锂电池隔膜精华
锂电隔膜组成及原材料应用

锂电隔膜组成及原材料应用锂电隔膜是一种用于锂电池中的重要组成部分,它的主要功能是隔离阳极和阴极,同时允许锂离子在电解液中传输。
隔膜的质量和性能直接影响着锂电池的安全性和性能。
本文将详细介绍锂电隔膜的组成、原材料以及应用。
1. 锂电隔膜的组成锂电隔膜通常由聚烯烃(例如聚乙烯)或者有机胶凝材料制成。
这些材料具有良好的阻隔性能和耐化学腐蚀性能。
锂电隔膜一般由两至三层材料组成,包括粘结剂、增强剂和增塑剂。
以下是锂电隔膜的常见组成成分:(1)聚乙烯(PE):聚乙烯是一种常用的材料,它具有良好的耐化学腐蚀性、机械强度和热稳定性。
(2)粘结剂:粘结剂通常用于增加聚乙烯层间的粘结力,以提高隔膜的整体稳定性。
(3)增强剂:增强剂主要用于增加隔膜的机械强度和耐撕裂性能。
(4)增塑剂:增塑剂可使隔膜具有良好的柔韧性和可塑性。
2. 锂电隔膜的原材料锂电隔膜的制造原材料主要包括聚乙烯、粘结剂、增强剂和增塑剂。
聚乙烯是锂电隔膜的主要成分,用于提供隔离与传导功能。
粘结剂用于增加聚乙烯层间的粘结力,常见的粘结剂有聚合物胶粘剂和热熔胶。
增强剂主要用于提高隔膜的机械强度和耐撕裂性能,常见的增强剂有玻璃纤维、纳米纤维和超细纤维等。
增塑剂用于增加隔膜的柔韧性和可塑性,常见的增塑剂有聚酰胺、聚乙二醇等。
3. 锂电隔膜的应用锂电隔膜广泛应用于锂离子电池、聚合物锂电池、聚合物钛酸锂电池和锂空气电池等领域。
以下是锂电隔膜在各个领域的应用:(1)锂离子电池:锂电隔膜在锂离子电池中起到隔离阳极和阴极的作用,防止短路和电池内部反应。
(2)聚合物锂电池:锂电隔膜在聚合物锂电池中起到隔离器和电解质的双重功能,提高电池的性能和安全性。
(3)聚合物钛酸锂电池:锂电隔膜在聚合物钛酸锂电池中广泛应用,提高电池的功率密度和循环寿命。
(4)锂空气电池:锂电隔膜在锂空气电池中起到氧气阻挡和电解质隔离的作用,提高电池的能量密度。
总结:锂电隔膜由聚乙烯等材料构成,经过粘结剂、增强剂和增塑剂的处理,具有优异的阻隔性能和耐化学腐蚀性能。
锂电池半固态无孔电解质隔膜

锂电池半固态无孔电解质隔膜锂电池是一种充电电池,其具有高能量密度、长寿命和环保等优点,因此在电动车、移动设备和储能系统等领域得到了广泛应用。
然而,传统的锂离子电池在使用过程中存在安全性、稳定性和能量密度等方面的问题。
为了解决这些问题,研究人员提出了一种新型的锂电池半固态无孔电解质隔膜。
半固态无孔电解质隔膜是指一种由固态和液态组成的复合材料,它具有固态材料的稳定性和液态材料的离子传输性能。
这种隔膜的制备方法相对简单,可以通过将液态电解质浸渍到固态基质中得到。
在锂电池中,半固态无孔电解质隔膜可以替代传统的液态电解质,从而提高电池的安全性和稳定性。
半固态无孔电解质隔膜具有许多优点。
首先,它具有高离子传输率,可以实现快速充放电。
其次,半固态无孔电解质隔膜具有较高的力学强度,能够有效阻止锂离子的短路和漏电。
此外,半固态无孔电解质隔膜还具有较高的热稳定性和耐化学腐蚀性,可以在高温和极端环境下稳定工作。
在半固态无孔电解质隔膜的研究中,研究人员主要关注以下几个方面。
首先,选择合适的固态基质是关键。
固态基质应具有良好的机械强度和离子传输性能,以保证隔膜的稳定性和可靠性。
其次,研究人员还需要优化浸渍过程和固化工艺,以提高隔膜的制备效率和性能一致性。
此外,隔膜的厚度和孔隙结构也是影响电池性能的重要因素,需要进行精确控制和调节。
半固态无孔电解质隔膜在锂电池领域具有广阔的应用前景。
首先,它可以提高锂离子电池的安全性。
