、抛物线中利用等腰直角三角形构造全等

合集下载

2021-2022学年福建省南平市浦城县中考三模数学试题含解析

2021-2022学年福建省南平市浦城县中考三模数学试题含解析

2021-2022中考数学模拟试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1.图1~图4是四个基本作图的痕迹,关于四条弧①、②、③、④有四种说法:弧①是以O为圆心,任意长为半径所画的弧;弧②是以P为圆心,任意长为半径所画的弧;弧③是以A为圆心,任意长为半径所画的弧;弧④是以P为圆心,任意长为半径所画的弧;其中正确说法的个数为()A.4 B.3 C.2 D.12.在一次男子马拉松长跑比赛中,随机抽取了10名选手,记录他们的成绩(所用的时间)如下:选手 1 2 3 4 5 6 7 8 9 10 时间(min) 129 136 140 145 146 148 154 158 165 175由此所得的以下推断不正确...的是()A.这组样本数据的平均数超过130B.这组样本数据的中位数是147C.在这次比赛中,估计成绩为130 min的选手的成绩会比平均成绩差D.在这次比赛中,估计成绩为142 min的选手,会比一半以上的选手成绩要好3.某校120名学生某一周用于阅读课外书籍的时间的频率分布直方图如图所示.其中阅读时间是8~10小时的频数和频率分别是()A .15,0.125B .15,0.25C .30,0.125D .30,0.254.在一个不透明的袋子中装有除颜色外其余均相同的m 个小球,其中 5 个黑球, 从袋中随机摸出一球,记下其颜色,这称为依次摸球试验,之后把它放回袋 中,搅匀后,再继续摸出一球.以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表: 摸球试验次数 100 1000 5000 10000 50000 100000 摸出黑球次数46487250650082499650007根据列表,可以估计出 m 的值是( ) A .5B .10C .15D .205.若分式方程1x aa x -=+无解,则a 的值为( ) A .0B .-1C .0或-1D .1或-16.下列各组数中,互为相反数的是( ) A .﹣2 与2B .2与2C .3与13D .3与37.如图,半⊙O 的半径为2,点P 是⊙O 直径AB 延长线上的一点,PT 切⊙O 于点T ,M 是OP 的中点,射线TM 与半⊙O 交于点C .若∠P =20°,则图中阴影部分的面积为( )A .1+3πB .1+6π C .2sin20°+29πD .23π 8.下列算式的运算结果正确的是( ) A .m 3•m 2=m 6 B .m 5÷m 3=m 2(m≠0)C .(m ﹣2)3=m ﹣5D .m 4﹣m 2=m 29.如图,在△ABC 中,DE ∥BC 交AB 于D ,交AC 于E ,错误的结论是( ).A .AD AEDB EC= B .AB ACAD AE= C .AC ECAB DB= D .AD DEDB BC= 10.如果2a b -=,那么22b a a ba a-+÷的值为( ) A .1B .2C .1-D .2-二、填空题(共7小题,每小题3分,满分21分)11.小明用一个半径为30cm 且圆心角为240°的扇形纸片做成一个圆锥形纸帽(粘合部分忽略不计),那么这个圆锥形纸帽的底面半径为_____cm .12.如图,在△ABC 中,AB=AC=15,点D 是BC 边上的一动点(不与B ,C 重合),∠ADE=∠B=∠α,DE 交AB 于点E ,且tan ∠α=,有以下的结论:①△ADE ∽△ACD ;②当CD=9时,△ACD 与△DBE 全等;③△BDE 为直角三角形时,BD 为12或;④0<BE≤,其中正确的结论是 ________(填入正确结论的序号).13.正多边形的一个外角是60°,边长是2,则这个正多边形的面积为___________ .14.如图,在扇形OAB 中,∠O =60°,OA =43,四边形OECF 是扇形OAB 中最大的菱形,其中点E ,C ,F 分别在OA ,AB ,OB 上,则图中阴影部分的面积为__________.15.若一个正多边形的内角和是其外角和的3倍,则这个多边形的边数是______. 16.如图,AB 是圆O 的直径,弦CD ⊥AB ,∠BCD=30°,CD=4,则S 阴影=_____.17.如图,▱ABCD 中,AC ⊥CD ,以C 为圆心,CA 为半径作圆弧交BC 于E ,交CD 的延长线于点F ,以AC 上一点O 为圆心OA 为半径的圆与BC 相切于点M ,交AD 于点N .若AC=9cm ,OA=3cm ,则图中阴影部分的面积为_____cm 1.三、解答题(共7小题,满分69分)18.(10分)甲乙两件服装的进价共500元,商场决定将甲服装按30%的利润定价,乙服装按20%的利润定价,实际出售时,两件服装均按9折出售,商场卖出这两件服装共获利67元.求甲乙两件服装的进价各是多少元;由于乙服装畅销,制衣厂经过两次上调价格后,使乙服装每件的进价达到242元,求每件乙服装进价的平均增长率;若每件乙服装进价按平均增长率再次上调,商场仍按9折出售,定价至少为多少元时,乙服装才可获得利润(定价取整数). 19.(5分)在平面直角坐标系中,O 为原点,点A (8,0)、点B (0,4),点C 、D 分别是边OA 、AB 的中点.将△ACD 绕点A 顺时针方向旋转,得△AC ′D ′,记旋转角为α.(I )如图①,连接BD ′,当BD ′∥OA 时,求点D ′的坐标; (II )如图②,当α=60°时,求点C ′的坐标;(III )当点B ,D ′,C ′共线时,求点C ′的坐标(直接写出结果即可).20.(8分)一次函数()y kx b k 0=+≠的图象经过点()A 11-,和点()B 15,,求一次函数的解析式.21.(10分)如图1,抛物线y =ax 2+bx ﹣2与x 轴交于点A (﹣1,0),B (4,0)两点,与y 轴交于点C ,经过点B 的直线交y 轴于点E (0,2). (1)求该抛物线的解析式;(2)如图2,过点A 作BE 的平行线交抛物线于另一点D ,点P 是抛物线上位于线段AD 下方的一个动点,连结PA ,EA ,ED ,PD ,求四边形EAPD 面积的最大值;(3)如图3,连结AC ,将△AOC 绕点O 逆时针方向旋转,记旋转中的三角形为△A ′OC ′,在旋转过程中,直线OC ′与直线BE 交于点Q ,若△BOQ 为等腰三角形,请直接写出点Q 的坐标.22.(10分)有A,B两个黑布袋,A布袋中有两个完全相同的小球,分别标有数字1和1.B 布袋中有三个完全相同的小球,分别标有数字﹣1,﹣1和﹣2.小明从A布袋中随机取出一个小球,记录其标有的数字为x,再从B布袋中随机取出一个小球,记录其标有的数字为y,这样就确定点Q的一个坐标为(x,y).(1)用列表或画树状图的方法写出点Q的所有可能坐标;(1)求点Q落在直线y=﹣x﹣1上的概率.23.(12分)已知y是x的函数,自变量x的取值范围是0x≠的全体实数,如表是y与x的几组对应值.小华根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小华的探究过程,请补充完整:(1)从表格中读出,当自变量是﹣2时,函数值是;(2)如图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(3)在画出的函数图象上标出2x=时所对应的点,并写出m=.(4)结合函数的图象,写出该函数的一条性质:.24.(14分)(1)|﹣327(2018﹣π)0-(15)-1(2)先化简,再求值:(2xx x +﹣1)÷22121xx x-++,其中x的值从不等式组23241xx-≤⎧⎨-⎩<的整数解中选取.参考答案一、选择题(每小题只有一个正确答案,每小题3分,满分30分)1、C【解析】根据基本作图的方法即可得到结论.【详解】解:(1)弧①是以O为圆心,任意长为半径所画的弧,正确;(2)弧②是以P为圆心,大于点P到直线的距离为半径所画的弧,错误;(3)弧③是以A为圆心,大于12AB的长为半径所画的弧,错误;(4)弧④是以P为圆心,任意长为半径所画的弧,正确.故选C.【点睛】此题主要考查了基本作图,解决问题的关键是掌握基本作图的方法.2、C【解析】分析:要求平均数只要求出数据之和再除以总个数即可;对于中位数,因图中是按从小到大的顺序排列的,所以只要找出最中间的一个数(或最中间的两个数)即可求解.详解:平均数=(129+136+140+145+146+148+154+158+165+175)÷10=149.6(min),故这组样本数据的平均数超过130,A正确,C错误;因为表中是按从小到大的顺序排列的,一共10名选手,中位数为第五位和第六位的平均数,故中位数是(146+148)÷2=147(min),故B正确,D正确.故选C.点睛:本题考查的是平均数和中位数的定义.要注意,当所给数据有单位时,所求得的平均数和中位数与原数据的单位相同,不要漏单位.3、D【解析】分析:根据频率分布直方图中的数据信息和被调查学生总数为120进行计算即可作出判断.详解:由频率分布直方图可知:一周内用于阅读的时间在8-10小时这组的:频率:组距=0.125,而组距为2,∴一周内用于阅读的时间在8-10小时这组的频率=0.125×2=0.25,又∵被调查学生总数为120人,∴一周内用于阅读的时间在8-10小时这组的频数=120×0.25=30.综上所述,选项D中数据正确.故选D.点睛:本题解题的关键有两点:(1)要看清,纵轴上的数据是“频率:组距”的值,而不是频率;(2)要弄清各自的频数、频率和总数之间的关系.4、B【解析】由概率公式可知摸出黑球的概率为,分析表格数据可知的值总是在0.5左右,据此可求解m值.【详解】解:分析表格数据可知的值总是在0.5左右,则由题意可得,解得m=10,故选择B.【点睛】本题考查了概率公式的应用.5、D【解析】试题分析:在方程两边同乘(x+1)得:x-a=a(x+1),整理得:x(1-a)=2a,当1-a=0时,即a=1,整式方程无解,当x+1=0,即x=-1时,分式方程无解,把x=-1代入x(1-a)=2a得:-(1-a)=2a,解得:a=-1,故选D.点睛:本题考查了分式方程的解,解决本题的关键是熟记分式方程无解的条件.6、A【解析】根据只有符号不同的两数互为相反数,可直接判断.【详解】-2与2互为相反数,故正确;2与2相等,符号相同,故不是相反数;3与13互为倒数,故不正确;3与3相同,故不是相反数.故选:A.【点睛】此题主要考查了相反数,关键是观察特点是否只有符号不同,比较简单.7、A【解析】连接OT、OC,可求得∠COM=30°,作CH⊥AP,垂足为H,则CH=1,于是,S阴影=S△AOC+S扇形OCB,代入可得结论.【详解】连接OT、OC,∵PT切⊙O于点T,∴∠OTP=90°,∵∠P=20°,∴∠POT=70°,∵M是OP的中点,∴TM=OM=PM,∴∠MTO=∠POT=70°,∵OT=OC,∴∠MTO=∠OCT=70°,∴∠OCT=180°-2×70°=40°,∴∠COM=30°,作CH ⊥AP ,垂足为H ,则CH=12OC=1, S 阴影=S △AOC +S 扇形OCB =12OA•CH+2302360π⨯=1+3π,故选A. 【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.也考查了等腰三角形的判定与性质和含30度的直角三角形三边的关系. 8、B 【解析】直接利用同底数幂的除法运算法则以及合并同类项法则、积的乘方运算法则分别化简得出答案. 【详解】A 、m 3•m 2=m 5,故此选项错误;B 、m 5÷m 3=m 2(m≠0),故此选项正确;C 、(m -2)3=m -6,故此选项错误;D 、m 4-m 2,无法计算,故此选项错误; 故选:B . 【点睛】此题主要考查了同底数幂的除法运算以及合并同类项法则、积的乘方运算,正确掌握运算法则是解题关键. 9、D 【解析】根据平行线分线段成比例定理及相似三角形的判定与性质进行分析可得出结论. 【详解】由DE ∥BC ,可得△ADE ∽△ABC ,并可得:AD AE DB EC =,AB ACAD AE =,AC EC AB DB=,故A ,B ,C 正确;D 错误; 故选D . 【点睛】考点:1.平行线分线段成比例;2.相似三角形的判定与性质. 10、D【解析】先对原分式进行化简,再寻找化简结果与已知之间的关系即可得出答案. 【详解】22()()=b a a b b a b a b a a a baa a -++-÷⨯=-+ 2ab -=()2b a a b ∴-=--=-故选:D . 【点睛】本题主要考查分式的化简求值,掌握分式的基本性质是解题的关键.二、填空题(共7小题,每小题3分,满分21分) 11、20 【解析】先求出半径为30cm 且圆心角为240°的扇形纸片的弧长,再利用底面周长=展开图的弧长可得. 【详解】24030180π⨯=40π.设这个圆锥形纸帽的底面半径为r . 根据题意,得40π=2πr , 解得r=20cm . 故答案是:20. 【点睛】解答本题的关键是有确定底面周长=展开图的弧长这个等量关系,然后由扇形的弧长公式和圆的周长公式求值. 12、②③. 