5集成运放电路实验报告

合集下载

集成运算放大器应用实验报告

集成运算放大器应用实验报告

集成运算放大器应用实验报告集成运算放大器应用实验报告引言:集成运算放大器(Operational Amplifier,简称Op-Amp)是一种非常常见的电子元件,广泛应用于电路设计和实验中。

本实验旨在通过实际应用,深入了解集成运算放大器的特性和使用方法,并通过实验结果验证理论知识的正确性。

实验目的:1. 了解集成运算放大器的基本结构和工作原理;2. 掌握集成运算放大器的常见应用电路;3. 通过实验验证理论知识的正确性。

实验仪器和材料:1. 集成运算放大器(例如LM741);2. 电阻、电容等基本电子元件;3. 示波器、信号发生器等实验仪器。

实验步骤:1. 集成运算放大器的基本特性实验首先,将集成运算放大器与电源相连接,并通过示波器观察输出波形。

调节输入信号的幅值和频率,观察输出波形的变化。

记录实验结果,并与理论知识进行对比分析。

2. 集成运算放大器的反相放大电路实验搭建反相放大电路,输入一个正弦波信号,通过示波器观察输出波形。

调节输入信号的幅值和频率,观察输出波形的变化。

记录实验结果,并与理论计算值进行对比。

3. 集成运算放大器的非反相放大电路实验搭建非反相放大电路,输入一个正弦波信号,通过示波器观察输出波形。

调节输入信号的幅值和频率,观察输出波形的变化。

记录实验结果,并与理论计算值进行对比。

4. 集成运算放大器的积分电路实验搭建积分电路,输入一个方波信号,通过示波器观察输出波形。

调节输入信号的幅值和频率,观察输出波形的变化。

记录实验结果,并与理论计算值进行对比。

实验结果与分析:1. 集成运算放大器的基本特性实验结果根据实验结果观察到,集成运算放大器具有高增益、低失调电压和低输入阻抗等特点。

随着输入信号幅值的增加,输出信号也随之增大,且输出信号与输入信号具有线性关系。

2. 集成运算放大器的反相放大电路实验结果通过实验观察到,反相放大电路可以将输入信号的幅值放大,并且输出信号与输入信号相位相反。

实验结果与理论计算值基本一致,验证了理论知识的正确性。

集成运放放大电路实验报告

集成运放放大电路实验报告

集成运放放大电路实验报告一 实验目的:用运算放大器等元件构成反相比例放大器,同相比例放大器,反相求和电路,同相求和电路,通过实验测试和分析,进一步掌握它们的主要特征和性能及输出电压与输入电压的函数关系。

二 仪器设备:i SXJ-3B 型模拟学习机 ii 数字万用表 iii 示波器 三 实验内容:每个比例求和运算电路实验,都应进行以下三项: (1)按电路图接好后,仔细检查,确保无误。

(2)调零:各输入端接地调节调零电位器,使输出电压为零(用万用表200mV 档测量,输出电压绝对值不超过0.5mv )。

A. 反相比例放大器 实验电路如图所示R1=10k Rf=100k R ’=10k 输出电压:Vo=-(Rf/R1)V1 实验记录:直流输入电压V10.1V 0.3V 1V 输出电压理论估算值 -1V - 3V -10 V 实测值--0.978V-2.978V 9.978V 误差0.022V0.022V0.022V将电路输入端接学习机上的直流信号源的OUTPUT ,调节换档开关置于合适位置,并调节电位器,使V1分别为表中所列各值,(用万用表测量)分析输出电压值, 填在表内。

实际测量V0的值填在表内。

B 同相比例放大器 R1=10k, Rf=100k R '=10k 输出电压:V0=(1+Rf/R1)V1 调零后,将电路输入端接学习机上的直流信号源的OUTPUT,调节换挡开关置于合适位置,并调节电位器,使U1分 别为表中所列各值,(用万用表测量)分析输出电压值,填在表内。

E 电压跟随器 实验电路:直流输入电压V1 0.1V0.3V 1V 输出电压V0理论估算值 1.1V 3.3V 11V 实测值1.121V 3.321V 11.020V误差0.021V0.021V0.020VV1(Mv)30.0 100.0 1000 3000测试条件Rs=10kRf=10kRL开路同左同左Rs=100kRf=100kRL开路Rs=100kRf=100kRL=10k同左Rs=100kRf=10kRL开路Rs=10kRf=10kRL开路V0(Mv)理论估算值30.00 100.00 1000 1000 1000 3000 3000 3000实测值30.002 100.001999.992999.991 999.991 3000 3000 3000误差0.002 0.001 0.008 0.009 0.009 0 0 0 四思考题1 在反相比例放大器和加法器中,同相输入端必须配置一适当的接地电阻,其作用是什么?阻值大小的选择原则怎样考虑?此电阻也称之为平衡电阻,使输入端对地的静态电阻相等,减少输入失调电流或失调电压对电路的影响。