由于半固态无孔电解质隔膜具有较高的力学强度,可以有效阻止锂离子的短路和漏电,从而减少电池的火灾和爆炸风险。
其次,半固态无孔电解质隔膜还可以提高锂离子电池的稳定性。
由于半固态无孔电解质隔膜具有较高的热稳定性和耐化学腐蚀性,可以在高温和极端环境下稳定工作,延长电池的使用寿命。
最后,半固态无孔电解质隔膜还可以提高锂离子电池的能量密度。
由于半固态无孔电解质隔膜具有高离子传输率,可以实现快速充放电,从而提高电池的能量密度和功率密度。
锂电池隔膜基础知识

.电池隔离膜1.功用:(1)阻隔电池正负极2)让离子电流(ionic current )通过,但阻力要尽可能地小。
因此,吸收电解液之后所表现出来的离子导电度便与(1)隔离膜孔隙度(porosity )、(2)孔洞弯曲度(tortuosity )、(3)电解液导电度、(4)隔离膜厚度、及(5)电解液对隔离膜的润湿程度等因素有关系隔离膜的引入而对离子传导所额外产生之电阻,应该是隔离膜吸收电解液之后的电阻减去与隔离膜相同面积和厚度之纯电解液的电阻,亦即R (隔离膜) = R (隔离膜 +电解液) – R (电解液) 电阻R 的定义为:Aσ1R ⨯=( 是离子传导途径的长度,A 是离子传导的有效面积,σ是离子导电度(比电阻ρ的倒数))多孔薄膜的孔洞弯曲度ds T =s 是离子经由隔离膜所必须行经之长度,d 则是隔离膜的厚度。
多孔薄膜的孔隙度P 之定义为孔洞的体积和隔离膜外观几何体积的比值Ad A P s s =(其中A s 代表隔离膜负责离子传导的有效面积)所以得T P A A s ⨯= ⎪⎪⎭⎫ ⎝⎛-⨯=1 R 2P T R 電解液隔離膜 吸收了电解液之后的隔离膜,其电阻是原先没有隔离膜存在时的 (T 2/P) 倍。
当孔洞弯曲度T 愈大,薄膜孔隙度P 愈小时,隔离膜的电阻就愈大2. 隔离膜之材质与制备隔离膜具多孔性的结构,孔径范围约在0.1 μm 或100 nm ,表面积非常大,受到电解液侵蚀的机率也当然跟着提高,材料的选择重要。
材质有塑料类、玻璃类、和纤维素(cellulose )类等,以塑料类为最大宗,最常见的有聚氯乙烯(polyvinyl chloride ;PVC )、聚醯胺(polyamide )、聚乙烯(polyethylene ;PE )、及聚丙烯(polypropylene ;PP )。
塑料类隔离膜之所以应用地最广,除了是因为它比较易于控制厚度之外,也跟1960年代开始日益成熟的高分子科学及加工技术有密不可分的关系.目前, 商业化的锂离子电池都是采用聚烯烃类(polyolefin )的多孔高分子薄膜(如表1.1)作为隔离膜,有的是PP ,有的是PE ,也有用PP/PE/PP 三层合一的。
锂电隔膜工作总结

锂电隔膜工作总结
隔膜是锂电池中的重要组成部分,它在电池中起着隔离正负极、传导离子和阻
止内部短路的作用。
隔膜的质量和性能直接影响着锂电池的安全性和性能表现。
在过去的一段时间里,隔膜技术得到了长足的发展,不断推动着锂电池的进步和应用。
首先,隔膜的质量对锂电池的安全性具有重要影响。
优质的隔膜可以有效隔离
正负极,在充放电过程中阻止短路的发生,从而保证电池的安全运行。
隔膜的破损或者不良质量会导致电池过热、起火甚至爆炸,因此隔膜的质量控制至关重要。
其次,隔膜的离子传导性能直接影响着锂电池的充放电效率和循环寿命。
优秀
的隔膜应该具有高的离子传导率和低的电阻率,从而能够减少电池内部的能量损耗,提高能量密度和循环寿命。
隔膜的材料和结构设计对其离子传导性能有着决定性的影响,因此隔膜的研发和改进是锂电池技术进步的关键。
最后,隔膜的耐热性、耐化学腐蚀性和机械强度也是影响锂电池性能的重要因素。