【解析】试题解析:①∵∠ADE=∠B ,∠DAE=∠BAD , ∴△ADE ∽△ABD ; 故①错误;②作AG ⊥BC 于G ,∵∠ADE=∠B=α,tan∠α=,∴,∴,∴cosα=,∵AB=AC=15,∴BG=1,∴BC=24,∵CD=9,∴BD=15,∴AC=BD.∵∠ADE+∠BDE=∠C+∠DAC,∠ADE=∠C=α,∴∠EDB=∠DAC,在△ACD与△DBE中,,∴△ACD≌△BDE(ASA).故②正确;③当∠BED=90°时,由①可知:△ADE∽△ABD,∴∠ADB=∠AED,∵∠BED=90°,∴∠ADB=90°,即AD⊥BC,∵AB=AC,∴BD=CD,∴∠ADE=∠B=α且tan∠α=,AB=15,∴∴BD=1.当∠BDE=90°时,易证△BDE∽△CAD,∵∠BDE=90°,∴∠CAD=90°,∵∠C=α且cosα=,AC=15,∴cosC=,∴CD=.∵BC=24,∴BD=24-=即当△DCE为直角三角形时,BD=1或.故③正确;④易证得△BDE∽△CAD,由②可知BC=24,设CD=y,BE=x,∴,∴,整理得:y2-24y+144=144-15x,即(y-1)2=144-15x,∴0<x≤,∴0<BE≤.故④错误.故正确的结论为:②③.考点:1.相似三角形的判定与性质;2.全等三角形的判定与性质.13、3【解析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,据此即可求得正多边形的边数,进而求解.【详解】正多边形的边数是:360°÷60°=6. 正六边形的边长为2cm ,由于正六边形可分成六个全等的等边三角形,且等边三角形的边长与正六边形的边长相等, 所以正六边形的面积2216sin 602=63cm 2=⨯⨯︒⨯. 故答案是:63【点睛】本题考查了正多边形的外角和以及正多边形的计算,正六边形可分成六个全等的等边三角形,转化为等边三角形的计算.14、8π﹣3【解析】连接EF 、OC 交于点H ,根据正切的概念求出FH ,根据菱形的面积公式求出菱形FOEC 的面积,根据扇形面积公式求出扇形OAB 的面积,计算即可.【详解】连接EF 、OC 交于点H ,则3∴FH=OH×tan30°=2,∴菱形FOEC 的面积=12×33 扇形OAB 的面积=(26043360π⨯=8π,则阴影部分的面积为8π﹣83,故答案为8π﹣83.【点睛】本题考查了扇形面积的计算、菱形的性质,熟练掌握扇形的面积公式、菱形的性质、灵活运用锐角三角函数的定义是解题的关键.15、8【解析】解:设边数为n,由题意得,180(n-2)=360 3解得n=8.所以这个多边形的边数是8.16、【解析】根据垂径定理求得然后由圆周角定理知∠DOE=60°,然后通过解直角三角形求得线段OD、OE的长度,最后将相关线段的长度代入S阴影=S扇形ODB-S△DOE+S△BEC.【详解】如图,假设线段CD、AB交于点E,∵AB是O的直径,弦CD⊥AB,∴又∵∴∴∴S 阴影=S 扇形ODB −S △DOE +S △BEC故答案为:.【点睛】考查圆周角定理,垂径定理,扇形面积的计算,熟练掌握扇形的面积公式是解题的关键.17、11π﹣6334. 【解析】阴影部分的面积=扇形ECF 的面积-△ACD 的面积-△OCM 的面积-扇形AOM 的面积-弓形AN 的面积.【详解】解:连接OM ,ON .∴OM =3,OC =6,∴30ACM ∠=, ∴33CD AB ==,∴扇形ECF 的面积2120π927π360⋅==; △ACD 的面积2732AC CD =⨯÷= 扇形AOM 的面积2120π33π360⋅==; 弓形AN 的面积2120π31393333π36022⋅=-⨯⨯=-△OCM 的面积132=⨯⨯= ∴阴影部分的面积=扇形ECF 的面积−△ACD 的面积−△OCM 的面积−扇形AOM 的面积−弓形AN 的面积2(21π.4=-故答案为21π4-. 【点睛】考查不规则图形的面积的计算,掌握扇形的面积公式是解题的关键.三、解答题(共7小题,满分69分)18、(1)甲服装的进价为300元、乙服装的进价为1元.(2)每件乙服装进价的平均增长率为10%;(3)乙服装的定价至少为296元.【解析】(1)若设甲服装的成本为x 元,则乙服装的成本为(500-x )元.根据公式:总利润=总售价-总进价,即可列出方程.(2)利用乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,利用增长率公式求出即可;(3)利用每件乙服装进价按平均增长率再次上调,再次上调价格为:242×(1+10%)=266.2(元),进而利用不等式求出即可.【详解】(1)设甲服装的成本为x 元,则乙服装的成本为(500-x )元,根据题意得:90%•(1+30%)x+90%•(1+20%)(500-x )-500=67,解得:x=300,500-x=1.答:甲服装的成本为300元、乙服装的成本为1元.(2)∵乙服装的成本为1元,经过两次上调价格后,使乙服装每件的进价达到242元,∴设每件乙服装进价的平均增长率为y ,则 22001y 242()+=, 解得:1y =0.1=10%,2y =-2.1(不合题意,舍去).答:每件乙服装进价的平均增长率为10%;(3)∵每件乙服装进价按平均增长率再次上调∴再次上调价格为:242×(1+10%)=266.2(元)∵商场仍按9折出售,设定价为a元时0.9a-266.2>0解得:a>2662295.8 9故定价至少为296元时,乙服装才可获得利润.考点:一元二次方程的应用,不等式的应用,打折销售问题19、(I)(10,4)或(6,4)(II)C′(6,23)(III)①C′(8,4)②C′(245,﹣125)【解析】(I)如图①,当OB∥AC′,四边形OBC′A是平行四边形,只要证明B、C′、D′共线即可解决问题,再根据对称性确定D″的坐标;(II)如图②,当α=60°时,作C′K⊥AC于K.解直角三角形求出OK,C′K即可解决问题;(III)分两种情形分别求解即可解决问题;【详解】解:(I)如图①,∵A(8,0),B(0,4),∴OB=4,OA=8,∵AC=OC=AC′=4,∴当OB∥AC′,四边形OBC′A是平行四边形,∵∠AOB=90°,∴四边形OBC′A是矩形,∴∠AC′B=90°,∵∠AC′D′=90°,∴B、C′、D′共线,∴BD′∥OA,∵AC=CO,BD=AD,∴CD=C′D′=12OB=2,∴D′(10,4),根据对称性可知,点D″在线段BC′上时,D″(6,4)也满足条件.综上所述,满足条件的点D坐标(10,4)或(6,4).(II)如图②,当α=60°时,作C′K⊥AC于K.在Rt△AC′K中,∵∠KAC′=60°,AC′=4,∴AK=2,C′K=23,∴OK=6,∴C′(6,23).(III)①如图③中,当B、C′、D′共线时,由(Ⅰ)可知,C′(8,4).②如图④中,当B、C′、D′共线时,BD′交OA于F,易证△BOF≌△AC′F,∴OF=FC′,设OF=FC′=x ,在Rt △ABC′中,BC′=22AB AC -'=8,在RT △BOF 中,OB=4,OF=x ,BF=8﹣x ,∴(8﹣x )2=42+x 2,解得x=3,∴OF=F C′=3,BF=5,作C′K ⊥OA 于K , ∵OB ∥KC′,∴KC OB '=FK OF =FC BF', ∴4KC '=3FK =35, ∴KC′=125,KF=95, ∴OK=245, ∴C′(245,﹣125). 【点睛】本题考查三角形综合题、旋转变换、矩形的判定和性质、平行线的性质、勾股定理等知识,解题的关键是灵活应用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.20、y=2x+1.【解析】直接把点A (﹣1,1),B (1,5)代入一次函数y =kx +b (k ≠0),求出k 、b 的值即可.【详解】∵一次函数y =kx +b (k ≠0)的图象经过点A (﹣1,1)和点B (1,5),∴15k b k b -+=⎧⎨+=⎩,解得:23k b =⎧⎨=⎩. 故一次函数的解析式为y =2x +1.【点睛】本题考查了待定系数法求一次函数的解析式,熟知待定系数法求一次函数解析式一般步骤是解答此题的关键.21、(1)y=12x 2﹣32x ﹣2;(2)9;(3)Q 坐标为(﹣121655,)或(4﹣55,)或(2,1)或(4+5,﹣5). 【解析】试题分析:()1把点()()1040A B -,,,代入抛物线22y ax bx =+-,求出,a b 的值即可.()2先用待定系数法求出直线BE 的解析式,进而求得直线AD 的解析式,设11,22G m m ⎛⎫-- ⎪⎝⎭,则213,222P m m m ⎛⎫-- ⎪⎝⎭,表示出PG ,用配方法求出它的最大值, 联立方程2132221122y x xy x ⎧=--⎪⎪⎨⎪=--⎪⎩,求出点D 的坐标,ADP S最大值=12D A PG x x ⨯⨯-,进而计算四边形EAPD 面积的最大值;()3分两种情况进行讨论即可.试题解析:(1)∵()()1040A B -,,,在抛物线22y ax bx =+-上,∴2016420,a b a b --=⎧⎨+-=⎩ 解得123.2a b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴抛物线的解析式为213222y x x .=--(2)过点P 作PG x ⊥轴交AD 于点G ,∵()()4002B E ,,,,∴直线BE 的解析式为122y x =-+, ∵AD ∥BE ,设直线AD 的解析式为12y x b =-+, 代入()10A ,-,可得12b =-, ∴直线AD 的解析式为1122y x ,=-- 设11,22G m m ⎛⎫-- ⎪⎝⎭,则213,222P m m m ⎛⎫-- ⎪⎝⎭, 则()221113*********PG m m m m ⎛⎫⎛⎫=-----=--+ ⎪ ⎪⎝⎭⎝⎭, ∴当x =1时,PG 的值最大,最大值为2, 由2132221122y x x y x ⎧=--⎪⎪⎨⎪=--⎪⎩, 解得10,x y =-⎧⎨=⎩ 或32.x y =⎧⎨=-⎩ ∴()3,2D -,∴ADP S 最大值=1124422D A PG x x ⨯⨯-=⨯⨯=, 15252ADB S =⨯⨯=, ∵AD ∥BE ,∴5ADE ADB S S ==,∴S 四边形APDE 最大=S △ADP 最大+459ADB S .=+=(3)①如图3﹣1中,当OQ OB =时,作OT BE ⊥于T .∵42OB OE ==,, ∴4525525OE OB BE OT BE ⋅====, ∴855BT TQ == ∴1655BQ = 可得1216,55Q ⎛⎫- ⎪⎝⎭; ②如图3﹣2中,当1BO BQ =时,185454.Q ⎛⎝⎭, 当22OQ BQ =时,()221Q ,,当3BO BQ =时,Q 385454.⎛ ⎝⎭ 综上所述,满足条件点点Q 坐标为1216,55⎛⎫- ⎪⎝⎭或85454,⎛ ⎝⎭或()21,或85454.⎛+ ⎝⎭22、 (1)见解析;(1)13【解析】试题分析:先用列表法写出点Q 的所有可能坐标,再根据概率公式求解即可.(1)由题意得1 1(1)共有6种等可能情况,符合条件的有1种P (点Q 在直线y=−x−1上)=13. 考点:概率公式点评:解题的关键是熟练掌握概率公式:概率=所求情况数与总情况数的比值.23、(1)32;(2)见解析;(3)72;(4)当01x <<时,y 随x 的增大而减小. 【解析】(1)根据表中x ,y 的对应值即可得到结论;(2)按照自变量由小到大,利用平滑的曲线连结各点即可;(3)在所画的函数图象上找出自变量为7所对应的函数值即可;(4)利用函数图象的图象求解.【详解】解:(1)当自变量是﹣2时,函数值是32; 故答案为:32. (2)该函数的图象如图所示;(3)当2x =时所对应的点 如图所示,且72m =; 故答案为:72; (4)函数的性质:当01x <<时,y 随x 的增大而减小.故答案为:当01x <<时,y 随x 的增大而减小.【点睛】本题考查了函数值,函数的定义:对于函数概念的理解:①有两个变量;②一个变量的数值随着另一个变量的数值的变化而发生变化;③对于自变量的每一个确定的值,函数值有且只有一个值与之对应.24、(13(1)-1【解析】(1)先根据根据绝对值的意义、立方根的意义、特殊角的三角函数值、零指数幂、负整数指数幂的意义化简,然后按照实数的运算法则计算即可;(1)把括号里通分,把22121x x x -++的分子、分母分解因式约分,然后把除法转化为乘法计算;然后求出不等式组的整数解,选一个使分式有意义的值代入计算即可.【详解】(1)原式=1+3×3﹣5 3﹣5 31;(1)原式=()()()()()2211111x x x x x x x x x x ⎡⎤+-+-÷⎢⎥+++⎢⎥⎣⎦=()2111x x x x x --÷++ =111x x x x -++- =﹣1x x -,解不等式组23241xx-≤⎧⎨-<⎩得:-1≤x52<则不等式组的整数解为﹣1、0、1、1,∵x(x+1)≠0且x﹣1≠0,∴x≠0且x≠±1,∴x=1,则原式=﹣221-=﹣1.【点睛】本题考查了实数的运算,分式的化简求值,不等式组的解法.熟练掌握各知识点是解答本题的关键,本题的易错点是容易忽视分式有意义的条件.。