5集成运放电路实验报告

5集成运放电路实验报告

5集成运放电路实验报告实验目的:1.熟悉基本的集成运放电路的组成和功能;2.了解非反转运放电路、反转运放电路及运算放大器电路的工作原理;3.学会使用运放电路进行信号放大、滤波和求和。

实验仪器:1.电源供应器2.六组运筹放大器模数器件3.信号发生器4.示波器5.可调电阻6.电容7.电感实验原理:集成运放是一种重要的模拟电子器件,可广泛应用于电子电路中。

它具有高放大倍数、输入阻抗高、输出阻抗低等特点,在模拟电路的设计中起到了重要作用。

实验一:非反转运放电路非反转运放电路可以实现信号的放大,其电路图如下:Rf------------↑----------,OUVref---------+, -, VouV1,+--------R1R++----------```实验二:反转运放电路反转运放电路可用于信号放大和求逆,其电路图如下:```Rf--------↑--------,-,V1-----,+R1++----------```实验三:运算放大器电路运算放大器是一种特殊的运放电路,可以实现加法、减法、乘法和除法等运算。

其电路图如下:```Rf---------↑-------------,OUVref1--------V1-------------------Rg```实验步骤:1.使用示波器测量电源供应器的输出电压,调整到所需电压范围内;2.将非反转运放电路连接好,并连接示波器检测输出波形;3.调整电阻值,观察输出波形的变化;4.按照同样的方式,搭建反转运放电路进行实验;5.最后,搭建运算放大器电路进行实验,观察输出波形的变化。

实验结果:1.非反转运放电路实验中,当Rf=10kΩ,R1=2.2kΩ,V1=2V时,输出波形经过放大后为4V;2.反转运放电路实验中,当Rf=10kΩ,R1=2.2kΩ,V1=2V时,输出波形经过放大后为-4V;3. 运算放大器电路实验中,V1=2V,Vref1=4V,Rf=10kΩ,R1=2.2kΩ,Rg=3kΩ,输出波形为两个输入信号的和。

集成运放电路实验总结

集成运放电路实验总结

集成运放电路实验总结集成运放(Operational Amplifier,简称Op Amp)是一种广泛应用于电路中的电子元器件。

在本次实验中,我们通过搭建基本的集成运放电路,理解其工作原理,并探究其在各种应用场景下的性能特点。

首先,我们搭建了一个简单的非反馈运放电路。

该电路的原理是将输入信号传递到运放的反向输入端,通过运放内部的放大模块,输出信号将作为电压跟随输入信号变化。

这个电路的放大倍数与运放参数有关,我们可以按照具体的需求,选择不同参数的运放实现不同的放大倍数和带宽等特性。

接下来,我们尝试了运用集成运放实现信号放大、筛选、求反等功能。

我们搭建了一个滤波器电路,通过调整运放反馈网络的参数(即电容大小和电阻大小),实现了对不同频率信号的筛选。

同时,我们也实现了信号的放大功能。

这些实验充分展现了集成运放的强大的信号处理能力。

除了以上的应用场景,集成运放还可用于比较电路、积分电路、微分电路等。

这些电路充分展现了集成运放在电子电路中的重要作用。

在实验中,我们也注意到了集成运放电路的一些特殊性质。

如:输入端阻抗极高、输出电阻极低、运放输出总是追随着反向输入端的变化、实现了对输入信号的放大、保持了各项特性的良好线性等。

这些特性使得集成运放成为现代电子电路设计中非常有价值的元器件。

虽然集成运放的特性优越,但也有其缺点。

例如:如果电路反馈不稳定,就可能出现振荡的情况。

同时,集成运放也可能存在噪声等影响其性能的因素,需要在设计时进行合理的防止和处理。

综上所述,本次集成运放电路实验,让我们深入地了解了集成运放的工作原理、应用场景和特性,同时也掌握了一些基本的电路设计技巧。

这对于电子电路的设计和实现,都具有重要的指导和启示意义。

集成运算放大器实验报告总结

集成运算放大器实验报告总结

集成运算放大器实验报告总结
本次实验通过对集成运算放大器的原理和特性进行研究,掌握了集成运算放大器的基本工作原理、性能特点、应用范围和电路设计方法等方面的知识。

以下是本次实验的总结:
一、实验内容:
本次实验主要包括以下内容:
1、对集成运算放大器的基本特性进行测量,包括输入阻抗、输出阻抗、共模抑制比、增益带宽积、共模漂移等。

