质中光的传播速度n?2c? 这个关系式给出了物质的光学常数与电学常数?和磁学常数?v 之间的联系。
即将光学与电磁学两个不同领域中的物理量联系起来了。
对于非铁磁质??1?n?五. 电磁波谱我们的时代是信息的时代,信息——语言、符号、文字、数据和图像的种种在古代,人们曾用日光、旗鼓和烽火传递信息,“烽火连三日,家书抵万金”,以后又利用风筝、气球、信鸽等进行联络,十九世纪中期以后,人类逐步开始用电磁波传递信息。
人们熟知电磁波的两种形态——无线电波及光波。
它们有相同的特征,但也有重大差7电磁学电子教案第八章麦克斯韦磁场理论和电磁波别,如中、长波能绕过高山、房屋,将电台的广播信号送到收音机的无线电路。
而光一般表现为直线传播,只有当障碍物的线度d??与波长相比拟时,才能发生绕射。
电磁波谱的划分不同波长范围的电磁波的产生方法及它们与物质之间相互作用各不相同c?f? f?103HZ 主要靠各式发电装置产生,传递方式——有线导波,如大功率电电力系统力输送系统,电力传输线。
103?f?1012HZ 靠各种振荡电路及谐振腔产生,传播方式:无线电射频、微波近距——电缆、波导管导波远距——发射天线导向辐射1012?f?1016HZ 波源:热辐射。
在真空中向四面八方辐射。
不同介质具有不同的红外、可见、紫外吸收性f?1016HZ 原子内层电子受激辐射?射线,核内反应过程,受激辐射?射线§3 电磁场的能流密度综上:电磁波即电磁场在空间的传播过程。
本质——交变的电场与磁场互为激发特性——物质的一种形态,可脱离场源存在,不需要媒质。
一. 电磁场具有能量1??1??We?E?D,Wm?B?H 22则空间任意点处的能量密度1??1??W?We?Wm?E?D?B?H 22空间某一区域的能量W????WdV V二. 次开发(坡印廷矢量)S1. 引入目的:描述电磁场能量的传递电磁能量以体能密度定域于电磁场中,电磁场能量以与电磁波相同的速度传递2. 定义和表达式:单位时间通过垂直与传播方向的单位面积上的能量S??wdVWVdtA??WV AdtAdt在真空中?r??r?1 8电磁学电子教案第八章麦克斯韦磁场理论和电磁波1??1??1S?(E?D?B?H)C?(?0E2??0H2)C2221122 ?(?0E??0H) 20?01?0E21?0H2??20?020?0?0E??0H210E210H?S??22?0011?HE?EH?EH22用矢量表示S?E?H三者互为垂直H S由于E、H随t而变,因而S是电磁波的瞬时能流密度。