伺服控制系统(设计)复习过程
伺服控制系统(设计)

第一章伺服系统概述伺服系统是以机械参数为控制对象的自动控制系统。
在伺服系统中,输出量能够自动、快速、准确地尾随输入量的变化,因此又称之为随动系统或者自动跟踪系统。
机械参数主要包括位移、角度、力、转矩、速度和加速度。
近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及机电创造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步机电、感应电机为伺服机电的新一代交流伺服系统。
目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路创造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性创造系统以及自动化生产线等领域中的应用也迅速发展。
1.1 伺服系统的基本概念1.1.1 伺服系统的定义“伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行住手。
伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵便方便的控制。
1.1.2 伺服系统的组成伺服系统是具有反馈的闭环自动控制系统。
它由检测部份、误差放大部份、部份及被控对象组成。
1.1.3 伺服系统性能的基本要求1 )精度高。
伺服系统的精度是指输出量能复现出输入量的精确程度。
2 )稳定性好。
稳定是指系统在给定输入或者外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。
3 )快速响应。
响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。
4)调速范围宽。
调速范围是指生产机械要求机电能提供的最高转速和最低转速之比。
5 )低速大转矩。
在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。
伺服系统-第一章伺服系统设计概述

最大跟踪角加速度εmax
系统跟踪误差不超过em时,系统输出轴所能达到 的最大角加速度。
最大角速度Ωk、最大角加速度εk
不考虑跟踪精度的情况下,系统输出轴所能达到 的极限速度和极限角加速度。
正弦跟踪误差esin 速度品质系数Kv、加速度品质系数Ka 调速范围D
对系统工作制的要求 长期连续运行、间歇循环运行、短时间运行
对系统可靠性以及使用寿命的要求 连续运行无故障时间
对系统的使用环境条件的要求 环境温度、湿度、三防(防潮、防腐蚀、防辐 射)、抗振动、抗冲击
对系统结构形式的要求 体积、重量、结构外形、安装特点等
对系统经济性的要求 制造成本、标准化程度、元部件通用性、能源利 用率、维护使用、系统电源条件(电源种类、规 格、容量)
1.2 伺服系统的应用
机械制造 冶金 航天 微电子 军事 运输 通信工程 日常生活
机械制造
– 机床运动部分的位置控制、速度控制、运动轨迹控制 – 仿形机床、机器人手臂关节
冶金
– 电弧炼钢炉、粉末冶金炉的电极位置控制 – 轧钢机轧辊压下运动的位置控制
电极
轧前的 钢板
按控制方式分类
– 开环控制 – 闭环控制 – 复合控制
开环伺服系统
r
G1 ( s )
闭环伺服系统
r
e
G1 ( s )
-
复合控制伺服系统
r
G2 ( s ) c
G2 ( s ) c
B (s)
e G1 ( s ) +
-
G2 ( s ) c
1.7 伺服系统的技术要求
伺服控制技术复习题答案

