麦克斯韦电磁场理论的建立及意义
麦克斯韦电磁场理论

麦克斯韦电磁场理论麦克斯韦电磁场理论是19世纪中期经典物理学家麦克斯韦开创的一个领域的理论。
该理论表明电场、磁场、重力场都是由电磁场组成的,这个理论开辟了物理学的新大陆,为后世物理学的发展奠定了基础。
麦克斯韦的电磁场理论是他发明电动机以及最重要的“动能定律”的基础。
此前,物理学家一直认为电磁场和物体有一种相互独立的关系,即电磁场不会对物体产生影响,而物体也不会影响电磁场,相互之间没有关系。
但是,麦克斯韦提出,电磁场和物体之间不是相互独立的,而是相互联系的,电磁场的发生及其变化由物体的运动来决定。
首先,麦克斯韦将物体的运动分为两种,即静止和运动。
他指出,只要有物体的运动,就会产生一个特殊的电磁场,并且这个场的强度会受到物体的运动的影响而发生变化。
其中,静止时,场强是零;而当物体运动时,电磁场强度就会变得非常强大。
其次,麦克斯韦提出了“动能定律”,即电荷在电磁场中所受的动能等于电磁场能的大小,这个定律最终成为20世纪物理学研究的重要基础,并被作为其他新的物理定理的基础发展出来。
此外,麦克斯韦还提出了电磁场中的磁场,即电磁场的变化会产生磁场,磁场一直存在于电磁场中,这种相互关系有助于我们理解地球磁场的变化和形成。
最后,麦克斯韦还指出,电磁场是物体与物体之间的重力场,实际上,电磁场和重力场是存在一种相互关系的,电磁场可以引起重力场的变化,而重力场也可以引起电磁场的变化。
而这个理论后来又被称为“引力波理论”,也就是我们今天所熟悉的引力波宇宙模型。
总之,麦克斯韦的电磁场理论是一个重要的物理学成果,它开辟了物理学的新的领域,为20世纪后物理学的发展奠定了重要的基础,在物理学史上堪称一页金碧。
麦克斯韦的电磁场理论

电作用或磁作用正是通过电场或磁场传递的!
麦克斯韦(1831-1879)英国物理学家
经典电磁理论的奠基 人 , 气体动理论创始人之 一。提出了有旋场和位移 电流的概念 , 建立了经典 电磁理论 (1864) , 并预言 了以光速传播的电磁波的 存在。在气体动理论方面 , 提出了气体分子按速率分 布的统计规律。
❖ 超距说——物体间的相互吸引力的传递,是 不需要通过任何介质、不需要时间的。
❖ 场——磁体和电荷周围并不是空无一物,而 是存在着一种由电荷和磁体本身产生的连续 的介质,通过这种介质传递着电磁相互作用。
法拉第——1837年,提出了“场” 和“力线”的概念。
法拉第
在对电、磁现象作出物理解释 的过程中,法拉第有着深邃的物理 思想,没有用数学形式表达,而是 凭着他丰富的想象力和科学的抽象 思维能力,创造了“力线”这种形 象化的图示方法。
其特点是:电场、磁场各自独立存在。
麦克斯韦的发展
变化的电场和变化的磁场相互联系,形成一个 不可分割的统一体——电磁场.电场和磁场只是电 磁场这个统一体的两种具体表现形式。
变化的磁场产生电场
S
N
S
N
❖ 当用磁棒接近或远离闭合电路时,电路中就产生 感应电动势,它推动着电路各处的自由电荷形成 电流,仿佛沿着电路有一个电场一样。
s
r
gB0
Ñ sD rdS rqd
据散度定理,有:
Ñ D r dD rd
s
r
D
麦克斯韦方程式的物理意义:
❖ 1)时变电场是有旋有散的,电力线可闭合也可不闭合;
❖ 2)时变磁场是有旋无散的,磁力线总是闭合的;
❖ 3)不闭合的电力线从正电荷到负电荷; 闭合的电力线与磁力线相交链; 闭合的磁力线要么与电力线交链,要么与电流相交链。
浅谈麦克斯韦方程组的建立及启示

浅谈麦克斯韦方程组的建立及启示学号:1006020426 班级:通信四班姓名:王绥进摘要:麦克斯韦是继法拉第之后,集电磁学大成的伟大物理学家。
在前人工作的基础上,他对电磁学的研究进行了全面的总结,并提出了感生电场和位移电流的假设,建立了完整的电磁理论体系,为科学史的发展添上了浓墨重彩的一笔,他的物理研究方法及自身人格魅力也对后世产生了深远影响。
关键词:麦克斯韦方程组科学意义电磁理论特点正文:(一)麦克斯韦方程组简述1.积分形式这是1873年前后,麦克斯韦提出的表述电磁场普遍规律的四个方程.其中:(1)描述了电场的性质。
在一般情况下,电场可以是库仑电场也可以是变化磁场激发的感应电场,而感应电场是涡旋场,它的电位移线是闭合的,对封闭曲面的通量无贡献。
(2)描述了磁场的性质。
磁场可以由传导电流激发,也可以由变化电场的位移电流所激发,它们的磁场都是涡旋场,磁感应线都是闭合线,对封闭曲面的通量无贡献。
(3)描述了变化的磁场激发电场的规律。
(4)描述了变化的电场激发磁场的规律。
2.微分形式在电磁场的实际应用中,经常要知道空间逐点的电磁场量和电荷、电流之间的关系。
从数学形式上,就是将麦克斯韦方程组的积分形式化为微分形式。
