森林、树和二叉树的转换
二叉树,树,森林遍历之间的对应关系

二叉树,树,森林遍历之间的对应关系一、引言在计算机科学中,数据结构是非常重要的知识点之一。
而树这一数据结构,作为基础的数据结构之一,在软件开发中有着广泛的应用。
本文将重点探讨二叉树、树和森林遍历之间的对应关系,帮助读者更加全面地理解这些概念。
二、二叉树1. 二叉树的定义二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
二叉树可以为空,也可以是一棵空树。
2. 二叉树的遍历在二叉树中,有三种常见的遍历方式,分别是前序遍历、中序遍历和后序遍历。
在前序遍历中,节点的访问顺序是根节点、左子树、右子树;在中序遍历中,节点的访问顺序是左子树、根节点、右子树;在后序遍历中,节点的访问顺序是左子树、右子树、根节点。
3. 二叉树的应用二叉树在计算机科学领域有着广泛的应用,例如用于构建文件系统、在数据库中存储有序数据、实现算法中的搜索和排序等。
掌握二叉树的遍历方式对于理解这些应用场景非常重要。
三、树1. 树的定义树是一种抽象数据类型,由n(n>0)个节点组成一个具有层次关系的集合。
树的特点是每个节点都有零个或多个子节点,而这些子节点又构成了一颗子树。
树中最顶层的节点称为根节点。
2. 树的遍历树的遍历方式有先根遍历、后根遍历和层次遍历。
在先根遍历中,节点的访问顺序是根节点、子树1、子树2...;在后根遍历中,节点的访问顺序是子树1、子树2...,根节点;在层次遍历中,节点的访问顺序是从上到下、从左到右依次访问每个节点。
3. 树的应用树广泛用于分层数据的表示和操作,例如在计算机网络中的路由算法、在操作系统中的文件系统、在程序设计中的树形结构等。
树的遍历方式对于处理这些应用来说至关重要。
四、森林1. 森林的定义森林是n(n>=0)棵互不相交的树的集合。
每棵树都是一颗独立的树,不存在交集。
2. 森林的遍历森林的遍历方式是树的遍历方式的超集,对森林进行遍历就是对每棵树进行遍历的集合。
3. 森林的应用森林在实际编程中经常用于解决多个独立树结构的问题,例如在数据库中对多个表进行操作、在图像处理中对多个图形进行处理等。
数据结构树的知识点总结

数据结构树的知识点总结一、树的基本概念。
1. 树的定义。
- 树是n(n ≥ 0)个结点的有限集。
当n = 0时,称为空树。
在任意一棵非空树中:- 有且仅有一个特定的称为根(root)的结点。
- 当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1、T2、…、Tm,其中每个集合本身又是一棵树,并且称为根的子树(sub - tree)。
2. 结点的度、树的度。
- 结点的度:结点拥有的子树个数称为结点的度。
- 树的度:树内各结点的度的最大值称为树的度。
3. 叶子结点(终端结点)和分支结点(非终端结点)- 叶子结点:度为0的结点称为叶子结点或终端结点。
- 分支结点:度不为0的结点称为分支结点或非终端结点。
- 除根结点之外,分支结点也称为内部结点。
4. 树的深度(高度)- 树的层次从根开始定义起,根为第1层,根的子结点为第2层,以此类推。
树中结点的最大层次称为树的深度(或高度)。
二、二叉树。
1. 二叉树的定义。
- 二叉树是n(n ≥ 0)个结点的有限集合:- 或者为空二叉树,即n = 0。
- 或者由一个根结点和两棵互不相交的、分别称为根结点的左子树和右子树的二叉树组成。
2. 二叉树的特点。
- 每个结点最多有两棵子树,即二叉树不存在度大于2的结点。
- 二叉树的子树有左右之分,次序不能颠倒。
3. 特殊的二叉树。
- 满二叉树。
- 一棵深度为k且有2^k - 1个结点的二叉树称为满二叉树。
满二叉树的特点是每一层上的结点数都是最大结点数。
- 完全二叉树。
- 深度为k的、有n个结点的二叉树,当且仅当其每一个结点都与深度为k的满二叉树中编号从1至n的结点一一对应时,称之为完全二叉树。
完全二叉树的叶子结点只可能在层次最大的两层上出现;对于最大层次中的叶子结点,都依次排列在该层最左边的位置上;如果有度为1的结点,只可能有一个,且该结点只有左孩子而无右孩子。
三、二叉树的存储结构。
1. 顺序存储结构。
- 二叉树的顺序存储结构就是用一组地址连续的存储单元依次自上而下、自左至右存储完全二叉树上的结点元素。
数据结构-第6章 树和二叉树---4. 树和森林(V1)