专题 全等三角形六种基本模型(学生版)

专题  全等三角形六种基本模型(学生版)

专题全等三角形六种基本模型通用的解题思路:模型一:一线三等角模型一线三等角指的是有三个等角的顶点在同一条直线上构成的相似图形,这个角可以是直角,也可以是锐角或钝角。

或叫“K字模型”。

三直角相似可以看着是“一线三等角”中当角为直角时的特例,三直角型相似通常是以矩形或者正方形形为背景,或者在一条直线上有一个顶点在该直线上移动或者旋转的直角,几种常见的基本图形如下:当题目的条件中只有一个或者两个直角时,就要考虑通过添加辅助线构造完整的三直角型相似,这往往是很多压轴题的突破口,进而将三角型的条件进行转化。

一般类型:基本类型:同侧“一线三等角”异侧“一线三等角”模型二:手拉手模型--旋转型全等一、等边三角形手拉手-出全等二、等腰直角三角形手拉手-出全等两个共直角顶点的等腰直角三角形,绕点C旋转过程中(B、C、D不共线)始终有:①△BCD≌△ACE;②BD⊥AE(位置关系)且BD=AE(数量关系);③FC平分∠BFE;题型三:倍长中线模型构造全等三角形倍长中线是指加倍延长中线,使所延长部分与中线相等,往往需要连接相应的顶点,则对应角对应边都对应相等。

常用于构造全等三角形。

中线倍长法多用于构造全等三角形和证明边之间的关系(通常用“SAS”证明) (注:一般都是原题已经有中线时用)。

三角形一边的中线(与中点有关的线段),或中点,通常考虑倍长中线或类中线,构造全等三角形.把该中线延长一倍,证明三角形全等,从而运用全等三角形的有关知识来解决问题的方法.主要思路:倍长中线(线段)造全等在△ABC中AD是BC边中线延长AD到E,使DE=AD,连接BE作CF⊥AD于F,作BE⊥AD的延长线于E连接BE延长MD到N,使DN=MD,连接CD题型四:平行线+线段中点构造全等模型题型五:等腰三角形中的半角模型过等腰三角形顶点两条射线,使两条射线的夹角为等腰三角形顶角的一半这样的模型称为半角模型。

解题思路一般是将半角两边的三角形通过旋转到一边合并成新的三角形,从而进行等量代换,然后证明与半角形成的三角形全等,再通过全等的性质得到线段之间的数量关系。

2021-2022陕西中考数学复习课件——第三单元第21课时 抛物线与三角形全等、相似(含位似)