(二)建立过程1845年,关于电磁现象的三个最基本的实验定律:库仑定律(1785年),安培—毕奥—萨伐尔定律(1820年),法拉第定律(1831-1845年)已被总结出来,法拉第的“电力线”和“磁力线”概念已发展成“电磁场概念”。
场概念的产生,也有麦克斯韦的一份功劳,这是当时物理学中一个伟大的创举,因为正是场概念的出现,使当时许多物理学家得以从牛顿“超距观念”的束缚中摆脱出来,普遍地接受了电磁作用和引力作用都是“近距作用”的思想。
1855年至1865年,麦克斯韦在全面地审视了库仑定律、安培—毕奥—萨伐尔定律和法拉第定律的基础上,把数学分析方法带进了电磁学的研究领域,由此导致麦克斯韦电磁理论的诞生.(三)麦克斯韦方程组建立的意义麦克斯韦将当时已发现的电磁场基本规律归纳为4个方程,分别以微分形式描述电场性质、磁场性质,揭示了变化的电场与磁场的关系、变化的磁场与电场的关系。
【科学】自然科学史(38)麦克斯韦与电磁学理论

【科学】⾃然科学史(38)麦克斯韦与电磁学理论麦克斯韦与电磁学理论到1850年前后,电磁学的实验研究发展迅速,已经确⽴了库仑定律、⾼斯定律、安培定律、法拉第定律,提出了场和⼒线的概念,打破了电与磁是孤⽴现象的传统观念。
但到⽬前为⽌,电磁学实验和理论研究成果丰富却不全⾯,尚未建⽴起电学和磁学相统⼀的理论体系,迫切需要在更加普遍的观点下加以概括和总结。
⽽承担这⼀历史重任的⼈就是麦克斯韦。
2.1 麦克斯韦构建电磁学体系麦克斯韦于1831年6⽉13⽇出⽣在苏格兰爱丁堡的⼀个律师之家,从⼩便显露出数学天才,15岁时就在爱丁堡皇家学会刊物上发表了⼀篇数学论⽂。
1847年中学毕业后进⼊爱丁堡⼤学学习数学、物理学和哲学。
1850年转⼊剑桥⼤学三⼀学院,主攻数学和物理学。
1854年以优异成绩毕业,并留校任教。
麦克斯韦受到开尔⽂电学研究的启发,认真研究了法拉第的著作《电学实验研究》,领悟到了法拉第⼒线思想的价值,也看出其定性表述的不⾜。
1855年,他发表了第⼀篇电磁学论⽂《论法拉第的⼒线》。
在这篇论⽂中,使法拉第的⼒线概念获得了精确的数学形式,并且由此导出了库仑定律和⾼斯定律。
这篇⽂章还只是限于把法拉第的思想翻译成数学语⾔,还没有获得新的结论。
法拉第读过这篇论⽂后,⼤为赞赏,⿎励他进⼀步探究数学解释背后的本质。
1862年他发表了第⼆篇论⽂《论物理⼒线》,进⼀步发展了法拉第的思想,其中具有决定意义的⼀步,是引进了“位移电流”的概念,这是电磁学史上继法拉第揭⽰电磁感应的⼜⼀重⼤突破。
⽂中给出了著名的麦克斯韦电磁场⽅程组,从⽽引申出更为深刻的结论:磁场变化产⽣电场,电场变化产⽣磁场,由此预⾔了电磁波的存在,并证明了这种波的速度等于光速,揭⽰了光的电磁本质。
电磁现象的规律终于被他⽤不可动摇的数学形式揭⽰出来,电磁学到这时才开始成为⼀种科学的理论。
这⼀年,麦克斯韦才31岁,取得了他⼀⽣中最辉煌的成就。
1864年他的第三篇论⽂《电磁场的动⼒学理论》,从⼏个基本实验事实出发,运⽤场论的观点,以数学演绎⽅法进⼀步完善了麦克斯韦⽅程组,建⽴了完整系统的电磁理论。
阐述麦克斯韦方程组的建立及其物理意义

阐述麦克斯韦方程组的建立及其物理意义
麦克斯韦方程组是一组被詹姆斯·克拉克·麦克斯韦提出的方程,用于描述电磁场的运动规律。
麦克斯韦方程组由四个方程组成,分别是高斯定律、法拉第电磁感应定律、安培环路定律和法拉第电磁感应修正定律。
麦克斯韦方程组的建立经历了一系列的实验和理论推导过程。
最早的实验是库仑对电荷间作用力的研究,他发现电荷之间的相互作用遵循库仑定律。
接着,奥斯特对磁感应强度与电流的关系进行了研究,提出了奥斯特定律。
法拉第进一步研究了电磁感应现象,发现了法拉第电磁感应定律和法拉第电磁感应修正定律。
麦克斯韦根据这些实验结果,结合电场和磁场的相互关系,推导出了麦克斯韦方程组。
其中,高斯定律描述了电场和电荷之间的关系,法拉第电磁感应定律描述了磁场和电场的变化之间的关系,安培环路定律描述了电流和磁场之间的关系,法拉第电磁感应修正定律修正了安培环路定律中的不足。
麦克斯韦方程组的物理意义十分重大。
它揭示了电磁场的运动规律,对于电磁波、电磁感应等现象的解释起到了关键作用。
麦克斯韦方程组统一了电场和磁场的描述,揭示了它们之间的密切联系,提出了电磁场的概念。
根据麦克斯韦方程组,我们可以推导出电磁波的存在和传播,解释了光的本质和性质。
此外,麦克斯韦方程组也为电磁感应的研究提供了理论基础,解释了电磁感应现象的产生和变化规律。
总之,麦克斯韦方程组的建立及其物理意义使我们更深入地理解
了电磁场的本质和运动规律,对于电磁学的发展起到了重要的推动作用。
麦克斯韦电磁场理论

麦克斯韦
他认为:磁场变化时 必然产生电场
同种电荷相互电排现斥象与磁同现名象磁极相互排斥 异种电荷相互吸存引在对称异性名磁极相互吸引
电流周围存在 着磁场
变化的磁场可 以产生电流
电磁场理论的建立及验证
变化的磁场能够在空间产生电场,那么, 变化的电场能不能产生磁场?