伺服控制技术复习题答案一、选择题1. 伺服控制系统的主要功能是什么?A. 精确控制B. 稳定输出C. 节能降耗D. 以上都是2. 伺服电机的控制方式通常分为哪两种?A. 开环控制和闭环控制B. 手动控制和自动控制C. 线性控制和非线性控制D. 模拟控制和数字控制3. 下列哪个不是伺服驱动器的主要组成部分?A. 功率放大器B. 编码器C. 传感器D. 电机4. 伺服控制系统的PID调节参数中,P代表什么?A. 比例B. 积分C. 微分D. 比例积分微分5. 伺服电机的转速与什么参数成正比?A. 电压B. 电流C. 频率D. 负载二、填空题6. 伺服控制系统的闭环控制也称为________控制。
7. 伺服电机的转矩与________成正比。
8. 伺服控制系统的动态性能指标包括响应速度、________和稳定性。
9. 伺服电机的编码器通常安装在________上。
10. 伺服控制系统的PID调节中,I参数的增加可以增强系统的________。
三、简答题11. 简述伺服控制系统的基本组成。
12. 伺服控制系统与普通电机控制系统相比有哪些优势?13. 伺服电机的工作原理是什么?14. 伺服控制系统在工业自动化中的应用有哪些?15. 描述PID调节在伺服控制系统中的作用。
四、计算题16. 假设一个伺服电机的额定转速为3000转/分钟,额定电压为220V,额定电流为2A。
如果电机的实际工作电压为200V,实际电流为1.5A,请计算其实际转速。
五、论述题17. 论述伺服控制系统在现代制造业中的重要性及其发展趋势。
六、案例分析题18. 某工厂的自动化生产线需要精确控制工件的加工位置,分析伺服控制系统在此场景下的应用,并提出可能的解决方案。
七、实验题19. 设计一个简单的伺服控制系统实验,以验证PID参数对系统性能的影响。
八、思考题20. 思考伺服控制系统在未来可能面临的挑战和机遇。
【结束语】通过上述题目的复习,我们可以对伺服控制技术有一个全面而深入的了解。
机电一体化复习题(附答案)

机电⼀体化复习题(附答案)机电⼀体化复习题⼀、名词解释1机电⼀体化2伺服控制3闭环控制系统4逆变器5SPWM6单⽚机7I/O接⼝8I/O通道9串⾏通信10直接存储器存取(DMA)⼆、判断题:1在计算机接⼝技术中I/O通道就是I/O接⼝。
(×)2滚珠丝杆不能⾃锁。
(√)3⽆论采⽤何种控制⽅案,系统的控制精度总是⾼于检测装置的精度。
(×)4异步通信是以字符为传输信息单位。
(√)5同步通信常⽤于并⾏通信。
(×)6⽆条件I/O⽅式常⽤于中断控制中。
(×)7从影响螺旋传动的因素看,判断下述观点的正确或错误(1)影响传动精度的主要是螺距误差、中径误差、⽛型半⾓误差(√)(2)螺杆轴向窜动误差是影响传动精度的因素(√)(3)螺杆轴线⽅向与移动件的运动⽅向不平⾏⽽形成的误差是影响传动精度的因素(√)(4)温度误差是影响传动精度的因素(√)三、单项选择题1.步进电动机,⼜称电脉冲马达,是通过(B)决定转⾓位移的⼀种伺服电动机。
A脉冲的宽度B脉冲的数量C脉冲的相位D脉冲的占空⽐2.对于交流感应电动机,其转差率s的范围为(B)。
A.1B.0C.-1D.-13.PWM指的是(C)。
A.机器⼈B.计算机集成系统C.脉宽调制D.可编程控制器4.PD称为(B)控制算法。
A.⽐例B.⽐例微分C.⽐例积分D.⽐例积分微分5.在数控系统中,复杂连续轨迹通常采⽤(A)⽅法实现。
A.插补B.切割C.画线D.⾃动四、填空题1.在计算机和外部交换信息中,按数据传输⽅式可分为:串⾏通信和并⾏通信。
2.微机控制系统中的输⼊与输出通道⼀般包括模拟量输⼊通道模拟量输出通道、数字量输⼊通道数字量输出通道四种通道。
3.在伺服系统中,在满⾜系统⼯作要求的情况下,⾸先应保证系统的稳定性和精度并尽量⾼伺服系统的响应速度。