2021-2022陕西中考数学复习课件——第三单元第21课时 抛物线与三角形全等、相似(含位似)

c 6
c 6
∴抛物线L的表达式为y=-x2-5x-6;(2分)
第2题图
第21课时 抛物线与三角形全等、相似(含位似)
(2)点P在抛物线L′上,且位于第一象限,过点P作PD⊥y轴,垂足为D.若 △POD与△AOB相似,求符合条件的点P的坐标.
(2)∵点A、B在L′上的对应点分别为A′(3,0)、B′(0,6), ∴设抛物线L′的表达式y=x2+bx+6. 将A′(3,0)代入y=x2+bx+6,得b=-5. ∴抛物线L′的表达式为y=x2-5x+6.(4分) ∵A(-3,0),B(0,-6), ∴AO=3,OB=6.
第21课时 抛物线与三角形全等、相似(含位似)
对接中考 1. (2020陕西24题10分)如图,抛物线y=x2+bx+c经过点(3,12)和(-2,-3),与
两坐标轴的交点分别为A,B,C,它的对称轴为直线l.
第1题图
第21课时 抛物线与三角形全等、相似(含位似)
(1)求该抛物线的表达式;
解:(1)由题意,12 9 3b c 解得 b 2
数学
第21课时 抛物线与三角形全等、相似(含位似)
第21课时 抛物线与三角形全等、相似 (含位似)
第21课时 抛物线与三角形全等、相似(含位似)
小题破方法
1.如图,在△ABC中,∠B=90°,点M为直线l外一点,连接MC,∠ACM=90°,
在直线l上找一点P,使得△MCP与△ABC相似,请在图中作图画出所有符合要求
第2题图
第21课时 抛物线与三角形全等、相似(含位似)
设P(m,m2-5m+6)(m>0).
∵PD⊥y轴,
∴点D的坐标为(0,m2-5m+6).
∴PD=m,OD=m2-5m+6.

抛物线中的等腰三角形问题

抛物线中的等腰三角形问题

抛物线中的等腰三角形问题
在数学中,抛物线广泛被研究和探讨。

而抛物线中的等腰
三角形问题是其中一个经典的问题。

抛物线是一个二次方程的图像,具有对称性质。

而等腰三
角形是指三边长度相等的三角形。

那么,抛物线中是否存在等腰三角形呢?
答案是肯定的。

事实上,抛物线上的任何一点都可以构成
一个等腰三角形。

这是因为抛物线的性质决定了在对称位置上的两个点关于焦点的距离相等,从而满足等腰三角形的定义。

具体来说,我们可以选择抛物线上的一个点P,并且连接P 点与抛物线的焦点F。

然后,从P点向下垂直引一条垂线,与
抛物线的切线交于点Q。

这样,三角形PFQ就是一个等腰三
角形,因为PF和QF的长度相等。

值得注意的是,抛物线上的每个点都可以成为等腰三角形
的顶点,因此存在无数个等腰三角形。

抛物线中的等腰三角形问题不仅有理论上的意义,而且在
实际应用中也有一定的应用。

例如,在物体抛出运动中,抛物线的形状对于确定物体的落点和轨迹起到重要作用。

对于特定起始条件,等腰三角形在抛物线上能够提供更多的信息。

总结而言,抛物线中存在无数个等腰三角形,这是由抛物
线的对称性质所决定的。

这个问题不仅仅是数学理论上的问题,也有着实际应用中的意义。

通过研究抛物线中的等腰三角形,我们可以更深入地了解抛物线的性质和特点。

抛物线与直角三角形结合的解题方法

抛物线与直角三角形结合的解题方法

抛物线与直角三角形结合的解题方法在数学中,抛物线和直角三角形是两个常见且重要的概念。

它们在解决实际问题和理论推导中都扮演着重要的角色。

本文将探讨如何将抛物线与直角三角形结合起来,以更全面地解决一些数学问题。

一、基本概念1. 抛物线抛物线是一种特殊的曲线,其定义可以是平面内到定点和一条定直线的距离相等的点的轨迹。

抛物线在物理学、工程学和数学等领域都有着广泛的应用。

2. 直角三角形直角三角形是一种特殊的三角形,其中包含一个90度的直角。

直角三角形的性质和定理在几何学中具有重要意义,也是解决三角函数和特殊角度问题的基础。

二、抛物线与直角三角形的关系在实际问题中,抛物线与直角三角形常常会相互联系,特别是在物体的抛体运动和轨迹分析中。

当我们需要分析一个抛体运动的轨迹时,通常会涉及到抛物线的方程和直角三角形的性质。

当我们需要求解一个物体从抛出到落地的时间、速度和位置等问题时,我们可以通过解析几何的方法,将抛物线的轨迹和直角三角形的性质结合起来,从而得到更加全面和深入的解答。

三、抛物线与直角三角形结合的解题方法1. 利用抛物线方程构建直角三角形在解决与抛物线和直角三角形相关的问题时,可以先利用抛物线的方程构建出相关的直角三角形。

当我们需要分析抛体运动的轨迹时,可以通过抛物线的方程构建出相关的直角三角形,从而推导出物体的运动规律和轨迹特性。

2. 利用直角三角形的性质求解抛物线方程另一种常见的方法是利用直角三角形的性质来求解抛物线的方程。

在一些特殊的问题中,可以通过构建直角三角形、利用三角函数和三角恒等式等方法,从而简化抛物线方程的求解过程,使问题得到更加清晰和简化的解答。

四、个人观点和总结在数学问题的解决过程中,抛物线与直角三角形的结合是一种常见且有效的方法。

通过将抛物线的特性和方程与直角三角形的性质相结合,不仅可以更全面地理解和分析问题,也可以从不同角度和方法解决问题,使解题过程更灵活和丰富。

抛物线与直角三角形的结合在解决实际问题和理论推导中具有重要的意义。

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)

