滚珠丝杠螺母副的设计..

合集下载

数控车床滚珠丝杠副的选型计算

数控车床滚珠丝杠副的选型计算

1 序言在卧式车床的数控化改造或数控车床的新设计中,滚珠丝杠副作为数控传动系统的关键部件之一,其选型及安装的合理性直接影响到数控车床(以下简称车床)的精度、寿命及性能。

目前国内关于一般滚珠丝杠副的选型计算较为充分,如黄育全针对滚珠丝杠副的选型提出了一个初步成熟的算法。

然而目前车床行业的发展趋于功能专业化,如高速、高精度的要求或大型重载的情况等,此时需要在螺母选择、螺母安装及丝杠支撑形式等方面作针对性选型。

2 滚珠丝杠副的螺母选择2.1 循环方式选择滚珠丝杠副按循环方式的不同分为内循环和外循环,滚珠在循环过程中始终不离开丝杠表面的称为内循环;反之,为外循环。

常见的浮动式、矩阵式结构为内循环,插管式及端块式或端盖式结构为外循环,如图1所示。

a)浮动式b)矩阵式c)插管式d)端块式或端盖式图1 常见滚珠螺母结构形式在相同导程与承载滚珠圈数的情况下,内循环存在无滚珠的滚道区域,故在轴向尺寸上较长;而外循环在轴向尺寸上结构相对紧凑,但滚珠的循环路线需要额外占用螺母的径向区域,即在相同情况下螺母的直径会增大,需要根据车床的具体安装部件的配合尺寸取舍。

值得注意的是,同等条件下,外循环方式的Dn值比内循环方式更大,相同负载工况下能获得更高的寿命。

2.2 预紧方式与预紧力选择为了保证丝杠副在车床上的重复定位精度,需保证滚珠螺母与丝杠之间无间隙,能够根据旋转角度和导程间接测量轴向行程。

此时在滚珠螺母与丝杠之间需维持预紧转矩。

螺母按预紧方式分为双螺母垫片预紧、单螺母增大滚珠直径预紧和单螺母变位导程预紧等。

车床大多数情况受力为单向,即可不考虑对反向间隙的控制,出于对成本及车床安装空间的考虑,推荐使用单螺母,预紧方式可以为增大滚珠直径预紧。

存在反向切削力,但相比正向时要小的多,高精度的应用场景下,可以使用非对称的双螺母预紧方式。

预紧方式仍为垫片式,但法兰螺母与直筒螺母的圈数可以不同;能在不影响正向进给预紧转矩需求的同时降低螺母副长度,如图2所示。

滚珠丝杠的设计与计算

滚珠丝杠的设计与计算

滚珠丝杠的设计与计算一、滚珠丝杠的特长1、1驱动扭矩仅为滑动丝杠的1/3滚珠丝杠是滚珠丝杠与螺母间的螺纹沟槽做滚动运动,因此可获得高效率,与过去的滑动丝杠相比,驱动扭矩仅为1/3以下(图1与2)。

从而,不仅可将旋转运动变为直线运动,而且可以容易地将直线运动变成旋转运动。

图1:正效率(旋转→直线)图2:反效率(直线→旋转)1、1、1导程角的计算法……………………………………( 1 )β:导程角(度)d p:滚珠中心直径(mm)ρh:进给丝杠的导程(mm)1、12推力与扭矩的关系当施加推力或扭矩时,所产生的扭矩或推力可用(2)~(4)式计算。

(1)获得所需推力的驱动扭矩T:驱动扭矩Fa:导向面的摩擦阻力Fa=μ×mgμ:导向面的摩擦系数g:重力加速度( 9.8m/s2)m:运送物的质量( kg )ρh:进给丝杠的导程( mm )η:进给丝杠的正效率(图1)(2)施加扭矩时产生的推力Fa:产生的推力( N )T:驱动扭矩(N mm )ρh:进给丝杠的导程( mm )η:进给丝杠的正效率(图1)(3)施加推力时产生的扭矩T:驱动扭矩(N mm )Fa:产生的推力( N )ρh:进给丝杠的导程( mm )η:进给丝杠的正效率(图2)1、1、3驱动扭矩的计算例用有效直径是:32mm,导程:10mm(导程角:5O41’的丝杠,运送质量为500Kg的物体,其所需的扭矩如下(1)滚动导向(μ=0.003)滚珠丝杠及(μ=0.003,效率η=0.96)导向面的摩擦阻力Fa=0.003×500×9.8=14.7N驱动扭矩(2)滚动导向(μ=0.003)滚珠丝杠及(μ=0.2,效率η=0.32)导向面的摩擦阻力Fa=0.003×500×9.8=14.7N驱动扭矩1、2保证高精度雄联滚珠丝杠,在被恒温控制的工场里,用最高水平的机械设备进行研磨,直到组装,检查,实行彻底的品质管理体系,以保证其精度。