4.⼀般来说,伺服系统的执⾏元件主要分为电磁式液压式⽓压式和其它等四⼤类型。
5.在SPWM变频调速系统中,通常载波是等腰三⾓波,⽽调制波是正弦波6.异步交流电动机变频调速:a)基频(额定频率)以下的恒磁通变频调速,属于恒转矩调速⽅式。
工业机器人系统操作员理论复习题10(带答案)

工业机器人系统操作员理论复习题10(带答案)一、单选题(第1题~第70题。
每题1.0分,满分70.0分。
)1.一般机器人操作机中,决定姿态的机构是()。
A、端拾器B、基座C、手臂D、手腕[正确答案]:C2.机器人的精度主要依存于()控制算法误差与分辨率系统误差机器人在()模式下,使能器无效。
A、自动B、手动C、调试D、停止[正确答案]:A3.在焊接过程中,机器人系统发生撞枪故障,不可能发生的故障是()。
A、工件组装发生偏差;B、焊枪的TCP 不准确;C、原点发生偏移;D、控制电压不符合。
[正确答案]:C4.()型机器人通过沿三个互相垂直的轴线的移动来实现机器人手部空间位置的改变。
A、直角坐标B、圆柱坐标C、极坐标D、关节[正确答案]:A5.集体主义道德原则的底线是( )。
A、在职业活动中首先维护国家利益和集体利益;B、不追求个人利益;C、随时都可以牺牲个人利益;D、不侵犯国家利益和集体利益。
[正确答案]:D6.关于道德和法律,正确的观点是( )。
A、道德规范比法律规范缺乏严肃性和严谨性;B、道德的作用没有法律大,但二者在范围上有重合之处;C、道德和法律发生作用的方式、手段不同;D、道徳规范是感性的,法律规范是理性的。
[正确答案]:C7.服务群众的落脚点是( ) 。
A、热心公益B、方便群众C、扶困帮贫D、见义勇为[正确答案]:B8.人们形象地把国家利益、集体利益、个人利益之间的关系比喻为"大河有水小河满,小河无水大河干”。
这表明( )。
A、三者之间的关系是完全和谐的,不会产生矛盾;B、三者之间的关系是相互渗透的,且同等重要;C、三者之间的关系密切、相互影响;D、没有个人利益,就不会有国家利益和集体利益。
[正确答案]:C9.接到严重违反电气安全工作规程制度的命令时,应该()执行。
A、考虑B、部分C、拒绝D、立刻[正确答案]:C10.发那科机器人外部急停接线应接在TBOP20输入接口的()。
伺服控制系统课程设计

伺服控制系统课程设计一、教学目标本节课的教学目标是使学生掌握伺服控制系统的基本原理、组成和应用,能够分析简单的伺服控制系统,并具备初步的设计和调试能力。
具体目标如下:1.知识目标:(1)了解伺服控制系统的定义、分类和基本原理;(2)掌握伺服控制系统的组成及其作用;(3)熟悉伺服控制系统的应用领域。
2.技能目标:(1)能够分析简单的伺服控制系统;(2)具备伺服控制系统的设计和调试能力;(3)学会使用相关仪器仪表和软件进行伺服控制系统的分析和设计。
3.情感态度价值观目标:(1)培养学生的创新意识和团队合作精神;(2)增强学生对自动化领域的兴趣和责任感;(3)提高学生解决实际问题的能力。
二、教学内容本节课的教学内容主要包括以下几个部分:1.伺服控制系统的定义、分类和基本原理;2.伺服控制系统的组成及其作用;3.伺服控制系统的应用领域;4.伺服控制系统的设计和调试方法;5.相关仪器仪表和软件的使用。
三、教学方法为了达到本节课的教学目标,将采用以下教学方法:1.讲授法:讲解伺服控制系统的基本原理、组成和应用;2.讨论法:引导学生讨论伺服控制系统的设计和调试方法;3.案例分析法:分析具体的伺服控制系统实例,加深学生对知识的理解;4.实验法:让学生动手进行伺服控制系统的设计和调试,提高实际操作能力。
四、教学资源为了支持本节课的教学内容和教学方法,将准备以下教学资源:1.教材:伺服控制系统相关教材;2.参考书:介绍伺服控制系统的相关书籍;3.多媒体资料:课件、视频、图片等;4.实验设备:伺服控制系统实验装置;5.软件:伺服控制系统分析和设计软件。