2、利用集成运算放大器设计反相放大电路、非反相放大电路、电压跟随器电路,实现对输入信号的放大和处理。

3、利用集成运算放大器设计直流平移电路、带通/陷波滤波电路,实现对输入信号的滤波和分析。

4、利用集成运算放大器设计电路输出交流信号的直流偏置,实现输出直流电平的稳定。

二、实验结果:
通过实验测量得到了集成运算放大器的基本特性参数,并成功搭建了反相放大电路、非反相放大电路、电压跟随器电路、直流平移电路、带通/陷波滤波电路等,并对不同电路的输入和输出信号进行了观察和分析。

三、实验体会:
通过本次实验,我对集成运算放大器的工作原理、特性及其应用有了更深入的了解,同时加强了实验能力和动手能力。

同时,在实验过程中我也深刻体会到了理论知识与实践操作的重要性,只有把理论与实验相结合,才能更好地理解和掌握这门学科的知识。

集成运放的线性运算电路实验报告

集成运放的线性运算电路实验报告

实验一 集成运放的线性运算电路实验报告一、实验目的1.掌握运放运算电路的测量分析方法。

2.巩固集成运放几种典型运算电路的用法,掌握电路元、器件选择技巧。

二、实验仪器与设备1.模拟电路实验箱:包括本实验所需元器件; 2.双踪示波器1台; 3.万用电表1台。

三、实验原理1.反相求和运算电路图1-1为典型的反相求和运算电路,输出U o 与输入U I 有如下关系U O =−(R F R 1U I1+R F R 2U I2+R FR 3U I3)若设R 1=R 2=R 3=R F ,上式可简化为U O =−(U I1+U I2+U I3)图1-1 反相求和运算电路2.差分比例运算电路图1-2为差分比例运算电路,输出U o 与输入U I 有如下关系U O =−R FR(U I1−U I ′) 电路的输入电阻为R i ≈2R图1-2 差分比例运算电路四、实验内容与步骤1.反相求和运算电路实验(1)按照图1-1连接电路;(2)调节实验箱上的可调电阻器,在0~1.5V范围内分别为U I1、U I2、U I3选择一组给定值;(3)测量输入电压U I1、U I2、U I3和输出电压U o,将测量结果填入下表中;2.差动比例运算电路实验(1)按图1-2连接电路电路,接通电源;(2)按下表在输入端加上直流电压,测量对应的输出电压,填入表中,并与计算值比四、预习要求1.复习第1单元有关内容;2.下载或绘制实验记录表;3.预习双踪示波器的使用方法五、实验报告要求1.填写实验表格;2.进行实验小结;3.上传实验报告。

集成运放实验报告

集成运放实验报告

集成运放实验报告
一、实验内容
本次实验有两个目的:
1、学习集成运放器(Integrated Operational Amplifier)原理及其基本特性。

2、实现4级级联放大器,实验者要求将放大后的信号接到音箱上,在视觉上调节输入信号的大小,而无需任何外部仪器及辅助电路的情况下实现对输出信号的控制。

二、实验准备
实验前先查阅及准备一些基础理论,以利于理解操作过程中的变化,将电路图画出,清楚的理解其行为,熟悉试验电路并熟悉每个元件的性质,在此基础上检查实验准备是否齐全。

三、实验步骤
(1)先了解集成运放器原理,清楚其位移放大电路,了解集成运放器的基本特性,它可以实现大范围放大信号。

(2)根据目标功能,搭建实验电路,采取四级级联放大,运用集成运放器达到放大信号的目的,然后将输出信号接到音箱上,利用变阻器调节放大器的输入信号等级。

(3)最后,连接对应的电源线,查看设备运行是否正常,检查线路有无漏电,有无错接的线路,,如果没有可以放心使用。

四、实验结果
本次实验中,级联放大器把电路中的输入信号放大到输出信号,可以大幅度调节输出信号的等级,而无需任何外部仪器及辅助电路,测试结果证明级联放大器确实达到了预期的电路效果,实现了输出信号的控制以及增益的调节。

五、总结
通过本次实验,实现了无外接仪器就可以大幅度改变输出信号强度的级联放大器,掌握了常用集成运放器,以及其优势与功能,增进对运放器及其原理的理解。

运算集成放大电路实验报告

运算集成放大电路实验报告

运算集成放大电路实验报告运算集成放大电路实验报告引言:运算集成放大电路(Operational Amplifier, 简称Op-Amp)是一种广泛应用于电子电路中的集成电路元件。