隔膜在电池中会受到高温、电解液的腐蚀和机械挤压等多种环境影响,因此必须具有较高的稳定性和耐久性,以保证电池的长期稳定运行。
总的来说,隔膜作为锂电池中的重要组成部分,其质量和性能对电池的安全性、循环寿命和能量密度具有重要影响。
随着隔膜技术的不断进步和改进,相信锂电池在未来会有更广泛的应用和更优越的性能表现。
锂电池隔膜知识详解

锂电池隔膜知识详解
隔膜主要的功能是阻止电池中正极和负极之间直接接触,从而防止电池发生短路,同时允许锂离子在电池中自由移动。
锂离子电池的正极材料一般是锂的氧化物,负极材料是碳基材料,两者之间如果直接接触会导致短路。
隔膜通过孔隙调整锂离子的传输速率,从而保证电池的性能稳定。
锂电池隔膜的性能对整个电池的性能有很大影响。
首先,隔膜需要具有较高的电导率,以便锂离子可以在正负极之间快速传输。
其次,隔膜需要具有较高的机械强度和热稳定性,以承受电池的运行过程中产生的压力和温度变化。
此外,隔膜还需要具有较低的电介质常数和较高的电化学稳定性,以减少电池的内阻和提高电池的循环寿命。
隔膜的制备方法主要有拉伸、压延和湿法涂覆等。
其中,拉伸法是最常用的制备方法,通过拉伸聚合物薄膜,使其形成具有一定孔隙结构的隔膜。
压延法和湿法涂覆法则是通过挤压和覆盖混合材料来制备隔膜。
除了传统的聚合物隔膜,目前还有一种新型的锂电池隔膜,无机固体电解质薄膜。
这种隔膜主要由氧化物或硅酸盐等无机材料制成,具有更高的热稳定性、机械强度和电导率。
无机固体电解质薄膜可以解决传统隔膜在高温或高电流工况下存在的问题,提高电池的安全性能。
在锂电池隔膜的应用中,隔膜的性能优势和稳定性对电池的性能和安全性有着重要影响。
因此,隔膜的研发和改进是提高锂离子电池性能的重要方向之一、未来,随着电动汽车和可再生能源的需求增加,对高性能隔膜的需求也将不断增加,这将进一步推动隔膜技术的创新和发展。
锂电池隔膜的制备简介与应用特征.

锂电池隔膜的制备简介与应用特征锂离子电池主要由正、负电极材料、电解质及隔膜组成,其中隔膜材料是重要组成部分, 将正极和负极隔开并具有电子绝缘性和离子导电性。
隔膜性能决定了电池的界面结构、电解质的保持性和电池的内阻等 , 进而影响电池的容量、循环性能、充放电电流密度等关键特性。
隔膜性能的优劣对电池的综合性能具有重要的作用。
制备锂离子电池隔膜的工业技术主要有熔融拉伸和热致相分离两类方法:熔融拉伸法不包括任何的相分离过程,工艺相对简单且生产过程中无污染,目前世界上大都采用此方法进行生产,如日本的宇部 UBE ,美国的 CELGARD 等。
热致相分离法工艺复杂,需加入和脱除稀释剂,生产费用相对较高且可能引起二次污染, 目前采用此法生产隔膜的有日本的旭化成、美国的 INTEK 公司(?等。
不同种类、不同系列、不同规格的电池对隔膜性能要求不同,隔膜主要的物理参数包括孔隙率、机械强度、电流切断特性、透气率、吸液率、保持电解液能力、耐电解液腐蚀能力、胀缩率等。
孔隙率是孔的体积和隔膜体积的比值,它与原材料树脂以及最终制品的密度有关,大多数锂离子电池隔膜的孔隙率在 40%~50%之间。
高性能的锂离子电池主要依赖于隔膜中所填充液体电解质的离子传导性;隔膜能有效阻止电池正负极短接,但它的存在导致电解质液中的传导率下降,增加了电池的阻抗,有的隔膜甚至可以导致离子传导率下降 1~2个数量级。
对于一定的电解质,具有高孔隙率隔膜可降低电池的阻抗,但是孔隙率越高,隔膜的抗力学性能及抗开孔性能会变差。
由于孔的贯通性差别,即使孔隙率和厚度一致,其阻抗也可能不相同。
机械强度有两个参数, 即隔膜在长度和垂直方向的拉伸强度以及在厚度方向上的刺穿强度。