五、教学评估为了全面、客观地评估学生的学习成果,将采用以下评估方式:1.平时表现:通过观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态;2.作业:布置与课程内容相关的作业,检查学生对知识的理解和应用能力;3.考试:定期进行考试,检验学生对课程知识的掌握程度;4.实验报告:评估学生在实验过程中的操作能力和分析问题的能力;5.小组项目:评估学生在团队合作中的表现以及对知识的综合运用能力。
伺服系统设计步骤及方法

伺服系统设计步骤及方法伺服系统是指一种能够控制运动精度和位置的系统,常见于工业自动化、机器人、汽车等领域。
伺服系统设计的主要目标是提高系统的稳定性、响应速度和控制精度。
在设计伺服系统时,需要按照一定的步骤和方法进行,以确保系统能够满足要求。
下面是伺服系统设计的一般步骤及方法:1.定义系统需求:首先确定伺服系统的工作环境、运动要求和性能指标。
例如,确定系统需要在何种速度、加速度和精度下运动,以及要控制的负载和环境条件等。
2.选择伺服驱动器和电机:根据系统的需求,选择合适的伺服驱动器和电机。
此步骤需要考虑到系统的负载特性、控制精度、电源电压和电流等。
通常,选择驱动器时需要考虑其速度和定位控制的能力,选择电机时需要考虑其功率、转矩和惯性等。
3.确定控制方式:根据系统需求,确定使用的控制方式,包括位置控制、速度控制和力控制等。
对于不同的应用场景,选择合适的控制方式可以提高系统的控制效果和稳定性。
4.设计控制算法:根据系统需求和控制方式,设计控制算法。
常用的控制算法包括PID控制、滑模控制和模糊控制等。
控制算法的目标是根据系统的输入和输出,以最优的方式控制电机的速度和位置。
5.选择传感器和反馈装置:为了实现对伺服系统的准确控制,通常需要选择合适的传感器和反馈装置,用于测量和反馈系统的位置、速度和加速度信息。
常用的传感器包括编码器、光电开关和位移传感器等。
6.确定反馈控制回路:根据系统需求和传感器的信息,确定系统的反馈控制回路。
反馈控制回路可以根据测量值对系统进行修正和调整,以实现更精确的控制。
同时,反馈控制还可以稳定系统的工作状态,并减小由于负载变化和环境干扰引起的系统波动。
7.运动规划和轨迹生成:根据系统的运动需求和控制算法,进行运动规划和轨迹生成。
运动规划是指通过规划器生成一条供伺服驱动器执行的运动轨迹。
轨迹生成是指将运动规划生成的轨迹转化为伺服驱动器可以执行的轨迹。
8.系统调试和优化:完成系统的硬件搭建和软件编程后,进行系统调试和优化工作。
伺服控制系统设计

Wop (s)
s(Ts s
K 1)(T2 s
1)
3.2 单闭环位置伺服系统
伺服系统旳闭环传递函数
W cl
(s)
TsT2 s 3
(Ts
K T2 )s2
s
K
闭环传递函数旳特性方程式
TsT2s3 (Ts T2 )s2 s K 0
3.2 单闭环位置伺服系统
用Routh稳定判据,为保证系统稳定,
须使
K
Ts T2 TsT2
单位置环伺服系统开环传递函数对数幅频特性
3.3 双闭环伺服系统
在电流闭环控制旳基础上,设计位置 调整器,构成位置伺服系统,位置调整 器旳输出限幅是电流旳最大值。 以直流伺服系统为例,对于交流伺服 系统也合用,只须对伺服电动机和驱动 装置应作对应旳改动。
3.3 双闭环伺服系统
Tm
R J CT Ce
Tl
La R
3.2 单闭环位置伺服系统
驱动器
电机
直流伺服系统控制对象构造图
采用PD调整器,其传递函数为
减速器
WAPR (s) WPD (s) K p (1 d s)
3.2 单闭环位置伺服系统
伺服系统开环传递函数