麦克斯韦假设:变化的电场也相当于一种 电流,也在空间产生磁场。
2、(多选)关于电磁场和电磁波的认识正确的是(
A.任何电场在它周围空间都会产生磁场 B.均匀变化的磁场能够在空间产生电场 C.振荡电场周围产生的磁场也是振荡的 D.只要有电场和磁场,就能产生电磁波
解析:静电场周围不会产生磁场,故选项 A 错误;非均匀 变化的电场或磁场才能产生电磁波,故选项 D 错误.
解析:均匀变化的电场,产生的是稳定的磁场,故选项 A、 B 错误,稳定的电场不能产生磁场,故选项 C 错误.
答案:D
1.(多选)下列说法中正确的是( CD A.变化的电场周围空间产生的磁场一定是变化的 B.变化的磁场周围空间产生的电场一定是变化的 C.均匀变化的磁场周围空间产生恒定的电场 D.振荡电场周围空间产生的磁场也是振荡的
答ቤተ መጻሕፍቲ ባይዱ:BC
43.根据麦克斯韦电磁场理论,以下说法正确的是( ) A.磁场周围一定产生电场,电场周围一定产生磁场 B.均匀变化的电场产生均匀变化的磁场,均匀变化的 磁场产生均匀变化的电场 C.周期性变化的磁场产生同频率周期性变化的电场, 周期性变化的电场产生同频率周期性变化的磁场 D.磁场和电场共同存在的空间一定是电磁场
(4)静电场不产生磁场,静磁场也不产生电场,变化的电场和变化 的磁场互相联系形成不可分割的统一体——电磁场.周期性变化的电场 (或磁场)产生周期性变化的磁场(或电场).
第3章 3.1 麦克斯韦的电磁场理论+3.2 电磁波的发现

第3章 3.1 麦克斯韦的电磁场理论+3.2 电磁波的发现3.1 麦克斯韦的电磁场理论3.2 电磁波的发现学习目标知识脉络1.理解麦克斯韦电磁理论的两个要点,了解电磁场与电磁波的联系与区别,以及电磁波的特点.(重点)2.了解麦克斯韦理论在物理发展史上的意义.3.了解LC振荡电路中电磁振荡的产生过程.(难点)4.了解电磁振荡的周期和频率,会求LC电路的周期和频率.(重点)麦克斯韦电磁场理论[先填空]1.英国物理学家麦克斯韦创立了电磁场理论,并预言了电磁波的存在.2.变化的磁场产生电场不均匀变化的磁场产生变化的电场;均匀变化的磁场产生稳定的电场.3.变化的电场产生磁场不均匀变化的电场产生变化的磁场;均匀变化的电场产生稳定的磁场.4.电磁场理论——伟大的丰碑(1)不均匀变化的磁场和电场相互耦连,形成不可分离的统一的电磁场.(2)变化的电场与变化的磁场相互激发,由近及远地向周围空间传播,就形成了电磁波.麦克斯韦在理论上预言了电磁波的存在.(3)在电磁波的传播过程中,电场和磁场方向相互垂直并都垂直于传播的方向,即电磁波是横波.(4)电磁波在真空中的传播速度等于光速.[再判断]1.变化的电场一定产生变化的磁场.(×)2.恒定电流周围产生磁场,磁场又产生电场.(×)1.关于电磁场理论的叙述,正确的是()A.变化的磁场周围一定存在着电场,与是否有闭合电路无关B.周期性变化的磁场产生同频率变化的电场C.变化的电场和变化的磁场相互关联,形成一个统一的场,即电磁场D.电场周围一定存在磁场E.磁场周围一定存在电场【解析】【答案】ABC2.根据麦克斯韦的电磁场理论,以下叙述中正确的是()A.教室中亮着的日光灯周围空间必有磁场和电场B.工作时的电磁打点计时器周围必有磁场和电场C.稳定的电场产生稳定的磁场,稳定的磁场产生稳定的电场D.电磁波在传播过程中,电场方向、磁场方向和传播方向相互垂直E.均匀变化的电场周围一定产生均匀变化的磁场【解析】教室中亮着的日光灯、工作时的电磁打点计时器用的振荡电流,在其周围产生振荡磁场和电场,故选项A、B正确;稳定的电场不会产生磁场,故选项C错误;电磁波是横波,电场方向、磁场方向和传播方向相互垂直,故选项D正确.均匀变化的电场周围会产生恒定不变的磁场,E错误.【答案】ABD3.如图3-1-1所示,在变化的磁场中放置一个闭合线圈.图3-1-1(1)你能观察到什么现象?(2)这种现象说明了什么?【解析】(1)灵敏电流计的指针发生偏转,有电流产生.(2)变化的磁场产生了电场,使闭合线圈的自由电荷发生了定向运动而形成了电流.【答案】见解析判断是否产生电场或磁场的技巧1.变化的电场或磁场能够产生磁场或电场.2.均匀变化的场产生稳定的场.3.非均匀变化的场产生变化的场.4.周期性变化的场产生同频率的周期性变化的场.5.稳定不变的场不能产生新的场.赫兹实验与电磁振荡[先填空]1.赫兹实验(1)实验分析和高压感应线圈相连的抛光金属球间产生电火花时,空间出现了迅速变化的电磁场,这种变化的电磁场以电磁波的形式传到了导线环,导线环中激发出感应电动势,使与导线环相连的金属球间也产生了电火花.