2019-2020年中考数学模拟试卷(四)(I)一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a63.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣14.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和35.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+157.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.310.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为.13.不等式组的整数解是.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是;中位数是;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为;②设直线y=9与该抛物线的交点为A、B,则|AB|=;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为;②k的取值范围是;当k为整数时,b=.23.如图,在平面直角坐标系中,Rt△ABO的斜边OA在x轴上,点B在第一象限内,AO=4,∠BOA=30°.点C(t,0)是x轴正半轴上一动点(t>0且t≠4):(1)点B的坐标为;过点O、B、A的抛物线解析式为;(2)作△OBC的外接圆⊙P,当圆心P在(1)中抛物线上时,求点C和圆心P的坐标;(3)设△OBC的外接圆⊙P与y轴的另一交点为D,请将OD用含t的代数式表示出来,并求CD的最小值.xx年浙江省杭州市桐庐县三校共同体中考数学模拟试卷(四)参考答案与试题解析一.仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项前的字母在答题卡中相应的方框内涂黑.注意可以用多种不同的方法来选取正确答案.1.下列图形中,既是轴对称图形又是中心对称图形的是()A.正五边形B.正方形C.平行四边形D.正三角形【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形,不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、不是轴对称图形,是中心对称图形.故错误;D、是轴对称图形,不是中心对称图形.故错误.故选B.【点评】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.下列各式中,计算结果为a6的是()A.a3+a3B.a7﹣a C.a2•a3 D.a12÷a6【考点】同底数幂的除法;合并同类项;同底数幂的乘法.【专题】计算题.【分析】A、原式合并得到结果,即可做出判断;B、原式不能合并,错误;C、原式利用同底数幂的乘法法则计算得到结果,即可做出判断;D、原式利用同底数幂的除法法则计算得到结果,即可做出判断.【解答】解:A、原式=2a3,错误;B、原式不能合并,错误;C、原式=a5,错误;D、原式=a6,正确.故选D.【点评】此题考查了同底数幂的乘除法,以及合并同类项,熟练掌握运算法则是解本题的关键.3.用配方法解方程:x2﹣4x+1=0,下列配方正确的是()A.(x﹣2)2=3 B.(x+2)2﹣3=0 C.(x﹣2)2=0 D.x(x﹣4)=﹣1【考点】解一元二次方程-配方法.【分析】把常数项1移项后,应该在左右两边同时加上一次项系数﹣4的一半的平方.【解答】解:x2﹣4x+1=0,移项,得x2﹣4x=﹣1,配方,得x2﹣4x+4=﹣1+4,(x﹣2)2=3.故选:A.【点评】本题考查了用配方法解一元二次方程的应用,解此题的关键是能正确配方,即方程两边都加上一次项系数一半的平方(当二次项系数为1时).4.已知一组数据x1,x2,x3的平均数和方差分别为5和2,则数据x1+1,x2+1,x3+1的平均数和方差分别是()A.5和2 B.6和2 C.5和3 D.6和3【考点】方差;算术平均数.【专题】计算题.【分析】由于数据x1+1,x2+1,x3+1的每个数比原数据大1,则新数据的平均数比原数据的平均数大1;由于新数据的波动性没有变,所以新数据的方差与原数据的方差相同.【解答】解:∵数据x1,x2,x3的平均数为5,∴数据x1+1,x2+1,x3+1的平均数为6,∵数据x1,x2,x3的方差为2,∴数据x1+1,x2+1,x3+1的方差为2.故选B.【点评】本题考查了方差:方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.也考查了算术平均数.5.若二次函数y=ax2﹣2x+a2﹣4(a为常数)的图象经过原点,则该图象的对称轴是直线()A.x=1或x=﹣1 B.x=1 C.x=或x=﹣D.x=【考点】二次函数的性质.【分析】根据图象可以知道图象经过点(0,0),因而把这个点代入记得到一个关于a的方程,就可以求出a的值,从而根据对称轴方程求得对称轴即可.【解答】解:把原点(0,0)代入抛物线解析式,得a2﹣4=0,解得a=±2,∴二次函数y=2x2﹣2x或二次函数y=﹣2x2﹣2x,∴对称轴为:x=﹣=±,故选C.【点评】本题考查了二次函数图象上的点的坐标,根据对于函数图象的描述能够理解函数的解析式的特点,是解决本题的关键.6.如图,从位于六和塔的观测点C测得两建筑物底部A,B的俯角分别为45°和60°.若此观测点离地面的高度CD为30米,A,B两点在CD的两侧,且点A,D,B在同一水平直线上,则A,B之间的距离为()米.A.30+10 B.40 C.45 D.30+15【考点】解直角三角形的应用-仰角俯角问题.【分析】在Rt△ACD和Rt△CDB中分别求出AD,BD的长度,然后根据AB=AD+BD即可求出AB的值.【解答】解:由题意得,∠ECA=45°,∠FCB=60°,∵EF∥AB,∴∠CAD=∠ECA=45°,∠CBD=∠FCB=60°,∵∠ACD=∠CAD=45°,在Rt△CDB中,tan∠CBD=,∴BD==10米,∵AD=CD=30米,∴AB=AD+BD=30+10米,故选A.【点评】本题考查了解直角三角形的应用,解答本题的关键是根据俯角构造直角三角形,并利用解直角三角形的知识解直角的三角形.7.如图,在梯形ABCD中,已知AD∥BC,梯形各边长为:AB=6,BC=9,CD=4,DA=3,分别以AB、CD为直径作圆,则这两圆的位置关系是()A.内切 B.相交 C.外离 D.外切【考点】圆与圆的位置关系.【分析】求得梯形的中位线为两圆的圆心距,AB和CD的一半为两圆的半径,利用半径之和和两圆的圆心距的大小关系求解.【解答】解:∵AD=3,BC=9,∴两圆的圆心距为=6,∵AB=6,CD=4,∴两圆的半径分别为3和2,∵2+3<6,∴两圆外离,故选C.【点评】本题考查了圆与圆的位置关系,解题的关键是分别求得两圆的圆心距和两圆的半径,难度不大.8.把5个大小、质地相同的球,分别标号为1,1,2,3,4,放入袋中,随机取出一个小球后不放回,再随机地取出一个小球,则第二次取出小球标号大于第一次取出小球标号的概率是()A. B. C. D.【考点】列表法与树状图法.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与第二次取出小球标号大于第一次取出小球标号的情况,再利用概率公式即可求得答案.【解答】解:画树状图得:∵共有20种等可能的结果,第二次取出小球标号大于第一次取出小球标号的有9种情况,∴第二次取出小球标号大于第一次取出小球标号的概率为:.故选D.【点评】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验;注意概率=所求情况数与总情况数之比.9.如图,正方形ABCD中,点O是对角线AC的中点,点P是线段AO上的动点(不与点A、O重合),连结PB,作PE⊥PB交CD于点E.以下结论:①△PBC≌△PDC;②∠PDE=∠PED;③PC﹣PA=CE.其中正确的有()个.A.0 B.1 C.2 D.3【考点】全等三角形的判定与性质;正方形的性质.【分析】由正方形的性质得出BC=DC,∠BCP=∠DCP,由SAS即可证明△PBC≌△PDC,得出①正确;由三角形全等得出∠PBC=∠PDE,PB=PD,再证出∠PBC=∠PED,得出∠PDE=∠PED,②正确;证出PD=PE,得出DF=EF,作PH⊥AD于H,PF⊥CD于F,由等腰直角三角形得出PA=EF,PC=CF,即可得出③正确.【解答】解:∵四边形ABCD是正方形,∴BC=DC,∠BCP=∠DCP,在△PBC和△PDC中,,∴△PBC≌△PDC(SAS)∴①正确;∴∠PBC=∠PDE,PB=PD,∵PB⊥PE,∠BCD=90°,∴∠PBC+∠PEC=360°﹣∠BPE﹣∠BCE=180°∵∠PEC+∠PED=180°,∴∠PBC=∠PED,∴∠PDE=∠PED,∴②正确;∴PD=PE,∵PF⊥CD,∴DF=EF;作PH⊥AD于点H,PF⊥CD于F,如图所示:则PA=PH=DF=EF,PC=CF,∴PC﹣PA=(CF﹣EF),即PC﹣PA=CE,∴③正确;正确的个数有3个;故选:D.【点评】本题考查了正方形的性质、全等三角形的判定与性质、等腰三角形的判定与性质、三角函数;本题有一定难度,特别是③中,需要作辅助线运用三角函数才能得出结果.10.将直线l1:y=x和直线l2:y=2x+1及x轴围成的三角形面积记为S1,直线l2:y=2x+1和直线l3:y=3x+2及x轴围成的三角形面积记为S2,…,以此类推,直线l n:y=nx+n﹣1和直线l n+1:y=(n+1)x+n及x轴围成的三角形面积记为S n,记W=S1+S2+…+S n,当n越来越大时,你猜想W最接近的常数是()A. B. C. D.【考点】两条直线相交或平行问题.【专题】规律型.【分析】根据题意列出方程组,解出x,y的值,可知无论k取何值,直线l1与l2的交点均为定点,再求出y=nx+n﹣1与x轴的交点和y=(n+1)x+n与x轴的交点坐标,再根据三角形面积公式求出S n,根据公式可求出S1、s2、s3、…,然后可求得w的表达式,从而可猜想出W最接近的常数的值.【解答】解:将y=nx+n﹣1和y=(n+1)x+n联立得:解得:∴无论k取何值,直线l n和直线l n+1均交于定点(﹣1,﹣1)k≠1时l1与l2的图象的示意图,png_iVBORw0KGgoAAAANSUhEUgAAAIgAAACOCAYAAADq40BPAAAAAXNSR0IArs4c6QAAAARnQU1BAACxjwv 8YQUAAAAJcEhZcwAADsMAAA7DAcdvqGQAABBCSURBVHhe7Z1PiFxFHsdnBOPFfxglZhEF9SB6UONhsxAVREIw6 Rkjih5EPIiKMf7Zne54cGMWxU1Q0IPrdGcOccGDYMCLYDLtwYOHkLB4UbKZGSGsB0UvBg8KyUxtfavq169edf1ev+7M 9NSrVx9s0+91T09Pv0//6le/qldvQkTEysqKubd2qN8h/2tOTYiJiWmxKJbNIxl4F2v/TsZDXILgttqSLPe/Hn7HytJxMTHVHIuU 60lEgvR/k7OvsX5sNQWaPzwjmp3jvd8RqyZRCOI/OB5hVoVlJRmamPklsyv3u9bq964P9clBCh46evSo+PLLL81WMXiZFZl5 7ELzondZZHIU/LpKEZUgPPpbn8Ns/vHHH+Kqq64S1113nbhw4YLe6bBjxw7x8ccfmy0hFudnxXSzY7bipvKC2Ad+ZSU7wK 0GehkTOk+Q4Fs/JbezZkFz8OBBcdttt4mbbrpJtNttszfjt9/Oicsuu0z8+uuvZo8Qs62GmJ1fMFs2cTUvIJ4I4onpx2QiOdXKvulILC EISfXTTz+Ja6+9Vuzdu1c8++yz4vrrr8+JAD755BPx4IMPmi0t2s7JXaZ7q4VYFgtietIRsqi5qxDRNjE4PmgKJqb2mR1CdDqz+r 7hySefFK+99pp444031O25554Te/bsMY9q8Jz33nvPbOnXhHTdjpYNdDttcQbNGBOlbAaJE5pYcSWp5t8e38+rWgVA3aLdXd