Wop (s)
s(Ts s
K ( d s 1)
1)(TmTl s2 Tms
3.5 复合控制旳伺服系统
前馈控制器旳传递函数选为
G(s) 1 W2 (s)
得到
m (s) 1
* m
(
s)
3.5 复合控制旳伺服系统
理想旳复合控制随动系统旳输出量可以完 全复现给定输入量,其稳态和动态旳给定误 差都为零。 系统对给定输入实现了“完全不变性” 。 需要引入输入信号旳各阶导数作为前馈控 制信号,但同步会引入高频干扰信号,严重 时将破坏系统旳稳定性,这时不得不再加上 滤波环节。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章伺服系统概述伺服系统是以机械参数为控制对象的自动控制系统。
在伺服系统中,输出量能够自动、快速、准确地跟随输入量的变化,因此又称之为随动系统或自动跟踪系统。
机械参数主要包括位移、角度、力、转矩、速度和加速度。
近年来,随着微电子技术、电力电子技术、计算机技术、现代控制技术、材料技术的快速发展以及电机制造工艺水平的逐步提高,伺服技术已迎来了新的发展机遇,伺服系统由传统的步进伺服、直流伺服发展到以永磁同步电机、感应电机为伺服电机的新一代交流伺服系统。
目前,伺服控制系统不仅在工农业生产以及日常生活中得到了广泛的应用,而且在许多高科技领域,如激光加工、机器人、数控机床、大规模集成电路制造、办公自动化设备、卫星姿态控制、雷达和各种军用武器随动系统、柔性制造系统以及自动化生产线等领域中的应用也迅速发展。
1.1伺服系统的基本概念1.1.1伺服系统的定义“伺服系统”是指执行机构按照控制信号的要求而动作,即控制信号到来之前,被控对象时静止不动的;接收到控制信号后,被控对象则按要求动作;控制信号消失之后,被控对象应自行停止。
伺服系统的主要任务是按照控制命令要求,对信号进行变换、调控和功率放大等处理,使驱动装置输出的转矩、速度及位置都能灵活方便的控制。
1.1.2伺服系统的组成伺服系统是具有反馈的闭环自动控制系统。
它由检测部分、误差放大部分、部分及被控对象组成。
1.1.3伺服系统性能的基本要求1)精度高。
伺服系统的精度是指输出量能复现出输入量的精确程度。
2)稳定性好。
稳定是指系统在给定输入或外界干扰的作用下,能在短暂的调节过程后,达到新的或者恢复到原来的平衡状态。
3)快速响应。
响应速度是伺服系统动态品质的重要指标,它反映了系统的跟踪精度。
4)调速范围宽。
调速范围是指生产机械要求电机能提供的最高转速和最低转速之比。
5)低速大转矩。
在伺服控制系统中,通常要求在低速时为恒转矩控制,电机能够提供较大的输出转矩;在高速时为恒功率控制,具有足够大的输出功率。
6)能够频繁的启动、制动以及正反转切换。
1.1.4 伺服系统的种类伺服系统按照伺服驱动机的不同可分为电气式、液压式和气动式三种;按照功能的不同可分为计量伺服和功率伺服系统,模拟伺服和功率伺服系统,位置伺服、速度伺服和加速度伺服系统等。
电器伺服系统根据电气信号可分为直流伺服系统和交流伺服系统两大类。
交流伺服系统又有感应电机伺服系统和永磁同步电机伺服系统两种。
1.2 伺服系统的发展过程伺服系统的发展经历了由液压到电气的过程,电器伺服系统的发展则与伺服电机的不同发展阶段具有紧密的联系,伺服电机至今已有50多年的发展历史,经历了三个主要发展阶段。
第一发展阶段(20世纪60年代以前):此阶段是以步进电动机驱动的液压伺服马达或以功率步进电动机直接驱动为中心的时代,伺服系统的位置控制多为开环控制。
这一时期是液压伺服系统系统的全盛期。
液压伺服系统能够传递巨大的转矩,控制简单,可靠性高,在整个速度范围内保持恒定的转矩输出,主要应用在重型设备和一些关键场合,比如机场设备。
但它也存在一些缺点,例如发热大、效率低、易污染环境、不易维修等。