这个导线环实际上是电磁波的检测器.(2)实验结论赫兹实验证实了电磁波的存在,检验了麦克斯韦电磁场理论的正确性.2.电磁振荡(1)振荡电流:大小和方向都随时间做周期性迅速变化的电流.(2)振荡电路:能够产生振荡电流的电路.最基本的振荡电路为LC振荡电路.(3)电磁振荡:在LC振荡电路中,电容器极板上的电荷量,电路中的电流,电场和磁场周期性相互转变的过程也就是电场能和磁场能周期性相互转化的过程.(4)电磁振荡的周期与频率①周期:电磁振荡完成一次周期性变化需要的时间.②频率:1 s内完成周期性变化的次数.振荡电路里发生无阻尼振荡时的周期和频率分别叫做固有周期、固有频率.③周期和频率公式:T=2πLC,f=12πLC.[再判断]1.在振荡电路中,电容器充电完毕磁场能全部转化为电场能.(√)2.电容器放电完毕,电流最大.(√)3.L和C越大,电磁振荡的频率越高.(×)[后思考]1.在LC振荡电路一次全振动的过程中,电容器充电几次?它们的充电电流方向相同吗?【提示】充电两次,充电电流方向不相同.2.在电磁振荡的过程中,电场能与磁场能相互转化,什么时候磁场能最大?【提示】放电刚结束时,电场能全部转化成了磁场能.[核心点击]1.各物理量变化情况一览表时刻(时间)工作过程q E i B 能量0→T4放电过程q m→0E m→00→i m0→B mE电→E磁T 4→T2充电过程0→q m0→E m i m→0B m→0E磁→E电T 2→3T4放电过程q m→0E m→00→i m0→B mE电→E磁3T4→T 充电过程0→q m0→E m i m→0B m→0E磁→E电2.(如图3-1-2所示)图3-1-23.板间电压u、电场能E E、磁场能E B随时间变化的图像(如图3-1-3所示)图3-1-3u、E E规律与q-t图像相对应;E B规律与i-t图像相对应.4.分类分析(1)同步关系在LC振荡回路发生电磁振荡的过程中,电容器上的物理量:电量q、电场强度E、电场能E E是同步变化的,即:q↓→E↓→E E↓(或q↑→E↑→E E↑)振荡线圈上的物理量:振荡电流i、磁感应强度B、磁场能E B也是同步变化的,即:i↓→B↓→E B↓(或i↑→B↑→E B↑)(2)同步异变关系在LC振荡过程中,电容器上的三个物理量q、E、E E与线圈中的三个物理量i、B、E B是同步异向变化的,即q、E、E E同时减小时,i、B、E B同时增大,且它们的变化是同步的,也即:q、E、E E↑同步异向变化,i、B、E B↓.注意:自感电动势E的变化规律与q-t图像相对应.4.LC振荡电路中,某时刻磁场方向如图3-1-4所示,则下列说法正确的是()图3-1-4A.若磁场正在减弱,则电容器上极板带正电B.若电容器正在充电,则电容器下极板带正电C.若电容器上极板带正电,则线圈中电流正在增大D.若电容器正在放电,则自感电动势正在阻碍电流增大E.若电容器正在充电,则自感电动势正在阻碍电流增大【解析】本题考查各物理量发生变化的判断方法.由电流的磁场方向和安培定则可判断振荡电流方向,由于题目中未标明电容器两极板的带电情况,可分两种情况讨论:(1)若该时刻电容器上极板带正电,则可知电容器处于放电阶段,电流增大,则C对,A错;(2)若该时刻电容器下极板带正电,可知电容器处于充电状态,电流在减小,则B对,由楞次定律可判定D对,E错.故正确答案为B、C、D.【答案】BCD5.如图3-1-5所示,LC电路的L不变,C可调,要使振荡的频率从700 Hz 变为1 400 Hz,则把电容________到原来的________.图3-1-5【解析】由题意,频率变为原来的2倍,则周期就变为原来的12,由T=2πLC,L不变,当C=14C0时符合要求.【答案】减小1 46.如图3-1-6所示,L为一电阻可忽略的线圈,D为一灯泡,C为电容器,开关S处于闭合状态,灯D正常发光,现突然断开S,并开始计时,画出反映电容器a极板上电荷量q随时间变化的图像(q为正值表示a极板带正电).图3-1-6【解析】开关S处于闭合状态时,电流稳定,又因L电阻可忽略,因此电容器C两极板间电压为0,所带电荷量为0,S断开的瞬间,D灯立即熄灭,L、C组成的振荡电路开始振荡,由于线圈的自感作用,此后的T4时间内,线圈给电容器充电,电流方向与线圈中原电流方向相同,电流从最大逐渐减为0,而电容器极板上电荷量则由0增为最大,根据电流流向,此T4时间里,电容器下极板b带正电,所以此T4时间内,a极板带负电,由0增为最大.