第7章部分习题解答

合集下载

第7章_微型计算机存储器习题参考答案

第7章_微型计算机存储器习题参考答案

第7章_微型计算机存储器习题参考答案计算机存储器7.1 ⼀个微机系统中通常有哪⼏级存储器?它们各起什么作⽤?性能上有什么特点?答:⼀个微机系统中通常有3级存储器结构:⾼速缓冲存储器、内存储器和辅助存储器。

⾼速缓冲存储器简称快存,是⼀种⾼速、⼩容量存储器,临时存放指令和数据,以提⾼处理速度。

内存存取速度快,CPU可直接对它进⾏访问,⽤来存放计算机运⾏期间的⼤量程序和数据。

辅存存储容量⼤,价格低,CPU不能直接进⾏访问,通常⽤来存放系统程序、⼤型⽂件及数据库等。

7.2 半导体存储器分为哪两⼤类?随机存取存储器由哪⼏个部分组成?答:根据存取⽅式的不同,半导体存储器可分为随机存取存储器RAM和只读存储器ROM 两类。

其中随机存取存储器主要由地址译码电路、存储体、三态数据缓冲器和控制逻辑组成。

7.3 什么是SRAM,DRAM,ROM,PROM,EPROM和EEPROM?答:SRAM:静态随机存取存储器;DRAM:动态随机存取存储器;ROM:掩膜只读存储器;PROM:可编程的只读存储器;EPROM:可擦除可编程只读存储器;EEPROM:⽤电可擦除可编程只读存储器。

7.4 常⽤的存储器⽚选控制⽅法有哪⼏种?它们各有什么优缺点?答:常⽤的存储器⽚选控制译码⽅法有线选法、全译码法和部分译码法。

线选法:当存储器容量不⼤、所使⽤的存储芯⽚数量不多、⽽CPU寻址空间远远⼤于存储器容量时,可⽤⾼位地址线直接作为存储芯⽚的⽚选信号,每⼀根地址线选通⼀块芯⽚,这种⽅法称为线选法。

直观简单,但存在地址空间重叠问题。

全译码法:除了将低位地址总线直接与各芯⽚的地址线相连接之外,其余⾼位地址总线全部经译码后作为各芯⽚的⽚选信号。

采⽤全译码法时,存储器的地址是连续的且唯⼀确定,即⽆地址间断和地址重叠现象。

部分译码法:将⾼位地址线中的⼀部分进⾏译码,产⽣⽚选信号。

该⽅法常⽤于不需要全部地址空间的寻址、采⽤线选法地址线⼜不够⽤的情况。

采⽤部分译码法存在地址空间重叠的问题。

第7章习题解答

第7章习题解答

习 题7-1为什么一般矩形波导测量线的槽开在波导宽壁的中线上?答:因为矩形波导一般工作于10TE 模,由10TE 模的管壁电流知,在矩形波导宽壁中线处只有纵向电流,因此沿波导宽壁的中线开槽不会切断高频电流的通路,不会破坏波导内的场结构,也不会引起波导内的电磁波向外辐射能量。

7-2 推导矩形波导中mn TE 波的场量表达式。

7-3 已知空气填充的矩形波导截面尺寸为21023mm b a ⨯=⨯,求工作波长mm 20=λ时,波导中能传输哪些模式?mm 30=λ时呢? 解:矩形波导的截止波长22c 2⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=b n a m πππλ当0,1==n m 时,mm a C 462==λ,1,0==n m 时,mm b C 202==λ, 0,2==n m 时,mm a C 23==λ, 1,1==n m 时,mm b a 34.181********222c =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=πππλ满足电磁波在波导中传播条件c λλ<的模式有10TE 、01TE ;当mm 30=λ时,只能传输10TE 模。