单轴拉伸在垂直方向上的强度较低, 大约是长度方向的 1/10, 双轴拉伸的隔膜在垂直方向和延伸方向具有相同的强度。
由湿法和干法制得的隔膜都是通过拉伸形成微孔的,所以在拉伸方向上的强度比较高,实际制造电池要求的是长度方向的拉伸强度,目前市售隔膜的拉伸强度能满足电池制造的要求。
锂离子电池隔膜基础知识

6.洗涤烘干系统
湿 法 生 产 流锂 程离 分子 解电 池 隔 膜
洗涤过程就是溶剂(萃取剂)萃取成 孔剂,溶剂取代成孔剂剂位置的过 程;而烘干过程就是加快萃取剂 的挥发,空气取代萃取剂位置的过 程,当然烘干过程也是萃取剂循环 回收的过程。经过洗涤烘干后的薄 膜由透明变成了白色,这说明锂离 子隔膜的微孔已经形成了。
隔膜是一种具有纳米级微孔的 高分子功能材料。也叫电池隔 膜、隔膜纸、多孔膜、离子交 换膜、分离膜、离子渗透膜等。 生产方法:湿法、干法(单项 拉伸、吹膜法、双向拉伸)
隔 膜 及 制 法 介 绍
湿 法 介 绍
湿法也叫热致相分离法(TIPS),或 者溶剂萃取成孔法,其化学原理是 相分离。 基本过程是指在高温下将 聚合物溶于高沸点、低挥发性的溶 剂中形成均相液,然后降温冷却, 导致溶液产生液-固相分离或液- 液相分离,再选用挥发性试剂将高 沸点溶剂萃取出来,经过干燥获得 一定结构形状的高分子微孔膜。 湿法生产的特点是产品均匀性好, 安全性好 ,机械性能良好,孔曲折 度高。
和均一的电流密度,微孔在 整个隔膜材
料中的分布应当均匀。孔径的大小与分 布的均一性对电池性能有直接的影响: 孔径太大,容易使正负极直接接触或易 被锂枝晶刺穿而造成短路;孔径太小 则
会增大电阻。微孔分布不匀,工作时会
形成局部电流过大,影响电池的性能。
(3)孔隙率。孔隙率对膜的透过性和电
锂离子电池隔膜

主要应用领域
电动汽车
锂离子电池隔膜在电动汽车领域的应用最为广泛,主要作为电池组件的核心材料之一,用于隔开正负极材料,防止短 路和电池爆炸等安全问题。
储能领域
储能领域是锂离子电池隔膜的另一个重要应用领域,主要涉及电力、通信、智能电网等领域。在这些领域中,锂离子 电池隔膜用于储存电能,并在需要时释放出来。
产品特点
干法工艺制备的隔膜具有机械强度高、耐高温、热稳定性好等优点,同 时干法工艺可以生产出厚度较大的隔膜,适用于高功率密度的锂离子电 池。
工艺比较与优化
生产成本
湿法工艺使用的是水溶剂,生产成本较低;而干法工艺使用的是有机溶剂,生产成本较高。因此,在考虑生产成 本的前提下,湿法工艺更具优势。
产品性能
市场竞争
随着市场规模的不断扩大,锂离子电池隔膜领域的竞争也 越来越激烈。新进入者和现有企业之间的竞争将进一步加 剧。因此,企业需要不断提高产品质量和服务水平,加强 品牌建设和市场推广,以保持竞争优势。
05
锂离子电池隔膜的环保与可持续发展
生产过程中的环保要求
02
01
03
原材料选择
使用环保材料,如可再生资源,减少对环境的破坏。
作用
隔膜在锂离子电池中起到至关重要的作用,它决定了电池的容量 、内阻、安全性以及电池的寿命。
隔膜的组成与结构
组成
锂离子电池隔膜主要由聚烯烃材 料制成,其表面涂有陶瓷涂层以 增强其热稳定性。
结构
隔膜的结构通常呈现出多孔性, 这些孔隙允许锂离子通过,却阻 止了电子的直接流通,从而实现 了正负极之间的隔离。
06
研究与发展趋势
研究现状与成果
聚烯烃隔膜
聚烯烃隔膜具有高孔隙率、低成 本和良好的热稳定性,是锂离子 电池的主要隔膜类型。目前,研 究者通过优化隔膜的孔径、厚度 和拉伸强度等参数,提高了隔膜 的电化学性能和安全性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