【答案】LC振荡电路充、放电过程的判断方法1.根据电流流向判断:当电流流向带正电的极板时,电容器的电荷量增加,磁场能向电场能转化,处于充电过程;反之,当电流流出带正电的极板时,电荷量减少,电场能向磁场能转化,处于放电过程.2.根据物理量的变化趋势判断:当电容器的带电量q(电压U、场强E)增大或电流i(磁场B)减小时,处于充电过程;反之,处于放电过程.3.根据能量判断:电场能增加时充电,磁场能增加时放电.电磁波的发射和电磁波的特点[先填空]1.发射条件有效地发射电磁波,振荡电路必须具有两个特点:第一,要有足够高的振荡频率,频率越高,发射电磁波的本领越大;第二,应采用开放电路,振荡电路的电场和磁场必须分散到足够大的空间.2.电磁波的特点(1)电磁波中的电场E与磁场B相互垂直,而且二者均与波的传播方向垂直.因此电磁波是横波.(2)电磁波在真空中的传播速度等于光速c,光的本质是电磁波.(3)电磁波具有波的一般特征,波长(λ)、周期(T)或频率(f)与波速(v)间关系为v=λT=λf.(4)电磁波和其他波一样也具有能量,电磁波的发射过程就是辐射能量的过程.[再判断]1.振荡频率足够高的开放电路才能发射电磁波.(√)2.电磁波的传播速度等于光速c.(×)3.电磁波的传播不需要介质,可以在真空中传播.(√)[后思考]1.怎样才能形成开放电路?【提示】在振荡电路中,使电容器变成两条长的直导线,一条深入高空成为天线,另一条接入地下成为地线,形成开放电路.2.雷雨天气,从调至中波段的收音机中,会不断地传出很响的“咔嚓”声,这是为什么?【提示】雷雨天形成闪电时会发出很强的电磁波,收音机接收到后会感应出电流,引起扬声器发出声响,形成很响的“咔嚓”声.[核心点击]1.机械波与电磁波的共性机械波与电磁波是本质上不同的两种波,但它们有共同的性质:①都具有波的特性,能发生反射、折射、干涉和衍射等物理现象;②都满足v=λT=λf;③波从一种介质传播到另一种介质,频率都不变.2.电磁波与机械波的区别电磁波机械波不同点本质电磁现象力学现象产生机理由电磁振荡产生由机械振动产生周期性变化的量场强E与磁感应强度B随时间和空间作周期性变化质点的位移x、加速度a随时间和空间作周期性变化波的性质横波即有横波,又有纵波传播介质不需要介质,可在真空中传播只能在弹性介质中传播速度特点由介质和频率决定仅由介质决定A.机械波的频率、波长和波速三者满足的关系,对电磁波也适用B.机械波和电磁波都能产生干涉和衍射现象C.机械波的传播依赖于介质,而电磁波可以在真空中传播D.机械波只有横波E.电磁波只有纵波【解析】机械波和电磁波有相同之处,也有本质区别,但v=λf都适用,A说法对;机械波和电磁波都具有干涉和衍射现象,B说法对;机械波的传播依赖于介质,电磁波可以在真空中传播,C说法对;机械波有横波和纵波,而电磁波是横波,D、E说法错.【答案】ABC8.下列关于电磁波的叙述中,正确的是()A.电磁波是电磁场由发生区域向远处的传播B.电磁波在任何介质中的传播速度均为3×108 m/sC.电磁波由真空进入介质传播时,波长变短D.电磁波不能产生干涉、衍射现象E.电磁波具有波的一切特征【解析】电磁波是交替产生呈周期性变化的电磁场由发生区域向远处传播而产生,故A项正确;电磁波只有在真空中传播时,其速度为3×108m/s,故B项不正确;电磁波在传播过程中其频率f不变,由波速公式v=λf知,由于电磁波在介质中的传播速度比在真空中的传播速度小,所以可得此时波长变短,故C正确;电磁波是一种波,具有波的一切特性,能产生干涉、衍射等现象,故E项正确,D项不正确.【答案】ACE电磁波的特点1.电磁波有波的一切特点:能发生反射、折射现象;能产生干涉、衍射等现象.2.电磁波是横波.在电磁波中,每处的电场强度和磁感应强度方向总是互相垂直的,并且都跟那里的电磁波的传播方向垂直.3.电磁波可以在真空中传播,向外传播的是电磁能.第 11 页。
麦克斯韦与电磁场理论的创立

麦克斯韦与电磁场理论的创立摘要:麦克斯韦是科学史上最伟大的物理学家之一,他的电磁场理论被誉为19世纪的电磁学史上的一座丰碑,他不但将全部电磁现象所服从的规律概括为我们所熟知的麦克斯韦方程组,而且还预言了电磁波的存在。
他所完成的不朽著作《电磁场通论》,对当代物理学家甚至对以后几代物理学家来说都是一个伟大而又不易达到的丰碑。
同时,麦克斯韦对科学之外的远见卓识和物理学领域一样令人惊叹。