滚珠丝杠螺母副的选型与计算

滚珠丝杠螺母副的选型与计算

金属切削机床的技术规格每一类机床,为了能够加工不同尺寸的工件,所以不可能所有的机床都做成一种规格,这是不是实际也是不符合经济效益的。

国家根据了机床的生产和使用的情况,规定了每一种通用机床的主参数和第二主参数系列。

卧式车床的主参数包括:在床身上工件的最大回转直径有250、320、400、500、630、800、1000、1250mm八种规格;主参数相同的卧式车床一般又有几种不同的第二的主参数——最大工件长度。

例如,CA6140型卧式车床在床身上最大回转直径为400mm,而最大工件长度有750、1000、1500、2000mm四种。

机床的基本运动机床进行加工的实质其实就是让刀具与工件之间进行相对的运动。

虽然各种类型机床的具体用途和加工的方法不尽相同,但是它们工作的基本原理都是一样的,那就是通过刀具和工件之间的相对运动,使得毛坯上的多余金属被切除,并形成一定的形状、尺寸和质量的表面,从而获得所需要的机械零件。

因此加工需要什么运动和机床需要如何实现这些运动,就是我们首先要讨论的问题。

机床的运动分析,就是研究在金属切削机床上的各种运动及其相互联系。

机床运动分析的一般过程包括:根据在机床上加工的各种表面和使用的刀具类型,分析出得到这些表面的方法和所需要的运动,再去分析为了实现这些运动,机床应该具备的传动联系,实现这些传动联系的机构以及机床运动的调整方法。

这个顺序可以总结为“表面-运动-传动-机构-调整”。

尽管机床的品种有很多,结构也不尽相同,但归根结底也不过是几种基本运动类型的组合与转化而已。

机床运动的分析目的在于,可以利用非常简便的方法迅速地认识一台陌生的机床、掌握机床的运动规律、分析或者比较各种机床的传动系统,从而能够合理地去使用机床和正确设计机床的传动系统。

机床的传动系统传动链传动链是指由运动源、传动装置和执行件按一定的规律所组成的传动系统。

机床加工过程中所需的各种运动都是通过相应的传动链来实现的。

运动源运动源是给执行件提供动力和运动的装置。

滚珠丝杠的设计计算

滚珠丝杠的设计计算

3.4 滚珠丝杠螺母副的计算和选型3.4.1 纵向进给丝杠滚珠丝杠的选型螺纹滚道型面的选择 1.单圆弧型面 2.双圆弧型面选择要求:经济易调试稳定选择方案 2双圆弧型面选择原因接触角Ъ不变双圆弧交接处尚有小空隙可容纳一些赃物这读滚珠丝杠有利而不致堵塞滚珠循环方式: 1内循环 2外循环选择方案:外循环选择原因:结构制造较易经济实用轴向间隙的调整和预紧力的选择1垫片式 2螺纹式 3齿差式选择要求: 经济可靠易拆装刚度高选择方案:双螺母垫片式预紧选择原因:结构简单可靠性好刚度高拆装方便丝杠的安装方式①计算进给率引力(N)纵向进给为三角形贴塑导轨:=1.15×1873+0.04(2491+800)=2500N式中: K-考虑颠复力矩影响的实验系数,综合导轨:K=1.15-滑动导轨磨擦系数 0.03~0.05G-溜板及刀架重力G=800N②计算最大动负载FF=L=(60×n×T)/10N=1000 /式中: -滚珠丝杠导程,初选=6mm-最大切削力下的进给速度,可取最高进给速度的(1/2-1/3), =1.5m/minT-使用寿命,按15000h-运动系数,取=1.2L-寿命以转为1单位由式知:n=1000 / =(1000×1.5)/6=250r/min由式知:L=(60×N×T)=(60×250×15000)/ =255由式知:F= ×1.2×2500=18246.6N=1862kg③计算最大静负载=×=2×1862=3724N<=69678N④滚珠丝杠螺母副的类型选用滚珠丝杠副的直径时,必须保证在一定轴向负载作用下,丝杠在回转100万转后,在它的滚道上不产生点蚀现象。