技术指标名词解释锂电池隔膜锂电池因能量密度高、循环寿命长、质量轻、体积小等特性,又具有安全、可靠且能快速充放电等优点,成为近年来新型电源技术研究的热点,在高能量和高功率领域备受欢迎。
在锂电池的结构中,隔膜是关键的内层组件之一。
隔膜采用塑料膜制成,可隔离电池正负极,以防止出现短路;还可以在电池过热时,通过闭孔功能来阻隔电池中的电流传导。
隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环性能以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。
目前60%~70%的隔膜市场主要采用湿法双向拉伸工艺,因为湿法双向拉伸纵向横向更加均匀平衡。
而且湿法主要用于高端隔膜,干法用于中低端产品。
聚合物薄膜在薄膜太阳能电池中同样具有广阔的应用空间,开发生产锂电池隔离膜、太阳能光伏新材料是制膜企业产业升级的大方向。
但国内能够生产隔膜的企业屈指可数,导致一直受制于国外进口,价格居高不下,这是锂电制造成本很高的一个主要原因,当然也是影响锂电应用的重要原因之一。
目前,国内能生产隔膜的企业仅有星源科技、金辉高科两家技术相对成熟,市场供应量严重不足,大部分依赖进口,市场主要被日本旭化成工业、东燃化学,及美国Celgard把持。
隔膜具有典型的“高技术、高资本”特点,而且项目周期很长,投资风险较大,国内企业的投资热情并不高。
预计全球对聚乙烯、聚丙烯和芳烃等主要石化产品的需求将以高于全球GDP2-3%的速度增长,而亚洲增速最快。
锂离子电池隔膜的研究及发展现状樊孝红,蔡朝辉,吴耀根,叶舒展,徐冰(佛山塑料集团股份有限公司,广东佛山528000)摘要:综述了隔膜的主要作用及性能、国内外研究与发展现状。
重点叙述了隔膜的制备方法,对干法和湿法的原理、工艺及所制得的隔膜性能上的区别进行了详细的阐述;同时简单介绍了隔膜的改性研究现状和新型电池隔膜的发展,最后对电池隔膜的未来发展趋势进行了展望。
关键词:锂离子电池;隔膜;研究进展随着信息、材料和能源技术的进步,锂离子电池以其高比能量、长循环寿命、无记忆效应、安全可靠以及能快速充放电等优点而成为新型电源技术研究的热点。
锂离子电池除广泛用于日常熟知的手机、笔记本电脑以及其他数码电子产品之外,电动车的发展也将带动锂离子电池的更大需求,且在航空航天、航海、人造卫星、小型医疗、军用通信设备等领域中也得到了应用,逐步代替传统电池。
据统计,2007年铅酸电池在电池市场中所占份额下降到50%以下,2007年以后锂离子电池已在市场中占主导地位。
我国近几年在锂离子电池产业化方面取得了可喜进展,已成为全球重要的锂离子电池生产基地,产量跃居全球第三。
目前国内从事锂离子电池行业的企业超过百家,其中深圳的比亚迪、比克,天津的力神等已发展成为全球电池行业的骨干企业。
随着锂离子电池应用范围的进一步扩大,隔膜材料的需求量将进一步增加。
而世界上只有日本、美国等少数几个国家拥有锂离子电池聚合物隔膜的生产技术和相应的规模化生产,我国在锂离子电池隔膜的研究与开发方面起步较晚,仍主要依赖进口,隔膜的平均售价为8~15元/m2,约占整个电池成本的1/4,从而导致锂离子电池市场价格高居不下,目前国内80%以上的隔膜市场被美、目等国家垄断,国产隔膜主要在中、低端市场使用。
实现隔膜的国产化,生产优质的国产化隔膜,能有望降低整个隔膜乃至锂离子电池的市场价格。
1 电池隔膜的主要作用及性能要求电池隔膜是指在锂离子电池正极与负极中间的聚合物隔膜,是锂离子电池最关键的部分,对电池安全性和成本有直接影响。