关键词:麦克斯韦麦克斯韦方程组电磁波《电磁场通论》Maxwell and The Creation of ElectromagneticField TheoryAbstract:The history of science Maxwell is one of the greatest physicist of his electromagnetic theory of electromagnetism known asthe 19th-century history of a monument, not only he will obey all thelaws of electromagnetic phenomena summarized as Maxwell's equationswe know group, but also predicted the existence of electromagnetic waves. Completed his monumental book "General Theory of Electromagnetic Fields", and even after several generations of contemporary physicists for physicists, is a great and easy to reach the monument. Meanwhile, Maxwell on the science of physics beyond thefield of vision and the same is amazing.Keywords: Maxwell Maxwell's equations Electromagnetic waves "General Theory of Electromagnetic Fields"目录1 引言 (3)2 麦克斯韦的初期经历 (3)3 划时代的三篇论文 (6)3.1论文的前期准备 (6)3.2《论法拉第的力线》的发表 (7)3.3《论物理力线》的发表——位移电流 (8)3.4《电磁场的动力学理论》 (9)4 格伦莱尔的悠闲与《电磁场通论》的出版 (10)4.1格伦莱尔的悠闲 (10)4.2 《电磁场通论》的创作 (11)5 麦克斯韦电磁理论对后世的影响 (12)结论 (13)致谢 (14)参考文献 (15)麦克斯韦与电磁场理论的创立一、引言:1820年4月,丹麦物理学家奥斯特发现了电流的磁效应,这标志着电磁学的开始;随后法国物理学家安培在奥斯特实验的基础上于1820年至1827年创立了超距论的电动力学;1831年,英国物理学家法拉第)发现电磁感应定律;1845年至1846年,德国物理学家纽曼和韦伯发展了安培的电动力学,创立了德国电动力学体系,在欧洲大陆风靡一时。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
麦克斯韦电磁场理论的建立及意义班级:物理系09本三班姓名:范日耀摘要:文章通过对法拉第力线思想和W.汤姆孙的类比研究的阐述来引出麦克斯韦的电磁场理论。
麦克斯韦经过三个艰难的过程建立了电磁场理论,为壮伟的物理大厦添砖加瓦,做出了巨大贡献。
关键字:法拉第力线思想W.汤姆孙类比研究麦克斯韦电磁场理论一、引言二、内容1、前人的研究(1)法拉第的力线思想法拉第从广泛的实验研究中构想出描绘电磁作用的“力线”图像。
他认为电荷和磁极周围的空间充满了力线,靠力线(包括电力线和磁力线)将电荷(或磁极)联系在一起。
力线就像是从电荷(或磁极)发出、又落到电荷(或磁极)的一根根皮筋一样,具有在长度方向力图收缩,在侧向力图扩张的趋势。
他以丰富的想象力阐述电磁作用的本质。
法拉第研究了电介质对电力作用的影响,认识到这一影响表明电力不可能是超距作用,而是通过电介质状态的变化;即使没有电介质,空间也会产生某种变化,布满了力线。
后来,法拉第又进一步研究了磁介质,解释了顺磁性和反磁性。
电磁感应现象则解释为磁铁周围存在某种“电应力状态”,当导线在其附近运动时,收到应力作用而有电荷做定向运动;回路中产生电动势则是由于穿过回路的磁力线数目发生了变化。
法拉第的力线思想实际上就是场的观念,这是近距理论的核心内容。
(2)W.汤姆孙的类比研究在法拉第力线思想的激励下,W.汤姆孙对电磁作用的规律也进行过有益的研究。
他从法国科学家傅里叶的热传导理论得到启示。
傅里叶在1824年发表《热的分析理论》一书,详细的研究了在介质中热流的传播问题,建立了热传导方程。
这本书W.汤姆孙对有很深的影响。