根据纵向进给丝杠的动负载来选取滚珠丝杠螺母副。

查阅文献附表A表3,可采用 3506型3.5圈一列外循环垫片调整预紧的双螺母滚珠丝杠副,其额定动载荷为19012N,额定静载荷为69678N,精度等级为3级。

数控技术专业《2.1.3滚珠丝杠螺母副间隙的调整方法》

数控技术专业《2.1.3滚珠丝杠螺母副间隙的调整方法》

滚珠丝杠螺母副间隙的调整方法
4螺纹调整间隙法
螺纹调整间隙法:常用的双螺母消除间隙的方法之一,如下图,右螺母2外圆上有普 通螺纹,并用两螺母4、5固定。当调整圆螺母4时,即可调整轴向间隙,然后用锁紧 螺母5锁紧。这种方法结构紧凑,工作可靠,滚道磨损可随时调整,但预紧力不准确 。
滚珠丝杠螺母副间隙的调整方法
滚珠丝杠螺母副间隙的调整方法
2垫片调整间隙法
垫片调整间隙法:常用的双螺母消除间隙的方法之一,如下图,调整垫片4的厚度, 使左右两螺母1、2产生轴向位移,从而消除滚珠丝杠螺母副的间隙和产生预紧力。这 种方法简单、可靠,但调整费时,适用于一般精度的传动。
滚珠丝杠螺母副间隙的调整方法
3齿差调整间隙法
齿差调整间隙法:常用的双螺母消除间隙的方法之一,如下图,两个螺母1、2的凸缘 为圆柱外齿轮,齿数差为1,两个内齿轮3、4用螺钉、定位销紧固在螺母座上。调整 时先将内齿轮卸下,根据间隙大小使两个螺母分别向相同方向转过1个齿或几个齿, 然后再插入内齿轮,使螺母在轴向相互移动了相应的距离,从而消除两个螺母的轴向 间隙。
思考一下
何种零件轮廓受反向间隙影响比较大?
今天,你离成功更近一步!
内容概要本ຫໍສະໝຸດ 课程主要介绍以下四个方面的内容:滚珠丝杠螺母副间隙的影响
垫片调整间隙法 齿差调整间隙法
螺纹调整间隙法
重点:滚珠丝杠螺母副间隙的调整方法 难点:反向间隙如何影响机械加工精度
滚珠丝杠螺母副间隙的调整方法
1滚珠丝杠螺母副间隙的影响
滚珠丝杠螺母副的滚珠与滚道间隙,会导致机床在该方向上反向传动时信号丧失,影 响反向传动精度和轴向刚度,所以必须消除轴向间隙。

滚珠丝杠螺母副的计算和选型

滚珠丝杠螺母副的计算和选型

滚珠丝杠螺母副的计算和选型Δ3一、进给传动部件的计算和选型进给传动部件的计算和选型主要包括:确定脉冲当量、计算切削力、选择滚珠丝杠螺母副、计算减速器、选择步进电机等。

1、脉冲当量的确定根据设计任务的要求,X方向的脉冲当量为δx=0.005mm/脉冲,Z 方向为δz=0.01mm/脉冲。

2、切削力的计算切削力的分析和计算过程如下:设工件材料为碳素结构钢,σb=650Mpa;选用刀具材料为硬质合金YT15;刀具几何参数为:主偏角κr=45°,前角γo=10°,刃倾角λs=-0°;切削用量为:背吃刀量a p=1mm,进给量f=0.18mm/r,切削速度vc=90m/min。

查表得:C Fc=270,x Fc=1.0,y Fc=0.75,n Fc=-0.15。

=1.0;刃倾角、前角和刀尖圆弧查表得:主偏角κr的修正系数kκrFc半径的修正系数均为1.0。

由经验公式(3—2),算得主切削力F c=2673.4N。

由经验公式F c:F f:F p=1:0.35:0.4,算得进给切削力F f=935.69N,背向力F p=1069.36N。

3、滚珠丝杠螺母副的计算和选型(1)工作载荷F m的计算已知移动部件总重G=1300N;车削力F c=2673.4N,F p=1069.36N,F f=935.69N。