6.4.1 树的存储结构
R AB C D EG F
R⋀
A
⋀D
⋀B
⋀E ⋀
C⋀
⋀G
⋀F ⋀
6.4.2 树、森林和二叉树的转换
1. 树转换为二叉树 将树转换成二叉树在“孩子兄弟表示法”中已 给出,其详细步骤是: ⑴ 加线。在树的所有相邻兄弟结点之间加一 条连线。 ⑵ 去连线。除最左的第一个子结点外,父结点 与所有其它子结点的连线都去掉。 ⑶ 旋转。将树以根结点为轴心,顺时针旋转 450,使之层次分明。
B C
D
A E
L HK
M
技巧:无左孩子 者即为叶子结点
6.4.3 树和森林的遍历
1. 树的遍历 由树结构的定义可知,树的遍历有二种方法。 ⑴ 先序遍历:先访问根结点,然后依次先序 遍历完每棵子树等。价于对应二叉树的先序遍历
⑵ 后序遍历:先依次后序遍历完每棵子树,然 后访问根结点。等价于对应二叉树的中序遍历
0 R -1 1A 0 2B 0 3C 0
}Ptree ; R
4D 1 5E 1
AB C
6F 3
7G 6
DE
F
8H 6
9I 6
G H I 10~MAX_Size-1 ... ...
6.4.1 树的存储结构
2. 孩子表示法
每个结点的孩子结点构成一个单链表,即有n 个结点就有n个孩子链表;
n个孩子的数据和n个孩子链表的头指针组成一 个顺序表; 结点结构定义: 顺序表定义:
typedef struct PTNode { ElemType data ;
数据结构第七章 树和森林

7.5 树的应用
➢判定树
在实际应用中,树可用于判定问题的描述和解决。
•设有八枚硬币,分别表示为a,b,c,d,e,f,g,h,其中有一枚且 仅有一枚硬币是伪造的,假硬币的重量与真硬币的重量不同,可能轻, 也可能重。现要求以天平为工具,用最少的比较次数挑选出假硬币, 并同时确定这枚硬币的重量比其它真硬币是轻还是重。
的第i棵子树。 ⑺Delete(t,x,i)在树t中删除结点x的第i棵子树。 ⑻Tranverse(t)是树的遍历操作,即按某种方式访问树t中的每个
结点,且使每个结点只被访问一次。
7.2.2 树的存储结构
顺序存储结构 链式存储结构 不管哪一种存储方式,都要求不但能存储结点本身的数据 信息,还要能够唯一的反映树中各结点之间的逻辑关系。 1.双亲表示法 2.孩子表示法 3.双亲孩子表示法 4.孩子兄弟表示法
21
将二叉树还原为树示意图
A BCD
EF
A
B
C
E
D
F
A
B
C
E
D
F
22
练习:将下图所示二叉树转化为树
1 2
4
5
3
6
2 4
1 53
6
23
7.3.2 森林转换为二叉树
由森林的概念可知,森林是若干棵树的集合,只要将森林中各棵树 的根视为兄弟,森林同样可以用二叉树表示。 森林转换为二叉树的方法如下:
⑴将森林中的每棵树转换成相应的二叉树。 ⑵第一棵二叉树不动,从第二棵二叉树开始,依次把后一棵二叉树 的根结点作为前一棵二叉树根结点的右孩子,当所有二叉树连起来 后,此时所得到的二叉树就是由森林转换得到的二叉树。
相交的集合T1,T2,…,Tm,其中每一个集合Ti(1≤i≤m)本身又是 一棵树。树T1,T2,…,Tm称为这个根结点的子树。 • 可以看出,在树的定义中用了递归概念,即用树来定义树。因此, 树结构的算法类同于二叉树结构的算法,也可以使用递归方法。
第6章树和二叉树