其主要作用有:隔离正、负极并使电池内的电子不能自由穿过;让电解质液中的离子在正负极间自由通过。
其锂离子传导能力直接关系到锂离子电池的整体性能,其隔离正负极的作用使电池在过度充电或者温度升高的情况下能限制电流的升高,防止电池短路引起爆炸,具有微孔自闭保护作用,对电池使用者和设备起到安全保护的作用。
隔膜性能的优劣决定电池的界面结构和内阻,进而影响电池的容量、循环性能、充放电电流密度等关键特性,可见,性能优异的隔膜对提高电池的综合性能有重要作用。
对隔膜的基本要求是:具有足够的隔离性和电子绝缘性,能保证正负极的机械隔离和阻止活性物质的迁移;有一定的孔径,对锂离子有很好的透过性,保证低电阻和高离子传导率;由于锂离子电池采用有机溶剂和非水电解液,因此应具有足够的化学稳定性和电化学稳定性,有一定的耐湿性和耐腐蚀性;对电解液的浸润性好,有足够的吸液保湿能力和离子导电性;具有足够的力学性能和防震能力,并且厚度尽可能小;自动关断保护性能好。
隔膜的力学性能是影响其应用的一个重要因素,如果隔膜破裂,就会发生短路,降低成品率,因此要求隔膜有一定的强度、弹性和耐摩擦性能。
2锂离子电池隔膜制备方法聚乙烯(PE)、聚丙烯(PP)微孔膜具有较高孔隙率、较低的电阻、较高的抗撕裂强度、较好的抗酸碱能力、良好的弹性及对非质子溶剂的保持性能,因此锂离子电池研究开发初期用其作为隔膜材料。
目前市场化的锂离子电池隔膜主要有单层PE、单层PP、3层PP/PE/PP复合膜。
锂离子电池隔膜按制备工艺的不同可分为干法和湿法两大类,主要区别在于隔膜微孔的成孔机理不同。
2.1干法工艺干法是将聚烯烃树脂熔融、挤压、吹膜制成结晶性聚合物薄膜,经过结晶化处理、退火后,得到高度取向的多层结构,在高温下进一步拉伸,将结晶界面进行剥离,形成多孔结构,可以增加薄膜的孔径。
干法按拉伸方向不同可分为干法单向拉伸和双向拉伸。
干法单向拉伸工艺是通过硬弹性纤维的方法,制备出低结晶度的高取向PE或PP隔膜,再高温退火获得高结晶度的取向薄膜。
这种薄膜先在低温下进行拉伸形成银纹等缺陷,然后在高温下使缺陷拉开,形成微孔。
目前美国Celgard公司、日本宇部公司均采用此种工艺生产单层PE、PP以及3层PP/PE/PP复合膜。
该工艺生产的隔膜具有扁长的微孔结构,由于只进行单向拉伸,隔膜的横向强度比较差,但横向几乎没有热收缩。
由于受国外专利保护,国内采用单向拉伸方法制备隔膜的工业化进展很慢,目前杭州的一条生产线通过在PP中加入成核剂以及油类添加剂来加速退火过程中的结晶速率而制备的单层PP隔膜已在市场上销售。
干法双向拉伸工艺是中科院化学研究所20世纪90年代初开发的具有自主知识产权的工艺。
通过在PP中加入具有成核作用的β晶型改进剂,利用PP不同相态间密度的差异,在拉伸过程中发生晶型转变形成微孔。
与单向拉伸相比,其在横向方向的强度有所提高,而且可以根据隔膜对强度的要求,适当的改变横向和纵向的拉伸比来获得所需性能,同时双向拉伸所得的微孔的孔径更加均匀,透气性更好。
从2000年开始,在国家863计划的支持下,具有自主知识产权的干法双向拉伸制备PP微孔膜的技术在营口向阳化工厂进行中试。
M.xu等采用干法双向拉伸技术,制备了亚微米级孔径的微孔PP隔膜,其微孔具有很好的力学性能和渗透性能,平均孔隙率为30%~40%,平均孔径为0. 05μm。
采用双向拉伸制成的隔膜的微孔外形基本上是圆形的,即有很好的渗透性和力学性能,孔径更加均匀。