根据F z=F c,F y=F p,F x=F f的对应关系,可得:F z=2673.4N,F y=1069.36N,F x=935.69N。

选用矩形—三角形组合滑动导轨,查表,取K=1.15,μ=0.16,代入F m=KF x+μ(F z+G),得工作载荷F m=1712N。

(2)最大动载荷F Q的计算设本车床Z向在最大切削力条件下最快的进给速度v=0.8m/min,初选丝杠基本导程P h=6mm,则此时丝杠转速n=1000v/P h=133r/min。

取滚珠丝杠的使用寿命T=15000h,代入L0=60nT/106,得丝杠系数L0=119.7×106r。

滚珠丝杠螺母副间隙调整方式

滚珠丝杠螺母副间隙调整方式

滚珠丝杠螺母副间隙的调整方式主要有以下几种:
垫片调隙式:通过调整垫片的厚度使螺母产生轴向位移,以消除间隙和产生预拉紧力。

这种结构的特点是构造简单、可靠性好、刚度高以及装卸方便。

但调整费时,并且在工作中不能随意调整,除非更换厚度不同的垫片。

螺纹调隙式:其中一个螺母的外端有凸缘而另一个螺母的外端没有凸缘而制有螺纹,它伸出套筒外,并用两个圆螺母固定着。

旋转圆螺母时,即可消除间隙,并产生预拉紧力,调整好后再用另一个圆螺母把它锁紧。

硬调整法:使用机械性的方法使丝杠螺母副间隙消除,根本上实现无间隙进给。

但比起调整它的过程要复杂一些,而且还要经过多次调整,方能达到理想的工作状态。

软调整法:在加工程序中加入刀补数,刀补数等于所测得的轴向间隙数或是调整数控机床系统轴向间隙参数的数值。

但这是治标不治本的办法。

浅谈滚珠丝杠的设计

浅谈滚珠丝杠的设计

浅谈滚珠丝杠的设计滚珠丝杠副是在丝杠与螺母之间以滚珠(钢球)为滚动体的螺旋传动元件,因而可使丝杠和螺母之间的相对运动变为滚动。

由于滚珠丝杠副具有高效率、高精度及高速特性、耐磨损性和运动可逆性等许多优异特性,所以,滚珠丝杠副作为高效(节能)和精密的先进传动机构,在国内外已引起了广泛的应用。

一、滚珠丝杠副的工作原理、特点及结构形式1.滚珠丝杠副的工作原理及特点(1)滚珠丝杠副的工作原理。

滚珠丝杠副是在丝杠和螺母之间放入适量的滚珠,使丝杠与螺母之间由滑动摩擦变为滚动摩擦的丝杠传功。

滚珠丝杠副在机械传动中的作用,同样是可以将旋转运动变为直线运动。

也可以将直线运动变为旋转运动。

滚珠丝杠副一般是由丝杠1、螺母2、滚珠(钢球)3及滚珠循环返回装置4四个部分组成,如图1所示。

(2)滚珠丝杠副的特点由上述工作原理可知,滚珠丝杠副与滑动丝杠副比较,滚动摩擦代替了滑动摩擦,因此,具有以下特点:摩擦损失小、传动效率高;磨损小、寿命长;轴向刚度高;摩擦阻力小、运动平稳;不能自锁、具有传动的可逆性。

2.滚珠丝杠副的结构型式(1)螺纹法向截型。

螺纹法向截型(或称滚道型面)是指通过滚珠中心的螺旋线的法向平面与丝杠或螺母滚道面的交线的形状。

目前,较常用的滚道型面为单圆弧和双圆弧(图2)两种。

在两种螺纹法向截型中,通过滚珠中心与滚道接触点的连线与螺纹轴线的垂线间的夹角β,称为接触角。

接触角β越大,滚珠螺旋传动的承载能力和刚度就越大,传动效率越高。

接触角β很小时,丝杠能承受的轴向力变小,同时在相同的轴向负荷的作用下,会使得径向力增大,即使挤压滚珠的压力加大,这将会降低丝杠的使用寿命。

3.滚珠循环方式(1)外循环。

滚珠在循环过程中,不能始终保持与丝杠表面接触,即当滚珠从螺纹滚道终端返回到滚道始端时与丝杠表面脱离接触,通常把这种循环方式称为外循环。

(2)内循环。

滚珠在循环过程中,始终与丝杠表面保持接触的循环叫做内循环。

目前,我国已广泛使用一种具有镶块式返向器的内循环结构。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

目录一成绩评定表………………………………………………………………………二课程设计任务书………………………………………………………………三前言……………………………………………………………………………………四滚珠丝杠螺母副的设计……………………………………………………五轴承选择……………………………………………………………………………六电机选择……………………………………………………………………………七设计总结……………………………………………………………………………八参考文献……………………………………………………………………………成绩评定表课程设计任务书前言课程设计是在学完机床课后,进行一次学习设计的综合性练习。