9
6.1.4 树的存储结构
3.孩子兄弟表示法 孩子兄弟表示法 在结点中设置两个指针域, 在结点中设置两个指针域,一个指针域指向该结 点的第一个孩子,另一个指针域指向其右兄弟。 点的第一个孩子,另一个指针域指向其右兄弟。
2
6.1.1树的定义 树的定义
结点的度:结点所拥有子树的个数称为结点的度。 结点的度:结点所拥有子树的个数称为结点的度。 子树 称为结点的度 树的度:树中所有结点的度的最大值称为树的度。 最大值称为树的度 树的度:树中所有结点的度的最大值称为树的度。 叶结点:度为零的结点称为叶结点。也称终端结点 终端结点或 叶结点:度为零的结点称为叶结点。也称终端结点或叶 子 分支结点:度不为零的结点称为分支结点。也称非终端 分支结点:度不为零的结点称为分支结点。也称非终端 结点。除根结点以外,分支结点也称为内部结点。 结点。除根结点以外,分支结点也称为内部结点。 孩子结点和双亲结点: 孩子结点和双亲结点:树中一个结点的子树的根结点称 为孩子结点。该结点就称为孩子结点的双亲结点。 为孩子结点。该结点就称为孩子结点的双亲结点。 兄弟结点:具有同一双亲的孩子结点互为兄弟结点。 兄弟结点:具有同一双亲的孩子结点互为兄弟结点。 结点的祖先:从根到该结点所经分支上的所有结点, 结点的祖先:从根到该结点所经分支上的所有结点,称 为结点的祖先。 为结点的祖先。
17
6.2.2 二叉树的性质
性质4 具有n( 性质 具有 (n>0)个结点的完全二叉树的深度 )个结点的完全二叉树的深度h= log 2 n + 1 证明: 证明: 根据完全二叉树的定义可知深度为h-1层及以上的结点构成 根据完全二叉树的定义可知深度为 层及以上的结点构成 满二叉树,因此由性质2得深度为 得深度为h的完全二叉树满足 满二叉树,因此由性质 得深度为 的完全二叉树满足 n>2h-1-1和n≤2h-1 和 整理后得到 2h-1≤n<2h 不等式两边取对数, 不等式两边取对数,得 h-1≤log2n<h 由于h为正整数 为正整数, 由于 为正整数,因此 h= log 2 n + 1
树与二叉树的转换

删除它与其它孩子
结点之间的连线
注意:第一个孩子是二叉树
结点的左孩子,兄弟转换过 来的孩子是结点的右孩子
第二部分 新课讲授
第二部分 新课讲授
2、二叉树转换为树 加线
若某结点的左孩子结点 存在,则将这个左孩子 的右孩子结点、右孩子 的右孩子结点、右孩子 的右孩子的右孩子结点 等,就是左孩子的n个 右孩子结点都作为些结 点的孩子,将该结点与 这些右孩子结点用线连 接起来去线ຫໍສະໝຸດ 层次调整删除原二叉树中
有所结点与其右
逆时针旋转45 度,使之结构 层次分明
孩子结点的连线
第二部分 新课讲授
第三部分 总结反思
树到二叉树
70% 30%
树中的长子关系变成左 儿子关系;兄弟关系变 成右儿子关系。
二叉树到树
40%
二叉树中的左儿子关系 变成长子关系,右儿子 关系变成兄弟关系。
第三部分 总结反思
多了,因些很多性质和算法都被研究了出来。那么树
能不能转换成二叉树去研究呢? 答案是:能
第一部分 问题引入
第二部分 新课讲授
1、树转换为二叉树
加线
去线
层次调整
对树中每个结点,
在所有兄弟结点 之间加一条连线 只保留它与第一个 孩子结点的连线,
以树的根结点为轴心,将整
棵树顺时针旋转一定的角度, 使之结构层次分明。
思考: 如果不是一棵树,而是多棵树,
也就是森林,如何转换为二叉树?
感谢聆听 敬请指正
PPT模板下载:/moban/ 行业PPT模板:/hangye/ 节日PPT模板:/jieri/ PPT素材下载:/sucai/ PPT背景图片:/beijing/ PPT图表下载:/tubiao/ 优秀PPT下载:/xiazai/ PPT教程: www.1ppt.c om/powerpoint/ Word教程: /word/ Excel 教程:www.1ppt.c om/excel/ 资料下载:/ziliao/ PPT课件下载:/kejian/ 范文下载:/fanwen/ 试卷下载:www.1ppt.c om/shiti / 教案下载:/jiaoan/ PPT论坛:
数据结构习题及答案与实验指导(树和森林)7

第7章树和森林树形结构是一类重要的非线性结构。
树形结构的特点是结点之间具有层次关系。
本章介绍树的定义、存储结构、树的遍历方法、树和森林与二叉树之间的转换以及树的应用等内容。
重点提示:●树的存储结构●树的遍历●树和森林与二叉树之间的转换7-1 重点难点指导7-1-1 相关术语1.树的定义:树是n(n>=0)个结点的有限集T,T为空时称为空树,否则它满足如下两个条件:①有且仅有一个特定的称为根的结点;②其余的结点可分为m(m>=0)个互不相交的子集T1,T2,…,T m,其中每个子集本身又是一棵树,并称为根的子树。
要点:树是一种递归的数据结构。
2.结点的度:一个结点拥有的子树数称为该结点的度。
3.树的度:一棵树的度指该树中结点的最大度数。
如图7-1所示的树为3度树。
4.分支结点:度大于0的结点为分支结点或非终端结点。
如结点a、b、c、d。
5.叶子结点:度为0的结点为叶子结点或终端结点。
如e、f、g、h、i。
6.结点的层数:树是一种层次结构,根结点为第一层,根结点的孩子结点为第二层,…依次类推,可得到每一结点的层次。
7.兄弟结点:具有同一父亲的结点为兄弟结点。
如b、c、d;e、f;h、i。
8.树的深度:树中结点的最大层数称为树的深度或高度。
9.有序树:若将树中每个结点的子树看成从左到右有次序的(即不能互换),则称该树为有序树,否则称为无序树。
10.森林:是m棵互不相交的树的集合。
7-1-2 树的存储结构1.双亲链表表示法以图7-1所示的树为例。
(1)存储思想:因为树中每个元素的双亲是惟一的,因此对每个元素,将其值和一个指向双亲的指针parent构成一个元素的结点,再将这些结点存储在向量中。
(2)存储示意图:-1 data:parent:(3)注意: Parrent域存储其双亲结点的存储下标,而不是存放结点值。
下面的存储是不正确的:-1 data:parent:2.孩子链表表示法(1)存储思想:将每个数据元素的孩子拉成一个链表,链表的头指针与该元素的值存储为一个结点,树中各结点顺序存储起来,一般根结点的存储号为0。
树与二叉树的关系