1842年,W.汤姆孙发表了第一篇关于热和电的数学论文,题为:《论热在均匀固体中的均匀运动及其与电的数学理论的联系》,他论述了热在均匀固体中的传导和法拉第电应力在均匀介质中传递这两种现象之间的相似性。
他指出电的等势面对应于热的等温面,而电荷对应与热源。
利用傅里叶的热分析法,他把法拉第的力线思想和拉普拉斯、泊松等人已经建立的完整的静电理论结合在一起,初步形成了电磁作用的统一理论。
1847年,W.汤姆孙进一步研究了电磁现象与弹性现象的相似性,在题为《论电力、磁力和伽伐尼力的力学表征》一文中,以不可压缩流体的流线连续性为基础,论述了电磁现象和流体力学现象的共性。
1851年,他给除了磁场的定义,1856年,根据磁致旋光效应提出了磁具有旋转的特性,这样就为进一步借用流体力学中关于涡旋运动的理论,做好了准备。
W.汤姆孙运用类比方法,把法拉第的力线思想转变为定量的表述,为麦克斯韦的工作提供了十分有益的经验。
2、麦克斯韦建立电磁场理论(1)电磁场理论建立的第一步麦克斯韦在电磁理论方面的工作可以和牛顿在力学理论方面的工作相媲美。
他和牛顿一样,是“站在巨人的肩上”,看得更深更远,作出了伟大的历史综合;他和牛顿一样,其丰硕的成果是一步一步提炼出来的。
对于麦克斯韦来说,他是站在法拉第和W.汤姆孙这两位巨人的肩上。
他面对众说纷纭的电磁理论,以深邃的洞察力开创了物理学的新领域。
然而,他也不是一蹴而就的。
他在创建电磁理论的奋斗中作了三次飞跃,前后里程达十余年。
麦克斯韦是英国人,1831年生于爱丁堡,自幼聪慧过人,得到了精心培养。
10岁进爱丁堡书院学习。
15岁就有几何论文发表。
1850年入剑桥大学,这时W.汤姆孙已是那里的研究员。
W.汤姆孙比麦克斯韦大7岁,他们先后荣获数学竞赛优胜者称号。
W.汤姆孙对电磁理论的看法,麦克斯韦早有了解。
在W.汤姆孙的影响下,麦克斯韦特别注意斯托克斯的工作,这为以后的研究做了准备。
从1855年起,麦克斯韦学习电学,认真阅读了法拉第的著作,特别是《电学实验研究》一书。
他大学刚毕业,就着手把法拉第的力线思想用数学分析方法进行表述。
W.汤姆孙那两篇关于电磁现象与力、热现象相似性的论文对他很有影响。
不但使他认识到类比方法的重要性,而且体验到法拉第的思想与传统的静电理论是协调的,有可能进一步建立统一的电磁理论。
1856年,麦克斯韦发表了第一篇关于电磁理论的论文,题为:《论法拉第力线》。
在这篇论文中,他发展了W.汤姆孙的类比方法,用不可压缩流体的流线类比于法拉第的力线,把流线的数学表达式用到静电理论中。
流线不会中断,力线也不会中断,只能发源于电荷或磁极,或者形成闭合曲线。
麦克斯韦通过类比,明确了两类不同的概念,一类相当于流体中的力,E和H就是;另一类相当于流体的流量,D和B属于这一类。
麦克斯韦进一步讨论了这两类量的性质。
流量遵从连续性方程,可以沿曲面积分,而力则应沿线段积分。
关于类比方法,麦克斯韦写到:“为了采用某种物理理论而获得物理思想,我们应当了解物理相似性的存在。
所谓物理相似性,我指的是在一门科学的定律和另一门科学的定律之间的局部类似。
利用这种局部类似可以用其中之一说明其中之二。
”麦克斯韦还特别注意到数学公式的类比。
“精确科学的宗旨就是要把自然界的问题归结为通过数学计算来确定各个量。
”这篇论文的第二部分专门讨论法拉第的“电应力状态”,对电磁感应作了理论解释。
麦克斯韦指出,纽曼的失势A正是表示“电应力状态”的一个函数,两者是一致的。
不过,纽曼的失势是建立在超距作用上的数学函数,缺乏实际含义,而法拉第的“电应力状态”则是根据大量实验发现并认真作出的精湛假设。
麦克斯韦写到:“也许有人会认为,多种现象的定量观测还未严密到足以形成数学理论的基础,但是法拉第并不满足于简单的叙述其试验的数学结果,也不希望考计算来发现定律。
当他掌握住一个定律时他立即像对纯粹数学的定律一样,毫不含糊地讲出来;如果数学家把这个定律当作物理真理接收下来,从它推出其他可以用实验检验的定律,这位数学家只不过起了帮助物理学家整理自己思想的作用。
当然,也要承认这是科学推理的必要步骤。
”接着,麦克斯韦退出了6个定律:“定律Ⅰ沿面积元边界电应力强度的总和等于穿过该面积的磁感应或等于穿过该面积的磁力线总数,”用现代的符号表示,就是∮A·d l=Φ“定律Ⅱ任一点的磁(场)强度经一组叫做传导方程的线性方程与磁感应相联系,”即B=μH“定律Ⅲ沿任一面积边界的磁(场)强度等于穿过该面积的电流”,即∮H·d l=∑I“定律Ⅳ电流的量与强度由一系列传导方程联系”,即j=σE“定律Ⅴ闭合电流的总电磁势等于电流之量与沿同一方向围绕电路的电应力强度的乘积”,即:电磁能等于电路中电流与感应所生磁通的乘积,W=∮j·Adl“定律Ⅵ任一导体元中的电动势等于该导体元上电应力强度的瞬时变化率”,即dAE=-dt(2)麦克斯韦建立电磁场理论的第二步隔了五年之后,麦克斯韦又回过来研究电磁场理论,写了第二篇论文,题为《论物理力线》。