T35UE4eeo/MmL8STYhv/UE+eWXX1REOX36tHoecpKrr75anD37P7UNEIXsSJH9Up3ntPdNsYLg9csSiibRCNL7QM0d/KO KWRMN1Rw0m1oU4s9/2Srm5ubUfRIEvPPOOyopBV999ZW444471H0O+0AigjSb+ShFQLZbb71VfPPNN2aPQyhGOETbx CgWtSDtzr7ctxoHfsuWLWYrLwgOJJJWHMhXX31VvP7662p/Bp+IoqlZsBJlm48++kjcf//9ZstGyqvK9lrk0Ki+IJ5vXtaOL6ico NccWKB7S+zfv78nCKDH8I0/ceKEuq/JH0D7V1NlFVGk3Z43ezV4PSTA9mvZuQaV7ftZf2GiFITAwZrvWt1R5rmuIODbb79 VB7UM6PYiL6Fbu3vGPKJ5//33xcMPP2y2NLYg84f/JloeiUOg8oKs9H3LdJVTJagUtgskAnYTQ6A+8vzzz6v79OO9lxnwegrz HHSbN27cqITj2Jcr2xvK/I4xEFEOokXRian8JntDNpGXyifI1q1bxeeff262ymEfU4oQeN2nn35a3feBKKeE1huS9W9WbOJOUk viCoIC2uWXX57LU0aBCnFLS3xh5L/zH+aKeaGRBJG4OQi6v9PT02ZrdF555RXVEyoC+QvVZ0IkCSJxI8iuXbtUt/RiOHv2r BoERBSxsZPTC7J5afTK9prWdFhd3iSIxBYElVXfgR0W5B22dD5oVJjGiIhmo8HWU8ZNEkRiC/LZZ5+Je++9V923v+3DgB4 Lcg/0YIqSTrtsb/8mCJIiSEDYgjzzzDOqi3sxoOaB2gdHTzzGv5mpJEhQkCAos6M4RoN1o3Dy5EmxadOmEXtAWopmY0oJM moEW02SIBLqxaAUjnGYUcEBxXgLDQL64A66vbc1pQUJgSSIBHIcOHBAzQ2ZmZkxe4cHg4AYv1leHv3g9sr2hYW+8ZEE kVATg+jx9ddfm73Dc+edd6oZaDGRBJFAjpdeekn1PLiJy4NA7+euu+4yW/GQBJFAkO3bt/fGTNg8wdlP2zQZ6NixY2qb+/ki1 M8M/2NrThJEAkEwq/3TTz81e4aDnwxUAiWFzFkcOUJxJQkiwXTEDRs2qCrqINzogO7sDTfccFG5S8gkQSSPPPKIaiJGAQ Wx3bt3m634SIJIbr/9drFz506zpfHlEe4+lNJRWGMnIkdA7QVBgonmxa5/lE0ykbsUTQaKgdoKQhKg57F582Z1sIehzGSgGKh9 BMHZdA888MDQgmAy0Msvv1w62lSV2guCHggkGUaQH374gZ0MFJswtRbk1KlTqv4BOYYRBHlH/wlVcVILQbhvNaTAy doYqOMEcX8WOUc2GSh+ahNBfJJg7AQrC0EODPmXAZOBDh06ZLbip7ZNDPIInNqAbm7ZJgb1DtQ9fv/9d7MnfmoryAcff CAef/xxdb+sIBhv6XTqsfQUUVtBsMQD5m6g6SkjCCYD3XLLLSrixNZTKaJ2guDgYlDOXndskCD4mXvuuSe3kF1dqGUEcd cdgxxFSao7GShFkMjBumP2aQlFEQRNClYZgiR1pHaC4ICjCopTI4kiQS5qMlAERC8ImgO7SUDdw507ygmCyUCYJ4IE1Uc dmpraRRAMsrllck4QNEONRsNs1ZPaCYKxF4zB2PgEQU8n9slAZaiVINy6Yz5BsI1ktu7USpA333xTDe27QAa7m4v6CBb3j3 0yUBlqJQjWHaNzV2zcCIJVgXwi1ZHaCILJPdy6Y7YgeN5qLCATC7URBJf6ePTRR81WHlsQrA9yMSdwx0ZtBClad4wEcScD+eoc9r5UB4kEdFmvuOIK8fPPP5s9eUgQRJi33nrL7PVDUtRBDlALQTCOsm3bNrPVD+RAUlq3yUBlqIUgmGT87rvvmq1+ 0MVFSb1oXbG6Ep0gbug/f/68igxF645BoGuuuUYN5CXyRCWILy/AWfeD1h278cYb+67GkNBE38Rg3THcOJCfIMKUndVe N6IXpGjdMTQpGPrH5GUkqol+ohYEeQeiA7fq4JEjR9SqytTNTfQTrSDIR9Bz4ZZnQPSgyUC2IHWpb5Ql6giC2gc3lxRdWrq 6ZYogPNEKgmvUYnDOXXcMEQIDdmh6aDJQEoSncoKgAaBGoKgxwLgLxl98TQbK6fbAXRKEp8IRpHi5awiAEVyXc+fO 9U0GSoLwVC+ClMgh0YSgefHN6cBQPob0bZIgPJUQRF2ZelJfk5ZuRdd5w6wxzB5z4SYDJUF4whfERIyZ6UyKxe6/lCTd79 VmHxiZ9Q3bYz9Oe3BJgvAELwiSTFxb1r7438piVwnSdzFiA3oo7oWMi1YGSoLwBCHIoLQCF/9T15Y1T0STw11rltYdc8Ep DJwESZA86ktpkr11F2RZHXX9f45uR1/8j25c5AA4a85uRvCHot6BtVC5tdiTIDzBRhB7HyIGSUFXiuQkoXXHbFAPKZoMlA ThCT4HubB4TExMt8wWxFkU01IQXErUrYXQxYztiT90mTDf6Q5EXQRxi4buto8ABclfOwURo3n4C7MlH1o6riKIr5trrztGY OkGms3OfSApgvCEJ4hzDO3mBdFjSuUh/uvKYtUgWncMYKAOi7/4phLastRJkDJRwyYYQdy3jZ4LIsWkEoJul7BXg6R1x+ xEFPlImZWB6hxBcJ3fIoLPQQZB3wh33TEsOLdlyxazVUxdBHGjB2pCiLD43L777juzV0PPrbwgxBNPPKFyEGBPBgL+oGq KbvLGCdL3c/4XWlfoLfkLBf3NMKCDTz+BHh6S+xdeeEFNk7CJQhAIYa87BlHsaOIn+/BGiSDDtuXjI5/k2xS9Y4iBdevxOdI XDUzQh1Pl21NPPdW7KBAKZRjJxbiL+zzuhp7Offfd531s/4Hs3wP79RW63ees/+3vnn16zRO6r967vOG5B8zzfX8LosjNN9+s pkSgnhSFIBi5pQOMyIGZ7Pbj+oP6h7mvPxT6cPAvBMGNnk83kqNKNy2BuS//Nnt7v/kMim62IN1uN44mhtYdQ9KFAbnFR X4qgK9poA8ng/ITPlyHhO8tDnzbzhPsJsauOldeEHvdMTQvo1xkMC+IP7Ej3AQvBEZ+L+YHIcSVV16pBIkuScW8D+QbmA SEPxKX+RiW/giSsXD8w1wdBqPIweanQ2J3c93pEUTlBcEi+5hB9uKLL3onA4Glbjs/uGcdYNwlQXBfNSuG2VZDSpFVbVfE GVXJtacehEL+7Sz3BjX1mJUespicnOwb5HSXBHWptCCIGuixLCwsqNyDwqP6sMwnRuV5bvQXz/NFECVHY8b65LUkusLr L/WHAtVEVpa+UJVnNZ5lRAG9P6kElRPETjIxa/2xxx5TeQd6Kr1H1B19ANutphruX+o96h7Y5T5BqMzvSoVXyAQZ7oNeL zCW9ddO/8qOZal0BMGZcW+//bZKUtGeuuCb054/LnZN7JSNg0smiitI0Yw1HboblnDrTMHbWJaPzXdauegxLJUVBINyaF4e emiHdzIQpgVgmoCaHiDDLFf5RDimGgmgJombNW/LE2QEoTcl/8Xf0mw0WNnLUBlB3AN89OhRcffdd6sLI/smAzWbetQX ggz6gOwIsmzmm/hyFq7pCZV2a59URAp/ic6ZUPjqAYFKdMcqG0GQd+Aackf+3b+0JWXwdOvvdeTzEEQQVB11PPFHkBX xfdaDwXYgfV3fu6C/n/6G1rSeNjGK2JUUBINzqHnQRQZ74FuBpsVqc1HHoO3eh+l8qm4Oonow1rwTmsUWdNOi5O5H7buI N1xJQbBiECYHuZOBKN+w6c41RcuTpOnPTEcSVxCAXENNUJJi4HY8d5IWDobbG4qTSgqCbisGk2x0UUsfVAql+iBbzQy DT5CEpnKCYDmpSy+9VMzOzpo9NuW/1XbUTYLwVE4QjL1s2LDBOxF51LY2CcJTKUFoWYfdu3ebPdKJEr0J9xnYThGk HJUSBIvSYUVkOznNBCloXgY4lAThqYwgKKVDDkQQ7zm2tgQDhFDgOeZ5SRCeygiCA4hVC9GD8YFjTQUidS4NyusoN Tc7ji/9kSYJwlMJQWhloO3bt4u5uTmzNwP1D0iBriw1OVTc6hXJCnKVJAhPJQTBRKC9e/eq5gWy2AebSuO+OgdqI9ygm61 LEoQneEGwMtDGjRvVmXK+dcdo+P2MOG/2ZKCKWmb8IQnCE4wgXBOAQTkcPMw7PfTPg2avBtFjejJrRhTyZdQr+V/O SxKEJ+gIgom0mEqItU19645RnoFmpLQPnicmQXiCFgQX+cFkoBMnTqhzbV0yQfR8MffYD5aGH6xLaIIVBFIgaqB62lt3zDn ilKD6ptRBHm+CmiLIUAQriL0yEM7doDP1XXSSeklOBjXzCzPSS5IE4QlSEJw0jCYFA3K07hh3USBAUwH1DSc3HZZ7+5 +fDx7ZBJskCE9QglBPBisDYc4pQA6CNU7XkiQIT3ARBE0JBCFwWiBWD7IpqoqOQhKEJ8gmhs6QwwCdu+6YzWqJkgTh CUIQ7kAjctBlw1Y7atgkQXiCjCAE1jy1l0NaK5IgPMEKgh4MBudGWc5hWJIgPMEKgq6unazapCR1fAQliH3gsdrNuA5aEoRn3QWxpbDv07pj4yAJwhNkE4Pru+Ck7HGRBOEJJoLgX7pP646NiyQIT5ARhNYdGxdJEJ7gBPnxxx9V99Z75twakQThCUIQ OznFumP2ZdPHQRKEJ8gmZtwkQXiSIJIkCE8SRJIE4UmCSJIgPEkQSRKEJwkiSYLwJEEkSRCeJIgkCcKTBJEkQXiSIJIkCE 8SRJIE4UmCSDhB7DGiupIEkUAOvZh/wiUJIklNDE8SRJIE4UmCSJIgHEL8H6zbXb40OWClAAAAAElFTkSuQmCC6I+B5 LyY572R∴S n=S△ABC===,当n=1时,结论同样成立.∴w=s1+s2+s3+…+s n=+…+)=(1﹣+﹣+…+)=(1﹣)=当n越来越大时,越来越接近与1.∴越来越接近于∴w越来越接近于.【点评】此题考查了一次函数的综合题;解题的关键是一次函数的图象与两坐标轴的交点坐标特点,与x轴的交点的纵坐标为0,与y轴的交点的横坐标为0.二.认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清题目的条件和要填写的内容,尽量完整地填写答案.11.计算×+=4.【考点】实数的运算.【分析】利用二次根式的性质以及三次根式的性质化简求出即可.【解答】解:×+=﹣2=6﹣2=4.故答案为:4.【点评】此题主要考查了二次根式的性质和三次根式的性质等知识,正确化简各数是解题关键.12.已知一个圆柱的侧面展开图是如图所示的矩形,长为6π,宽为4π,那么这个圆柱底面圆的半径为2或3.【考点】几何体的展开图.【分析】分底面周长为4π和6π两种情况讨论,求得底面半径.【解答】解:①底面周长为4π时,圆柱底面圆的半径为4π÷π÷2=2;②底面周长为6π时,圆柱底面圆的半径为6π÷π÷2=1.