第二个发展阶段(20世纪60至70年代):这一阶段是直流伺服电机的诞生和全胜发展时代,由于直流电机具有优良的调速性能,很多高性能驱动装置采用了直流电机,伺服系统的位置控制也由开环控制系统发展成为闭环系统。
但是,直流伺服电机存在机械结构复杂、维护工作量大等缺点,在运行过程中转子容易发热,影响了与其连接的其他机械设备的精度,难以应用到高速及大容量的场合,换向器成为直流伺服驱动技术发展的瓶颈。
由于人们通过材料和工艺的改进来尽量提高直流伺服的生命力,因此直流伺服电机仍将在相当长的时间内得到应用,只是市场份额预计会持续下降。
第三发展阶段(20世纪80年代至今):这一阶段是以机电一体化时代作为时代背景的。
由于伺服电机结构及永磁材料、半导体功率器件技术、控制技术的突破性进展,出现了无刷直流伺服电机(方波驱动)、交流伺服电机(正弦波驱动)、矢量控制的感应电机和开关磁阻电机等新型电机。
尤其是80年代以来,矢量控制技术的不断成熟,极大地推动了交流伺服驱动技术的发展,是交流伺服驱动系统的性能可以与直流伺服系统媲美。
伺服驱动装置经历了模拟式——数字模拟混合式——全数字化的发展。
伺服系统控制器的实现方式在数字控制中也在由硬件方式向着软件方式发展;在软件方式中也是从伺服系统的外环向内环、进而向接近电动机环路的更深层发展。
交流伺服电机克服了直流伺服电机存在的电刷、换向器等机械部件所带来的各种缺点,过载能力强和转动惯量低体现出了交流伺服系统的优越性。
交流伺服系统采用以微处理器为基础的系统芯片和智能化功率器件,很好的克服了伺服系统中模型参数变化和非线性等不确定因素,提高了系统的鲁棒性和容错性,成功实现了高精度伺服控制。
特别是控制理论的新发展及智能控制的兴起和不断成熟,加之计算机技术、微电子技术的迅猛发展,使基于智能控制理论的先进控制策略和基于传统控制理论的传统控制策略完美结合,为交流伺服系统的实际应用奠定了坚实的基础。
1.3元件选择1.3.1功率变换器交流伺服系统功率变换器的主要功能是根据控制电路的指令,将电源单元提供的直流电能转变为伺服电机电枢绕组中的三相交流电流,以产生所需要的电磁转矩。
功率变换器主要包括控制电路、驱动电路、功率变换主电路等。
功率变换主电路主要由整流电路、滤波电路和逆变电路三部分组成。
为了保证逆变电路的功率开关器件能够安全、可靠地工作,对于高压、大功率的交流伺服系统,有时需要有压抑电压、电流尖峰的“缓冲电路”。
另外,对于频繁运行于快速正反转状态的伺服系统,还需要有消耗多余再生能量的“制动电路”。
控制电路主要由运算电路、PWM生成电路、检测信号处理电路、输入输出电路、保护电路等构成,其主要作用是完成对功率变换主电路的控制和实现各种保护功能等。
驱动电路的作用是根据控制信号对功率半导体开关进行驱动,并为器件提供保护,主要包括开关器件的前级驱动电路和辅助开关电源电路等。
1.3.2传感器在伺服系统中,需要对伺服电机的绕组电流及转子速度、位置进行检测,以构成电流环、速度环和位置环,因此需要相应的传感器及其信号变换电路。
电流检测通常采用电阻隔离检测或霍尔电流传感器。
直流伺服电机只需一个电流环,而交流伺服电机(两相交流伺服电机除外)则需要两个或三个。
其构成方法也有两种:一种是交流电流直接闭环;另一种是把三相交流变换为旋转正交双轴上的矢量之后再闭环,这就需要把电流传感器的输出信号进行坐标变换的接口电路。
速度检测可采用无刷测速发电机、增量式光电编码器、磁编码器或无刷旋转变压器。
位置检测通常采用绝对式光电编码器或无刷旋转变压器,也可采用增量式光电编码器进行位置检测。
由于无刷旋转变压器具有既能进行转速检测又能进行绝对位置检测的优点,且抗机械冲击性能好,可在恶劣环境下工作,在交流伺服系统中的应用日趋广泛。