它具有高增益、高输入阻抗、低输出阻抗等特点,被广泛应用于信号放大、滤波、比较、积分等电路中。

本实验旨在通过搭建运算放大器电路,验证其基本特性,并探究其在不同应用中的工作原理和性能。

实验一:运算放大器的基本特性验证1. 实验目的本实验旨在验证运算放大器的基本特性,包括增益、输入阻抗和输出阻抗。

2. 实验步骤(1)搭建一个基本的运算放大器电路,包括一个运算放大器芯片、两个电阻和一个电源。

(2)通过输入一个信号,观察输出信号的变化,并记录输入输出电压。

(3)更改输入信号的幅度和频率,观察输出信号的变化。

3. 实验结果与分析在实验中,我们发现输出信号与输入信号之间存在一个固定的放大倍数,即运算放大器的增益。

通过调节输入信号的幅度,我们可以观察到输出信号的变化,并根据实际测量结果计算出增益值。

此外,我们还发现运算放大器具有很高的输入阻抗和低的输出阻抗,使其能够有效地接收和驱动外部电路。

实验二:运算放大器的应用1. 实验目的本实验旨在通过实际应用电路,进一步探究运算放大器的工作原理和性能。

2. 实验步骤(1)搭建一个非反相放大电路,观察输入输出信号之间的关系。

(2)搭建一个反相放大电路,观察输入输出信号之间的关系。

(3)搭建一个积分电路,观察输入方波信号在电容上的积分效果。

3. 实验结果与分析在实验中,我们观察到非反相放大电路能够将输入信号放大,并保持与输入信号相同的相位。

而反相放大电路则将输入信号进行反相放大,输出信号与输入信号之间存在180度的相位差。

积分电路则将输入方波信号在电容上进行积分,输出信号为三角波信号。

结论:通过本次实验,我们验证了运算放大器的基本特性,并进一步了解了其在不同应用电路中的工作原理和性能。

运算放大器作为一种重要的电子元件,广泛应用于各种电子电路中,为信号处理提供了便利和灵活性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验报告
姓名:学号:
日期:成绩:
一、实验目的
1、研究由集成运算放大器组成的比例、加法、减法和积分等基本运算电路的功能。

2、了解运算放大器在实际应用时应考虑的一些问题。

二、实验原理
集成运算放大器是一种具有高电压放大倍数的直接耦合多级放大电路。

当外部接入不同的线性或非线性元器件组成输入和负反馈电路时,可以灵活地实现各种特定的函数关系。

在线性应用方面,可组成比例、加法、减法、积分、微分、对数等模拟运算电路。

理想运算放大器特性
在大多数情况下,将运放视为理想运放,就是将运放的各项技术指标理想化,满足下列条件的运算放大器称为理想运放。

开环电压增益A
ud
=∞
输入阻抗r
i
=∞
输出阻抗r
o
=0
带宽 f
BW
=∞
失调与漂移均为零等。

理想运放在线性应用时的两个重要特性:
(1)输出电压U
O
与输入电压之间满足关系式
U O =A
ud
(U
+
-U


由于A
ud =∞,而U
O
为有限值,因此,U
+
-U

≈0。

即U
+
≈U

,称为“虚短”。

(2)由于r i =∞,故流进运放两个输入端的电流可视为零,即I IB =0,称为“虚断”。

这说明运放对其前级吸取电流极小。

上述两个特性是分析理想运放应用电路的基本原则,可简化运放电路的计算。

基本运算电路 1) 反相比例运算电路
电路如图6-1所示。

对于理想运放, 该电路的输出电压与输入电压之间的关系为
为了减小输入级偏置电流引起的运算误差,在同相输入端应接入平衡电阻R 2=R 1 // R F 。

图6-1 反相比例运算电路 图6-2 反相加法运算电路
2) 反相加法电路
电路如图6-2所示,输出电压与输入电压之间的关系为
)U R R
U R R (
U i22
F i11F O +-= R 3=R 1 // R 2 // R F 3) 同相比例运算电路
图6-3(a)是同相比例运算电路,它的输出电压与输入电压之间的关系为
i 1
F
O )U R R (1U +
= R 2=R 1 // R F 当R 1→∞时,U O =U i ,即得到如图6-3(b)所示的电压跟随器。