T.H.Yu介绍了制膜的另一种拉伸工艺,拉伸在极低的温度(如一198~一70℃)下进行,然后在低于聚合物熔融温度的条件下热固定,再在聚合物熔融温度下,以10 mm/s的速度拉伸,制备微孔膜。
干法拉伸工艺较简单,且无污染,是锂离子电池隔膜制备的常用方法,但该工艺存在孔径及孔隙率较难控制,拉伸比较小,只有约1~3,同时低温拉伸时容易导致隔膜穿孔,产品不能做得很薄。
2.2湿法工艺湿法又称相分离法或热致相分离法,将液态烃或一些小分子物质与聚烯烃树脂混合,加热熔融后,形成均匀的混合物,然后降温进行相分离,压制得膜片,再将膜片加热至接近熔点温度,进行双向拉伸使分子链取向,最后保温一定时间,用易挥发物质洗脱残留的溶剂,可制备出相互贯通的微孔膜材料,此方法适用的材料范围广。
采用该法的公司有日本的旭化成、东然、日东以及美国的Entek 等,用湿法双向拉伸方法生产的隔膜孔径范围处于相微观界面的尺寸数量级,比较小而均匀,双向的拉伸比均可达到5~7,因而隔膜性能呈现各向同性,横向拉伸强度高,穿刺强度大,正常的工艺流程不会造成穿孔,产品可以做得更薄,使电池能量密度更高。
国内佛山塑料集团于2004年建立了一条采用湿法工艺生产PE隔膜的双向拉伸生产线,产品于2005年底在市场上销售。
由图1可以清晰看到干法与湿法制得的电池隔膜的表面形态、孔径和分布都有很大的不同。
湿法工艺可以得到复杂的三维纤维状结构的孔,孔的曲折度相对较高,而干法工艺是拉伸成孔,因此空隙狭长,成扁圆形,孔曲折度较低。
3锂离子电池隔膜的研究现状3.1多层隔膜干法工艺主要以PP为主要原料,而湿法工艺主要以PE为主要原料。
因此以干法工艺制备的隔膜通常闭孔温度较高,同时熔断温度也很高,而以湿法工艺制备的PE隔膜闭孔温度较低,熔断温度也较低。
考虑到安全性能,锂离于电池隔膜通常要求具有较低的闭孔温度和较高的熔断温度,因此,多层隔膜的研究受到广泛关注,多层隔膜结合了PE和PP的优点。
Celgard公司主要生产PP/PE双层和PP/PE/PP 3层隔膜,3层隔膜具有更好的力学性能,PE夹在2层PP之间可以起到熔断保险丝的作用,为电池提供了更好的安全保护。
Nitto Denko公司采用干燥拉伸法,从PP/PE双层隔膜中提取了单层隔膜,其具有PP和PE微孔结构,在PE熔点附近,其阻抗增加,在PP熔点以下仍具有很高的阻抗。
Exxon Mobil公司采用专有的双向拉伸生产工艺,并以特殊定制的高耐热性聚合物为基础制成了多层隔膜,在105℃下的热收缩率仅在1%~3.5%之间,孔隙率在50%左右,而破膜温度达到了180~190℃,同时还保持了较好的闭孔温度和力学性能;DSM Solutech公司采用双轴拉伸法,以超高相对分子质量PE为原料生产的商品名为Solupur的隔膜,具有良好的电化学性能,平均面密度为7~16 g/m2,平均孔径为1~2 μm,平均孔隙率为80%~90%。
F .G .B .Obms等研究发现:Solupur材料具存低曲率、高强度和较好的润湿性。
3 .2隔膜表面改性PE和PP隔膜对电解质的亲和性较差,研究者对此进行了大量的改性工作,如在PE、PE微孔膜的表面接枝亲水性单体或改变电解质中的有机溶剂等。
程琥等在Celgard2400单层PP膜表面涂覆掺有纳米二氧化硅的聚氧乙烯,改善了隔膜的润湿性,提高了隔膜的循环性。
Gineste等在Celgard2505单层PP膜的表面辐射接枝二甲基丙烯酸二乙二醇酯和极性丙烯酸单体,并研究了不同接枝率对电池性能的影响。
Ko等也研究了采用接枝了甲基丙烯酸缩水甘油酯(GMA)的单层PE为隔膜的锂离子电池的性能,发现采用PE-g-MA接枝隔膜后锂离子电池的循环性能得到较大幅度的提高,这是因为隔膜接枝后,吸液率和保液性得到提高。