7-4 已知空气填充的矩形波导截面尺寸为248cm b a ⨯=⨯,当工作频率GHz 5=f 时,求波导中能传输哪些模式?若波导中填充介质,传输模式有无变化?为什么?解: cm f C 6105103910=⨯⨯==λ,矩形波导的截止波长22c 2⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=b n a m πππλ,当0,1==n m 时,cm a C 162==λ,1,0==n m 时,cm b C 82==λ, 0,2==n m 时,cm a C 8==λ, 2,0==n m 时,cm b C 4==λ 1,1==n m 时,mm b a 15.74181222222c =⎪⎭⎫⎝⎛+⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=πππλ满足电磁波在波导中传播条件c λλ<的模式有10TE 、01TE 、20TE 、11TE 、11TM ; 若波导中填充介质,工作波长变短,所以传输模式增多。

第七章习题解答

第七章习题解答

习 题 七1. 判断下面所定义的变换,哪些是线性的,哪些不是:(1) 在向量空间V 中,σ (ξ)=ξ+α,α是V 中一固定的向量;(2) 在向量空间R 3中,σ (x 1, x 2, x 3)=),,(233221x x x x +;(3) 在向量空间R 3中,σ (x 1, x 2, x 3)=),,2(13221x x x x x +-;(4) 把复数域看作复数域上的向量空间,σ (ξ)=ξ.解 (1)当0=α时,σ是线性变换;当0≠α时,σ不是线性变换;(2)σ不是线性变换;(3)σ是线性变换;(4)σ不是线性变换;2. 设V 是数域F 上一维向量空间. 证明,σ是V 的一个线性变换的充要条件是:存在F 中的一个数a ,使得对任意ξ∈V ,都有σ (ξ)=a ξ .证明:充分性显然.必要性:令σ是ν的一个线性变换,设1ξ是ν的一个基.则νξσ∈)(1.那么)(1ξσ可由1ξ线性表示,不妨设11)(ξξσa =.对任意的νξ∈,有1ξξk =,则ξξξξσξσξσa k a a k k k =====)()()()()(1111.3. 设σ是向量空间V 的线性变换,如果σ k -1ξ≠0, 但σ k ξ=0,求证ξ, σξ, …, σ k -1ξ (k >0)线性无关.证明: 令 ++σξξ10l l ┄ +011=--ξσk k l ┈┈┈┈(1)(1)式两端用1-k σ作用得:++-ξσξσk k l l 110+0221=--ξσk k l由已知得: ==+ξσξσ1k k =,022=-ξσk 01≠-ξσk ,所以有 00=l .则(1)式变为: +σξ1l +011=--ξσk k l ┈┈┈┈(2)(2)式两端用2-k σ 作用得:ξσξσk k l l 211+-+0321=--ξσk k l同理01=l .重复上述过程有: ==10l l 01=-k l .4. 在向量空间R [x ]中,σ (f (x ))=f '(x ), τ (f (x ))=xf (x ), 证明,στ -τσ=ι.证明:对任意][)(x R x f ∈,有))(())()((x f x f σττσστ=-=-+=-=-)()()()())((())(('''x xf x xf x f x f x f x x f τστσ)(x f .所以στ -τσ=ι.5. 在向量空间R 3中,线性变换σ, τ如下:σ (x 1, x 2, x 3)=(x 1, x 2, x 1+x 2)τ (x 1, x 2, x 3)=(x 1+x 2-x 3, 0, x 3-x 1-x 2)(1) 求στ, τσ, σ2;(2) 求σ+τ, σ -τ, 2σ.解: (1) =---+=),0,(),,(213321321x x x x x x x x x σστ,(321x x x -+0,),,()321321x x x x x x τ=-+,∴τστ=.)0,0,0(),,(),,(2121321=+=x x x x x x x ττσ,∴0=τσ),,(),,(21213212x x x x x x x +=σσ=),,(2121x x x x +.∴σσ=2.