图中R 2=R F ,用以减小漂移和起保护作用。

一般R F 取10K Ω, R F 太小起不到保护作用,太大则影响跟随性。

i 1
F
O U R R U -
=
(a) 同相比例运算电路 (b) 电压跟随器
图6-3 同相比例运算电路
4) 差动放大电路(减法器)
对于图6-4所示的减法运算电路,当R 1=R 2,R 3=R F 时, 有如下关系式 )U (U R R U i1i21
F
O -=
图6-4 减法运算电路图 图 6-5 积分运算电路
三、实验设备与器件
1、±12V 直流电源
2、函数信号发生器
3、交流毫伏表
4、直流电压表
5、集成运算放大器μA741×1 电阻器、电容器若干。

四、实验内容
实验前要看清运放组件各管脚的位置;切忌正、负电源极性接反和输出端短路,否则将会损坏集成块。

1、反相比例运算电路
1) 按图6-1连接实验电路,接通±12V电源,输入端对地短路,进行调零和消振。

2) 输入f=100Hz,U
i =0.5V的正弦交流信号,测量相应的U
O
,并用示波器
观察u
O 和u
i
的相位关系,记入表6-1。

表6-1 U
i
=0.5V,f=100Hz
U i (V )U
(V)u
i
波形u
O
波形A
V
0.538 -5.303 实测值计算值-9.876 -10
2、同相比例运算电路
1) 按图6-3(a)连接实验电路。

实验步骤同内容1,将结果记入表6-2。

2) 将图6-3(a)中的R
1
断开,得图6-3(b)电路重复内容1)。

表6-2[6-3(a)] U
i
=0.5V f=100Hz
U i (V)U
O
(V) u
i
波形u
O
波形A
V
0.537 5.94 实测值计算值11.06 11
表6-2[6-3(b)]
U i (V)U
O
(V) u
i
波形u
O
波形A
V
0.54 0.56
实测值计算值
1.04 1
表6-2[6-3(b)]
3、反相加法运算电路
1)按图6-2连接实验电路。

调零和消振。

2) 输入信号采用直流信号,图6-6所示电路为简易直流信号源,由实验者自行完成。

实验时要注意选择合适的直流信号幅度以确保集成运放工作在线性
区。

用直流电压表测量输入电压U
i1、U
i2
及输出电压U
O
,记入表6-3。

图6-6 简易可调直流信号源
表6-3
(V) -1 -1 -1 -1 -1
U
i1
(V) 1.8 1.7 1.6 1.5 1.4
U
i2
(V) -8.26 -7.15 -6.32 -5.12 -4.43
U
O
4、减法运算电路
1) 按图6-4连接实验电路。

调零和消振。

2) 采用直流输入信号,实验步骤同内容3,记入表6-4。

表6-4
(V) 0.30 0.40 0.15 0.10 -0.05 U
i1
(V) 0.65 0.65 0.65 0.65 0.65 U
i2
(V) -5.45 -5.94 6.33 -6.72 -7.27
U
O
五、实验总结
1、将理论计算结果和实测数据相比较,分析产生误差的原因。

从计算结果可知,实验测得结果与理论值相比都偏大一点,原因是在分析模拟运算电路的输出与输入之间的关系时,为简单计算,一般都将运放视为理想运放,但是,实际运放与理想运放的性能参数是有差异的,实际运放并不是理想的,存在是调温度飘移误差,以及闭环增益误差在分析因此产生的运算误差时,一般只考虑主要影响因素,则运算参数的非理想性引起运算误差.再者就是测量时在操作过程中也会出现人为的测量不精确以及系统误差,这些都会造成是测量值与理论之间的误差的结果.
2、分析讨论实验中出现的现象和问题。

在实验中进行调零时电压太大很难调,操作过程中会出现失调的现象.
实际运放并不是理想的, 存在失调、温度漂移误差, 以及闭环增益误差。

也即在输入端无信号输入时, 输出端仍输出不为零的电压。

虽然可以试尝通过运放的调零电路进行调节使输出端电压趋于零。

但集成运放调零电路是以改变差动输入级的对称性来实现调零的, 调零作用过大时, 差动输入级的对称性就会严重失配, 从而使集成运放的共模抑制性能变坏。

而且在集成运放外接电路电阻阻值过大时, 失调电流的影响较严重, 用调零的方法来补偿失调输出, 势必造成差动输入级的严重失衡, 以至会大大降低集成运放抑制漂移的性能。

另外, 集成运放的温度漂移是无法通过调零电路来消除的。

因此在作运放应用电路设计时, 为提高运放的精度和工作稳定性, 应该在不考虑调零电路作用时, 要求输出失调电压尽可能的小, 或等价地要求输入失调电压尽可能小。

相关文档
最新文档