1.3.3控制器在交流电机伺服系统中,控制器的设计直接影响着伺服电机的运行状态,从而在很大程度上决定了整个系统的性能。
交流电机伺服系统通常有两类,一类是速度伺服系统;另一类为位置伺服系统。
前者的伺服控制器主要包括电流(转矩)控制器和速度控制器,后者还要增加位置控制器。
其中电流(转矩)控制器是关键的环节,因为无论是速度控制还是位置控制,最终都将转换为对电机的电流(转矩)控制。
电流环的响应速度要远远大于速度环和位置环。
为了保证电机定子电流相应的快速性,电流控制器的实现不应太复杂,这就要求其设计方案必须恰当,使其有效的发挥作用。
对于速度和位置控制,由于其时间常数较大,因此可借助计算机技术实现许多复杂的基于现代控制理论的控制策略,从而提高伺服系统的性能。
1.电流控制器电流环由电流控制器和逆变器组成,其作用是使电机绕组电流实时、准确地跟踪电流指令信号。
为了能够快速、准确地控制伺服电机的电磁转矩,在交流伺服系统中,需要分别对永磁同步电机(或感应电机)的d、q轴电流进行控制。
2.速度控制器速度环的作用是保证电机的转速与速度指令值一致,消除负载转矩扰动等因素对电机转速的影响。
速度指令与反馈的电机实际转速相比较,其差值通过速度控制器直接产生Q轴指令电流,并进一步用d轴电流指令共同作用,控制电机加速、减速或匀速旋转,使电机的实际转速与指令值保持一致。
速度控制器通常采用的是PI控制方式。
3.位置控制器位置环的作用是产生电机的速度指令并使电机准确定位和跟踪。
通过比较设定的目标位置与电机的世纪位置,利用其偏差通过位置控制器来产生电机的速度指令当电机启动后在大偏差区域,产生最大速度指令,使电机加速运行后以最大速度恒速运行;在小偏差区域,产生逐次递减的速度指令,使电机减速运行直至最终定位。
第二章喷绘机原理2.1喷绘机原理单元介绍2.1.1熔断器熔断器是根据电流超过规定值一定时间后,以其自身产生的热量使熔体熔化,从而使电路断开的原理制成的一种电流保护器。
熔断器作为短路和过流保护是应用最普遍的保护器件之一,广泛应用于低压配电系统和控制系统及用电设备中。
熔断器是一种过电流保护电器。
熔断器主要由熔体和熔管两个部分及外加填料等组成。
使用时,将熔断器串联于被保护电路中,当被保护电路的电流超过规定值,并经过一定时间后,由熔体自身产生的热量熔断熔体,使电路断开,起到保护的作用。
2.1.2 运动控制卡运动控制卡是一种上位控制单元,可以控制伺服电机,是基于PC总线,利用高性能微处理器(如DSP)及大规模可编程器件实现多个伺服电机的多轴协调控制的一种高性能的步进/伺服电机运动控制卡包括脉冲输出、脉冲计数、数字输入、数字输出、D/A输出等功能,它可以发出连续的、高频率的脉冲串,通过改变发出脉冲的频率来控制电机的速度,改变发出脉冲的数量来控制电机的位置,它的脉冲输出模式包括脉冲/方向、脉冲/脉冲方式。
脉冲计数可用于编码器的位置反馈,提供机器准确的位置,纠正传动过程中产生的误差。
数字输入/输出点可用于语限位、原点开关等。
产品广泛应用于工业自动化控制领域中需要精确定位、定长的位置控制系统和基于PC的NC控制系统。
具体就是将实现运动控制的底层软件和硬件集成在一起,使其具有伺服电机控制所需的各种速度、位置控制功能。
这些功能能通过计算机方便地调用。
运动控制卡不仅要发送脉冲给电机驱动器,同时接受伺服电机编码器反馈的脉冲数,还接受光栅尺反馈信号,进而控制伺服电机的转速。
伺服驱动器既要与运动控制卡有数据线连接,其本身还要连接插座电源。
如果你的运动控制卡时比较好的卡,伺服刷新率可以达到要求,可以把编码器反馈直接接到运动控制卡,形成一个整体的闭环。
若对对精度有很高的要求可以用双闭环,运动控制卡就是根据要求x-y平台运行的位置,控制电机运动到准确的位置。