故答案为:2或3.【点评】考查了圆柱的侧面展开图,注意分长为底面周长和宽为底面周长两种情况讨论求解.13.不等式组的整数解是﹣1、0、1.【考点】一元一次不等式组的整数解.【分析】先求出不等式组中每个不等式的解集,然后求出其公共解集,最后求其整数解即可.【解答】解:,解①得:x>﹣,解②得:x<.则不等式组的解集是:﹣,则不等式组的整数解是:﹣1、0、1.故答案是:﹣1、0、1.【点评】本题考查不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.如图,在边长为4的正三角形ABC中,BD=1,∠BAD=∠CDE,则AE的长为.【考点】相似三角形的判定与性质;等边三角形的性质.【专题】计算题.【分析】先根据等边三角形的性质得∠B=∠C=60°,AB=BC=AC=4,则CD=BC﹣BD=3,再根据有两组角对应相等的两三角形相似可判断△ABD∽△DCE,利用相似比计算出CE=,然后利用AE=AC﹣CE进行计算即可.【解答】解:∵△ABC为边长为4的等边三角形,∴∠B=∠C=60°,AB=BC=AC=4,∴CD=BC﹣BD=4﹣1=3,∵∠BAD=∠CDE,∠B=∠C,∴△ABD∽△DCE,∴=,即=,∴CE=,∴AE=AC﹣CE=4﹣=.故答案为.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形;在利用三角形相似的性质时,通过相似比计算相应边的长.15.已知一个直角三角形的一边长等于另一边长的2倍,那么这个直角三角形中较小锐角的正切值为.【考点】锐角三角函数的定义;勾股定理.【专题】分类讨论.【分析】根据题意,分两种情况:(1)当直角三角形的斜边等于一条直角边的长度的2倍时;(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时;然后根据一个角的正切值的求法,求出这个直角三角形中较小锐角的正切值为多少即可.【解答】解:(1)当直角三角形的斜边等于一条直角边的长度的2倍时,设直角三角形的斜边等于2,则一条直角边的长度等于1,∴另一条直角边的长度是:,∴这个直角三角形中较小锐角的正切值为:1÷.(2)当直角三角形的一条直角边的长度等于另一条直角边的长度的2倍时,设一条直角边的长度等于1,则一条直角边的长度等于2,∴这个直角三角形中较小锐角的正切值为:1÷2=.故答案为:.【点评】(1)此题主要考查了锐角三角函数的定义,要熟练掌握,解答此题的关键是要明确:锐角A的正弦、余弦、正切都叫做∠A的锐角三角函数.(2)此题还考查了勾股定理的应用,以及分类讨论思想的应用,要熟练掌握.16.如图,点P是反比例函数y=(x>0)的图象上任意一点,PA⊥x轴于A,PD⊥y轴于点D,分别交反比例函数y=(x>0,0<k<6)的图象于点B,C.下列结论:①当k=3时,BC是△PAD的中位线;②0<k<6中的任何一个k值,都使得△PDA∽△PCB;③当四边形ABCD的面积等于2时,k<3;④当点P的坐标为(3,2)时,存在这样的k,使得将△PCB沿CB对折后,P点恰好落在OA上.其中正确结论的编号是①②③④.【考点】反比例函数综合题.【分析】①设点P的坐标为(m,),然后再求得点C和点B的坐标,从而得出DC=CP,PB=BA;②按照①的方法先求得点C和点B的坐标,从而得出;③先求得△PDA的面积,然后再求得△PCB的面积,根据相似三角形的面积等于相似比的平方,求得△PDA与△PCB的相似比,从而可求得k值;④先求得AD的解析式,然后可求得EP的解析式,从而可求得点E的坐标,然后再求得AB、BE的长度,最后在直角三角形ABE中由勾股定理可求得k的值.【解答】解:①设点p的坐标为(m,),则PD=m,PA=,将x=m代入y=得:y=,∴AB=PA,将y=代入y=得:x=,∴DC=PD,∴当k=3时,BC是△PAD的中位线,故①正确;②设点p的坐标为(m,),PD=m,PA=,将x=m代入y=得:y=,∴PB=﹣=,将y=代入y=得:x=,∴PC=m﹣=,∴=,=,∴,∴△PDA∽△PCB,故②正确;③∵点P的坐标为(3,2),∴△PDA的面积=3,∵四边形ABCD的面积等于2,∴△PBC的面积=1,∴S△PBC:S△PDA=1:3,∴△PBC与△PDA的相似比为:3,∴,解得:k=6﹣2,∵6﹣3<3,∴k<3,故③正确;④如下图所示:∵点P的坐标为(3,2),∴D(0,2)、A(3,0),∴直线AD的解析式为y=+2,∵直线PE⊥AD,∴设直线PE的解析式为y=x+b,将P(3,2)代入得:b=﹣,∴直线PE的解析式为y=x﹣,令y=0得:x=,∴AE=.将x=3代入y=得:y=,∴AB=,PB=2﹣,由轴对称的性质可知:BE=PB=2﹣,在直角△ABE中,由勾股定理得:AE2+AB2=BE2即:,解得:k=,故④正确.故答案为:①②③④.【点评】本题主要考查的是反比例函数,一次函数、勾股定理以及轴对称图形的性质的综合应用,难度较大,熟练掌握相关知识是解题的关键.三.全面答一答(本题有7个小题,共66分)解答应写出文字说明,证明过程或推演步骤.如果觉得有的题目有点困难,那么把自己能写出的解答写出一部分也可以.17.(1)求多项式ax2﹣a与多项式x2﹣2x+1的公因式;(2)已知关于x的分式方程=3的解是正数,求m的取值范围.【考点】分式方程的解;公因式.【专题】计算题.【分析】(1)两多项式分解因式后,找出公因式即可;(2)分式方程去分母转化为整式方程,求出整式方程的解表示出解,根据解为正数求出m 的范围即可.【解答】解:(1)先分解因式:ax2﹣a=a(x+1)(x﹣1),x2﹣2x+1=(x﹣1)2,∴公因式是x﹣1;(2)去分母得:2x+m=3x﹣3,解得:x=m+3,根据题意得:m+3>0,∴m>﹣3,∵x=m+3=1是增根,∴m=﹣2时无解,∴m>﹣3且m≠﹣2.【点评】此题考查了分式方程的解,以及公因式,需注意在任何时候都要考虑分母不为0.18.xx年5月某日,浙江省11个城市的空气质量指数(AQI)如图所示:(1)这11个城市当天的空气质量指数的众数是60;中位数是55;(2)当0≤AQI≤50时,空气质量为优.若在这11个城市中随机抽取一个,求抽到的城市这一天空气质量为优的概率;(3)求杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数.【考点】众数;条形统计图;算术平均数;中位数;概率公式.【分析】(1)根据众数是一组数据中出现次数最多的数据叫做众数;中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数可得答案;(2)从条形统计图中找出这11个城市当天的空气质量为优的城市个数,再除以城市总数即可;(3)根据平均数的计算方法进行计算即可.【解答】解:(1)将11个数据按从小到大的顺序排列为:37,42,43,49,52,55,60,60,63,75,80,60出现了两次,次数最多,所以众数是60,第6个数是55,所以中位数是55.故答案为60,55;(2)∵当0≤AQI≤50时,空气质量为优,由图可知,这11个城市中当天的空气质量为优的有4个,∴若在这11个城市中随机抽取一个,抽到的城市这一天空气质量为优的概率为;(3)杭州、宁波、嘉兴、温州、湖州五个城市当天的空气质量指数的平均数为:(75+63+60+80+52)÷5=66.【点评】此题主要考查了条形统计图,众数、中位数、平均数的定义以及概率公式,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.概率=所求情况数与总情况数之比.19.如图,已知圆上两点A、B.(1)用直尺和圆规作以AB为底边的圆内接等腰三角形(不写画法,保留痕迹);(2)若已知圆的半径R=5,AB=8,求所作等腰三角形底边上的高.【考点】作图—复杂作图;等腰三角形的性质;垂径定理.【分析】(1)作AB的垂直平分线与圆相交于一点,分别与A、B连接即可得到以AB为底边的圆内接等腰三角形;(2)连结OA,先根据垂径定理得到AD的长,再根据勾股定理,以及线段的和差关系即可求解.【解答】解:(1)如图所示:△ABC即为所求.(2)连结OA,∵圆的半径R=5,AB=8,∴OA=OC=5,AD=4,在△AOD中,OD==3,∴CD=OC+OD=5+3=8.故所作等腰三角形底边上的高是8.【点评】本题考查了复杂作图,主要利用了线段垂直平分线的作法,等腰三角形的性质,以及垂径定理.20.如图,在△ABC中,D是BC边上的一点,过A点作BC的平行线,截取AE=BD,连结EB,连结EC交AD于点F.(1)证明:当点F是AD的中点时,点D是BC的中点;(2)证明:当点D是AB的中垂线与BC的交点时,四边形AEBD是菱形.【考点】菱形的判定;全等三角形的判定与性质.【分析】(1)证得△EAF≌△CDF后即可得到DC=AE,然后根据AE=BD得到BD=DC;(2)首先利用一组对边相等且平行的四边形为平行四边形证得平行四边形,然后根据中垂线的性质得到BD=AD,从而利用邻边相等的平行四边形是菱形进行判定即可.【解答】证明:(1)∵AE∥BC,∴∠EAF=∠CDF,又∵F是AD的中点,∴AF=DF,∴∴△EAF≌△CDF,∴DC=AE,∵AE=BD,∴BD=DC;(2)∵AE=BD且AE∥BD,∴四边形AEBD是平行四边形,又∵点D是AB的中垂线与BC的交点,则有BD=AD,∴平行四边形AEBD一组邻边相等,∴四边形AEBD是菱形.【点评】本题考查了菱形的判定及全等三角形的判定与性质,解题的关键是了解菱形的几种判定方法,难度不大.21.如图,已知Rt△ABC的两条直角边,AC=6,BC=8,点D是BC边上的点,过D作DE⊥AB 于E,点F是AC边上的动点,连结DF,EF,以DF、EF为邻边构造▱DFEG:(1)证明:△DBE∽△ABC;(2)设CD长为a(0<a<8),用含a的代数式表示DE;(3)若CD=4时,□DFEG的顶点G恰好落在BC所在直线上,求出此时AF的长.【考点】相似形综合题.【分析】(1)由DE⊥AB,得到∠BED=90°,于是得到∠BED=∠C=90°,由于∠B=∠B,即可证得△DBE∽△ABC;(2)解:在直角三角形ABC中,根据勾股定理求得AB==10,由△DBE∽△ABC,得到,解方程,即可得到结果;(3)如图,顶点G落在BC所在直线上,由四边形DFEG是平行四边形,得到GD∥EF,证得△ABC∽△AFE,得到,代入数值即可得到结果.【解答】(1)证明:∵DE⊥AB,∴∠BED=90°,∴∠BED=∠C=90°,∵∠B=∠B,∴△DBE∽△ABC;(2)解:在直角三角形ABC中,∵AC=6,BC=8,∴AB==10,由(1)知,△DBE∽△ABC,∴,即,∴DE=(3)如图,顶点G落在BC所在直线上,∵四边形DFEG是平行四边形,∴GD∥EF,∴△ABC∽△AFE,∴,∵CD=a=4,∴DE==,∵BC=8,∴BD=4,∴BE==,∴AE=10﹣=,∴AF==.【点评】本题考查了相似三角形的判定和性质,勾股定理,平行四边形的性质,熟练掌握定理是解题的关键.22.(1)已知二次函数y=x2﹣2bx+c的图象与x轴只有一个交点:①b、c的关系式为b2=c;②设直线y=9与该抛物线的交点为A、B,则|AB|=6;③若该抛物线上有两个点C(m,n)、D(m+4,n),求|CD|及n的值.(2)若二次函数y=x2﹣2bx+c的图象与x轴有两个交点E(5,0)、F(k,0),且线段EF(含端点)上有若干个横坐标为整数的点,这些整数之和为18:①b、c的关系式为c=10b﹣25;②k的取值范围是7≤k<8;当k为整数时,b=6.【考点】抛物线与x轴的交点;二次函数图象上点的坐标特征.【分析】(1)①根据二次函数的图象与x轴只有一个交点,则(2b)2﹣4c=0,由此可得到b、c 应满足关系;②把y=9代入y=x2﹣2bx+bc,得到方程x2﹣2bx+bc﹣9=0,根据根与系数的关系和①的结论即可求得;③把A(m,n)、B(m+4,n)分别代入抛物线的解析式,再根据①的结论即可求出n的值;(2)①因为y=x2﹣2bx+c图象与x轴交于E(5,0),即可得到25﹣10b+c=0,所以c=10b ﹣25;②根据①的距离进而得到k=2b﹣5,再根据E、F之间的整数和为18,即可求出k的取值范围和b的值.【解答】解:(1)①∵二次函数y=x2﹣2bx+c的图象与x轴只有一个交点,∴(2b)2﹣4c=0,∴b2=c;故答案为b2=c;②把y=9代入y=x2﹣2bx+c得,9=x2﹣2bx+c,∴x2﹣2bx+c﹣9=0,∵x1+x2=2b,x1x2=c﹣9,。