通过设计,运用所学过的基础课,技术基础课和专业课的理论知识,生产实习和实验等实践知识,达到巩固加深和扩大所学知识的目的。

通过设计,分析比较机床主传动中某些典型机构,进行选择和改进,学习构造设计,进行设计计算和编写技术文件。

完成机床主传动设计,达到学习设计步骤和方法的目的。

通过机床课程设计,获得设计工作的基本技能的训练,提高分析和解决工程技术问题的能力。

并未进行一般机械的设计创造一定的条件。

滚珠丝杠螺母副的设计1.确定滚珠丝杠副的导程因电机与丝杠直联,i=1由表1查得V max=10m/min n max= 1500r/min代入得, P h=8mm查表,取P h=8mm2.确定当量转速与当量载荷(1)各种切削方式下,丝杠转速n max=v max/P h=6000/8=750r/minn min=v min/p h=1/10=0.1r/min(2)各种切削方式下,丝杠轴向载荷F max=5500+0.004*800=5503.2NF min=0.004*800=3.2N(3)当量转速n m=(n max+n min)/2=(750+0.1)/2=375.05mm/min(2)当量载荷F m=(F max+F min)/3=(2*5503.2+3.2)/3=3669.9N3.预期额定动载荷(1)按预期工作时间估算按表查得:轻微冲击取 f w=1.3 f a=1可靠性90%取f c=1 已知:L h=15000小时代入得 Cam=34208(2)拟采用预紧滚珠丝杠副,按最大负载F max计算:按表查得:中预载取 F e=4.5代入得C am=24764.4取以上两种结果的最大值 C am=342084.确定允许的最小螺纹底径(1)估算丝杠允许的最大轴向变形量①≤(1/3~1/4)重复定位精度②≤(1/4~1/5)定位精度: 最大轴向变形量µm已知:重复定位精度6µm, 定位精度12µm①=2 δm=3 ②=3取两种结果的小值=2µm(2)估算最小螺纹底径丝杠要求预拉伸,取两端固定的支承形式(1.1~1.2)行程+(10~14)已知:行程为1000mm,代入得 L=1100mm F0=4N d2m=56.3mm5.确定滚珠丝杠副的规格代号(1)选内循环浮动式法兰,直筒双螺母型垫片预形式(2)由计算出的在样本中取相应规格的滚珠丝杠副FFZD6308-5P h=8mm , C a=40000>C am=34208, d2=57.5mm>d2m=56.3mm6. 确定滚珠丝杠副预紧力其中F max=5503.2N F p=1834.4N7.行程补偿值与与拉伸力(1)行程补偿值式中:L h=400 l n=147 =(2~4)ph=3*16=48mmL u=643mm(2) 预拉伸力代入得 Ft=11232N8.确定滚珠丝杠副支承用的轴承代号、规格(1)轴承所承受的最大轴向载荷代入得F Bmax=11736N(2)轴承类型两端固定的支承形式,选背对背60°角接触推力球轴承(3)轴承内径d 略小于d2=56.3mm FBP=1/3FBMAX取 d=55mm代入得 F BP= 5478N(4)轴承预紧力预加负荷5600N≥=5478N(5)按样本选轴承型号规格当d=55mm 预加负荷为:≥F BP所以选760308TNI轴承d=55mm D=100mm B=23mm9.滚珠丝杠副工作图设计(1) 丝杠螺纹长度L s:L s=L u+2L e由表查得余程Le=40(2)两固定支承距离L1按样本查出螺母安装联接尺寸丝杠全长L(3)行程起点离固定支承距离L0由工作图得Ls=850mmL1=490mmL=1020mmL0=30mm10 . 电机选择总的转动惯量J总=0.00487Kg*m2总得力矩T M=6.7384N*M根据转动惯量和力矩选择电机选择型号为90CB100C-001012 11 . 传动系统刚度(1)丝杠抗压刚度1)丝杠最小抗压刚度K smin= 6.6 ×10K smin:最小抗压刚度 N/md2:丝杠底径L1:固定支承距离K smin =1133 N/m2)丝杠最大抗压刚度×K smax =6.610K smax:最大抗压刚度 N/mK smax =9093.3 N/m(2) 支承轴承组合刚度1)一对预紧轴承的组合刚度K BO=2×2.34K BO:一对预紧轴承的组合刚度 N/m d Q:滚珠直径mmZ :滚珠数F amax:最大轴向工作载荷N:轴承接触角由样本查出7602030TUP轴承是F amax预加载荷的3倍 d Q=7.144 , Z=17 , =60K amax=5600*3=16800 N/mK BO=1201 N/m2)支承轴承组合刚度由两端固定支承K b=2K BOK b=2402N/mK b :支承轴承组合刚度N/m3)滚珠丝杠副滚珠和滚道的接触刚度K C= K C(K C :滚珠和滚道的接触刚度N/mK C:查样本上的刚度 N/mF P:滚珠丝杠副预紧力 NC a:额定动载荷 N由样本查得:K C=2069 N/m;C a=34700N;F P=1667.7N得K C=1620.65N/m12. 刚度验算及精度选择(1)== 1.9*10-3N/m= 1.14*10-3N/mF0=已知W1=800N ,=0.005 , F0=4NF0 :静摩擦力 N:静摩擦系数W1:正压力N(2)验算传动系统刚度K minK min:传动系统刚度N已知反向差值或重复定位精度为6K min=1.0667<556(3)传动系统刚度变化引起的定位误差=3.04*10-3m(4)确定精度V300p:任意300mm内的行程变动量对半闭环系统言, V300p≤0.8×定位精度-丝杠精度取为2级V300p=8m<9.6m(5) 确定滚珠丝杠副的规格代号已确定的型号:FFZD公称直径:50 导程:10螺纹长度:850丝杠全长:1020P类2级精度FFZD5010-3-P3 /1020×85013. 验算临界压缩载荷F c:N丝杠所受最大轴向载荷Fmax小于丝杠预拉伸力F不用验算。