将一棵树转换为二叉树的方法: ⑴ 树中所有相邻兄弟之间加一条连线。 ⑵ 对树中的每个结点,只保留其与第一个 孩子结点之间的连线,删去其与其它孩子结 点之间的连线。 ⑶ 以树的根结点为轴心,将整棵树顺时针 旋转一定的角度,使之结构层次分明。
树转换为二叉树示意图
A
A
B
E
CF G
DH
I
A
B
E
CF G
DH
I
J
J
A
BC D EG FH I J
用递归的方法描述其转换
若B是一棵二叉树,T是B的根结点,L是B的 左子树,R为B的右子树,设B对应的森林F(B) 中含有的n棵树为T1,T2, …,Tn,则有: (1)B为空,则:F(B)为空的森林(n=0)。
(2)B非空,则:
树
森林
二叉树
先根遍历 先序遍历 先序遍历
后根遍历 中序遍历 中序遍历
3、森林的后序遍历*
若森林非空,则遍历方法为:
(1)后序遍历森林中第一棵树的根结点的子 树森林。 (2)后序遍历除去第一棵树之后剩余的树构 成的森林。 (3)访问第一棵树的根结点。
6.5 哈夫曼树及其应用
6.5.1 哈夫曼树
哈夫曼树最典型、最广泛的应用是在 编码技术上,利用哈夫曼树,可以得到 平均长度最短的编码。这在通讯领域是 极其有价值的。
权值 双亲序号 左孩子序号 右孩子序号
静态三叉链表结构定义
#define N 20 #define M 2*N-1 typedef struct { int weight ;
int parent,Lchild,Rchild ; }HTNode, HuffmanTree[M+1];
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
② 森林转换成二叉树
③ 二叉树转换成树
④ 二叉树转换成森林
树转换成二叉树
将一棵树转换为二叉树的方法是: I. 树中所有相邻兄弟之间加一条连线。 II. 对树中的每个结点,只保留它与第一个孩子结点之 间的连线,删去它与其它孩子结点之间的连线。 III. 以树的根结点为轴心,将整棵树顺时针转动一定的 角度,使之结构层次分明
先根遍历:先访问树的根结点,然后依次先根遍历根
的每棵子树
先根遍历结果:A
B E F I GD
A
B
D E F I G
后根遍历:先依次后根遍历每棵子树,然后访问根结
点
后根遍历:
E I F GB D A
[例]
树:
B
A C G D H
对应二叉树: A
B E F I G J K L
先序遍历:
C
D
H
E
F
第六章 树和二叉树
本章主要内容
一、树的基本概念
二、二叉树
三、二叉树的遍历 三、线索二叉树 四、树和森林 六、哈夫曼树 七、本章主要要求
3.树、森林和二叉树的转换
树和森林的存储表示复杂,实施具体的算法很困难, 而二叉树的算法的比较丰富,牵涉到树和森林的问 题,一般转换成对应的二叉树,通过二叉树来解决 ① 树转换成二叉树
I
先根遍历:
J
K NL M ON NhomakorabeaM
AB E F I GC DHJ KL NO M
后根遍历:
O AB E F I GC DHJ KL NO M
中序遍历:
EIFGBCJKNOLMHDA
EIFGBCJKNOLMHDA 树的先根遍历与对应二叉树的先序遍历结果相同! 树的后根遍历与对应二叉树的中序遍历结果相同!
转换过程示意图:
4.树和森林的遍历 树的遍历:有先根遍历和后根遍历两种 思考:树的遍历有没有中根遍历?
先根遍历: ① 访问根结点 ② 按照从左到右的顺序先根遍历根结 点的每一棵子树 后根遍历: ① 按照从左到右的顺序后根遍历根结 点的每一棵子树 ② 访问根结点
遍历的结果
?
A
B
D E F I G