等腰直角三角形地全等问题

等腰直角三角形地全等问题

等腰直角三角形中的全等问题在证明三角形全等时,我们常常遇到图形中有等腰直角三角形,由于等腰直角三角形有一组直角边相等,恰恰可以为我们证明三角形全等提供必要的条件,现举几例说明。

2、已知:在等腰直角△ABC中,∠BAC=90 °,AB=AC,过点A作直线FG,过点B做BD ⊥FG于D,过点C 做CE ⊥FG于E,求证:DE=BD-CE分析:题中有几个直角,往往可以得到许多角互余,所以有一些角相等,题中有AB=AC,我们可以得到AB 与AC所在的三角形(△ABD与△CAE)全等,则BD=AE,AD=CE,结论及可证明。

证明(略)结论:一组直角边相等,思路1:可以观察两边是否在一个三角形中,若在,即这个三角形是等腰三角形思路2:若不在一个三角形中,往往可得到其所在的两个三角形有一组对应边相等,为证三角形全等奠定条件。

练习:3、在等腰直角△ABC中,∠BAC=90 °,AB=AC,BD平分∠ABC,过点C做BD的垂线CE,垂足为E,求证:CE=1/2 BD提示:可通过角平分线构建全等形,即延长CE 交BA 的延长线于F,则△BEF 与△BEC 全等,所以CF=2CE,只需证明CF=BD 即可,即证明△ABD 与△ACF 全等。

4、在等腰直角△ABC 中, ∠BAC=90 °,AB=AC,点D 为AC 的中点,AF ⊥BD 于G,过点C 做CE ∥AB,交AF 的延长线于点E,求证:EF=DF提示:要证明结论成立,需证明EF 与DF 所在的两个三角形△CFD 与△CFE 全等即可。

关键差一组边或一组角相等,有题中条件,很容易可证明△ABD 与△CAE 全等,可为证明△CFD 与△CFE 全等提供帮助。

5、如图,△ACD 和△AEB 都是等腰直角三角形,∠EAB=∠CAD=90°,求证:(1)EC=BD (2)EC ⊥BD (3)BD EC S EBCD •=21四边形 (4)S △ADE =S △ABC 6、已知:在等腰直角△ABC 中, ∠BAC=90 °,AB=AC,E 为AC 上一点,CD ⊥BE 于D,连接AD,若AD=2,CD=3,求BD 的长。

抛物线过定点问题的讨论几何图形全等变换探究

抛物线过定点问题的讨论几何图形全等变换探究

按一 定 的 方法 ( 平移 、 翻转 、 旋 转等 ) , 把 个 图形 变 成 另 一个 图形 叫 做 图形 变 换 . 若变 换 前 后 的 图形 全 等 , 即只 改 变 图形 的位 置 , 而 不 改 变 其 形状 大 小 的图 形变 换 叫做全 等变 换 . 全 等 变换 可 为研 究几 何 图形 、 证 明 几 何试 题带 来许 多方 便 . 1 . 轴对 称 变换法

. ‘
E 为A 中点 . A E = 1 AB = 4

・ . .
D E : 、 / 8 2 + 4 2 : 4 N / -  ̄ - ,
故E F + B F  ̄最 小值 为4 、 / 了.
AA B D = 3 0 o , B D= B A, 求证: AD = C D.
分析 : 由于 等腰直 角 三角 形可 看成 是 一条 对角 线将 正方形 分割 而得 的 一半 , 所 以有 关等腰 直 角三 角形 的 问题 常 见翻折 成正 方形 而使 问题得 以解 决. 证 明: 作 出点A关 于B C 的对 称 点 , 连 结 曰 、 A C 、 D, 则A C 为正 方形.
是 D的 中点 , Ⅳ是B C的中 点 , 延 长B A、 N M相 交于 点
Q, 延长C D与N M相交于 点P . 求证/ _ B Q N = C P N 。
分析 :因 为 / _B Q N与 / Ⅳ 所在 的两三 角形 不 全等, 要证它们相等, 可 通 过平 行 移 动 把 它 们移 到 同一个三 角 形 中去 , 因为 已知 、 N分别 是 两边 的 中 点, 我们 可 以考虑 用三 角形 中位线 定理 来添 辅助 线. 证明: 连 结 C, 取A C 的 中点 , 再连  ̄ d J F M、 F N,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、抛物线中利用等腰直角三角形构造全等
1.如图,抛物线n x y +=2
)1(-与x 轴交于A 、B 两点,A 在B 的左侧,与y 轴交于C (0,-3). (1)求抛物线的解析式;
(2)点P 为对称轴右侧的抛物线上一点,以BP 为斜边作等腰直角三角形,直角顶点M 正好落在对称轴上,求P 点的坐标.
2.如图,抛物线342
+-=x x y 与x 轴交于A 、B 两点,与y 轴交于点C ,连AC ,将直线AC 向右平移交抛物线于点P ,交x 轴于Q 点,且∠CPQ =135°,求直线PQ 的解析式.
3抛物线y=x2-2x-3与x轴交于A,B两点,与y轴交于点C,E在x轴下方的对称轴上,BE⊥EF,交抛物线于F,且BE=EF,求点F的坐标。

4抛物线y=-x2+2x+3与x轴交于A,B两点,与y轴正半轴交于点C,点D为抛物线顶点,点P在X轴上,连接PC,∠PCB=∠CBD,求P点点坐标
5抛物线y=-x2+4x-3与x轴交于A,B两点,与y轴交于点C,连接AC,点P为第四象限
抛物线上一点,且∠PCB=∠ACO ,求点P 的坐标。

6.如图,抛物线42
+=ax y 与x 轴交于A ,B 两点(A 左B 右),与y 轴交于
点C ,AB =4. (1)求抛物线的解析式.
(2)CD ⊥AC ,CD =AC ,AD 交抛物线于点P , 求点P。

相关文档
最新文档