其中分四个部分,分别载于1861年和1862年的《哲学杂志》上。
他的“目的是研究介质中的应力和运动的某种状态的力学效果,并将它们与观察到的电磁现象加以比较,从而为了解力线的实质做准备。
”两件事使麦克斯韦重现考虑他的研究方法:一件是根据伯努利的流体力学,流线越密的地方压力越小,流速越快,而根据法拉第的力线思想,力线有纵向收缩、横向扩张的趋势,力线越密,应力越大,两者不宜类比。
另一件是电的运动和磁的运动也无法简单类比。
从电解质现象中知道电的运动是平移运动,而从偏振光在透明晶体中旋转的现象看,磁的运动好像是介质中分子的旋转运动。
可见,电磁现象与流体力学现象有很大差别,电现象与磁现象不尽相同,靠几何上的类比无法洞察事物的本质。
于是麦克斯韦转向运用模型来建立假说。
他借用兰金的“分子涡流”假设,提出自己的模型。
他假设在磁场作用下的介质中,有规律的排列着许多分子涡旋,绕磁力线旋转,旋转角速度与磁场强度成正比,涡旋物质的密度正比于介质的磁导率。
这个模型很容易解释电荷间或磁场间的相互作用,并清晰地体现了近距作用。
但是在进一步解释变化电场或变化磁场之间的关系时又遇到了困难。
分子涡旋在旋转中相邻的边界沿相反的方向运动,这怎么可能呢?麦克斯韦从一种惰轮机构想出了解决方案。
他假设在涡旋之间有一层细微的带电粒子,将各涡旋隔开。
带电粒子非常小,可在原地滚动,电流就相当于带电粒子的移动。
就在讨论“应用于静电的分子涡旋理论”这个问题时,麦克斯韦抓住了要害。
他假设分子涡旋具有弹性。
当分子涡旋之间的粒子受电力作用产生位移时,给涡旋以切向力,使涡旋发生形变,反过来涡旋又给粒子以弹性力。
当激发粒子的力撤去后,涡旋恢复原来的形状,粒子也返回原位。
这样,带电体之间的力就归结为弹性形变在介质中储存的势能,而磁力则归结为储存的转动能。
位移的变化形成了电流。
麦克斯韦称之为“位移电流”,他写道:“只要导体上有电动势作用,就会产生电流,电流遇到电阻,就会将电能转化为热。
这一过程的逆向却不可能将热重新储存为电能。
“电动势作用于电介质,会使电介质的一部分产生一种极化状态,有如铁的颗粒在磁体的影响下极化一样分布,并且和磁极化一样,可以看成是每个粒子以对立状态产生(电)极。
“在一个受到感应的电介质中,我们可以想象每个分子中的电都发生这样的位移,一端为正电,另一端为负电,而这些电仍然完全同分子联系在一起,不会从一个分子转移到另一个分子。
“这种作用对于整个电介质是沿某一方面产生了总的位移。
这一位移并不形成电流,因为它达到一定值时就保持不变了。
但当电流开始时,和当位移时增时减因而形成不断变化时,就会根据位移的增加或减少,形成沿正方向或负方向的电流。
”以r表示由于位移产生的电流值,h表示位移值,麦克斯韦得出r=dh/dt, 即i位移=dD/dt麦克斯韦提出的“位移电流”的假设在电磁场理论中具有非常重要的地位。
这是一个重大的突破,在这以前,甚至在麦克斯韦去世时还没有人做出过可靠的实验,证明位移电流的存在。
这说明麦克斯韦具有何等的理论胆略!还有一件事情表明了麦克斯韦的理论威力,就是他预见到光是起源于电磁现象的一种横波。
既然电介质中的粒子位移可以看成是电流,就可以把电流与磁力线的相互作用推广到绝缘体,甚至是填充于真空的以太。
在这些介质中任一点产生的点粒子的振动,就可以通过相互作用在介质中扩展开去。
设弹性介质密度为ρ,切变模量为m,这种介质可以传播速度为v=ρm的横波。
根/据分子涡旋假设,麦克斯韦得到E/μ,其中E是取决于介质性质的一个特殊系数,μ为磁导率,对于真空或空气,μ=1。
柯尔劳胥和韦伯在1857年从莱顿瓶上测量电荷,根据静电单位和绝对单位的比值求出E的值为:310740千米/秒。
麦克斯韦以之与斐索1849年用齿轮法测到的光速c=315000千米/秒比较,认为相符甚好。
于是,麦克斯韦在论文中用斜体字写道:“我们难以排出如下的推论:光是由引起电现象和磁现象的同一介质中的横波组成的。
”(3)麦克斯韦建立电磁场理论的第三步1865年麦克斯韦发表了关于电磁场理论的第三篇论文:《电磁场的动力学理论》,全面论述了电磁场理论。