14 . 验算临界转速n c=f×10n c : 临界转速 r/minf :与支承形式有关的系数:丝杠底径 mm:临界转速计算长度 mm由表得f=21.9由样本得d2=44.9由工作图及表14得:L c2= L1- L012139.6>n max=150015. 验算:D n=D pw n maxD pw :滚珠丝杠副的节圆直径 mmn max : 滚珠丝杠副最高转速 r/minD pw≈44.3mmn max=1500r/min78066>7000016. 滚珠丝杠副形位公差的标注表1:支承方式简图K2 λ f一端固定0.25 1.875 3.4一端自由一端固定2 3.927 15.1一端游动二端支承 1 3.142 9.7 二端固定 4 4.730 21.9δm=3设计总结在这次的课程设计中不仅检验了我所学习的知识,也培养了我如何去把握一件事情,如何去做一件事情,又如何完成一件事情。

在设计过程中,与同学分工设计,课程设计是我们专业课程知识综合应用的实践训练。

通过这次模具设计,本人在多方面都有所提高。

通过这次设计,提高了计算能力,绘图能力,熟悉了规范和标准,同时各科相关的课程都有了全面的复习,独立思考的能力也有了提高。

在这次设计过程中,体现出自己单独设计模具的能力以及综合运用知识的能力,体会了学以致用、突出自己劳动成果的喜悦心情,从中发现自己平时学习的不足和薄弱环节,从而加以弥补。

在此感谢我们的老师.,老师严谨细致、一丝不苟的作风一直是我工作、学习中的榜样;感谢对我帮助过的同学们,谢谢你们对我的帮助和支持,让我感受到同学的友谊。

参考文献1.陈铁鸣主编.机械设计.第4版.哈尔滨,哈尔滨工业大学出版社,20062.王连明,宋宝玉主编.机械设计课程设计.第2版.哈尔滨,哈尔滨工业大学出版社,20053. 王知行,刘廷荣主编..机械原理..北京:高等教育出版社,20054.宋宝玉主编.机械设计手册(第二版).北京:机械工业出版社,20045.陈铁鸣主编.新编机械设计课程设计图册.北京:高等教育出版社,20066.张志军.课程设计手册.沈阳理工大学出版,2009。

相关文档
最新文档