(2) ),,)((321x x x τσ+=),,(321x x x σ+),,(321x x x τ),,(2121x x x x +=+),0,(213321x x x x x x ---+),,2(32321x x x x x -+=.),,)((321x x x τσ-=),,(321x x x σ),,(321x x x τ-),,(2121x x x x +=),0,(213321x x x x x x ---+-=)22,,(321232x x x x x x -++-.2),,(2321=x x x σ),,(2121x x x x +=)22,2,2(2121x x x x +.6. 已知向量空间R 3的线性变换σ为σ (x 1, x 2, x 3)=(x 1+x 2+x 3, x 2+x 3,-x 3)证明,σ是可逆变换,并求σ-1.证明:),0,0,1(),0,0,1(=σ, ),0,1,1(),0,1,0(=σ,),1,1,1(),1,0,0(-=σ. ∴ σ关于3R 的一个基),0,0,1(, ),0,1,0(,),1,0,0(的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛-=100110111A .显然,A 可逆,所以σ是可逆变换,而且⎪⎪⎪⎭⎫ ⎝⎛--=-1001100111A 所以-=⎪⎪⎪⎭⎫ ⎝⎛=--132113211(),,(x x x x A x x x σ,2x ,32x x +)3x -.7. 设σ, τ, ρ都是向量空间V 的线性变换,试证,(1)如果σ, τ都与ρ可交换,则στ, σ2也都与ρ可交换(若对任意α∈V ,都有στ (α)=τσ (α),就说σ与τ可交换);(2)如果σ+τ, σ-τ都与ρ可交换,则σ, τ也都与ρ可交换.证:(1)由已知ρττρρσσρ==,.那么==)()(τρσρστ)(ρτσ=)()(στρτσρ=.22)()()(ρσσσρρσσσρσρσ====.(2)同理可证.8. 证明,数域F 上的有限维向量空间V 的线性变换σ是可逆变换的充分必要条件是σ把非零向量变为非零向量.证明:不妨设ν是n 维的. ,,21ξξ,n ξ是它的一个基.σ关于这个基的矩阵为A .显然,σ可逆当且仅当A 可逆. σ把非零向量变为非零向量当且仅当{}0=σKer ,而秩σ=秩A ,σ的零度=σker dim .且秩σ+σ的零度=n.所以秩σ=n 当且仅当σ的零度是0,即A 可逆当且仅当0=σKer .故σ可逆当且仅当σ把非零向量变为非零向量.9. 证明,可逆线性变换把线性无关的向量组变为线性无关的向量组. 证明:令σ是向量空间ν的可逆线性变换, ,,21αα,m α是ν的一组线性无关的向量,令++)()(2211ασασk k +0)(=m m k ασ.两端用1-σ 作用得: +11αk +0=m m k α.由已知 ,,21αα,m α 线性无关,所以: ==21k k =0=m k .故 ),(),(21ασασ,)(m ασ 线性无关.10. 设{ε1, ε2, ε3}是F 上向量空间V 的一个基. 已知V 的线性变换σ在{ε1, ε2, ε3}下的矩阵为A =⎪⎪⎪⎭⎫ ⎝⎛333231232221131211a a a a a a a a a (1) 求σ在{ε1, ε3, ε2}下的矩阵;(2) 求σ在{ε1, k ε2, ε3}下的矩阵(k ≠0,k ∈F );(3) 求σ在{ε1, ε1+ε2, ε3}下的矩阵.解:(1)⎪⎪⎪⎭⎫ ⎝⎛=222321323331121311231231),,(),,(a a a a a a a a a εεεεεεσ. (2)⎪⎪⎪⎪⎭⎫ ⎝⎛=33323123222113121132132111),,(),,(a ka a a k a a k a ka a k k εεεεεεσ. (3) =+),,(3211εεεεσ),,(3211εεεε+⎪⎪⎪⎭⎫ ⎝⎛++---+-⋅33323131232221212313222112112111a a a a a a a a a a a a a a a a 11. 在R 3中定义线性变换σ如下σ (x 1, x 2, x 3)=(2x 2+x 3, x 1-4x 2, 3x 1),∀(x 1, x 2, x 3)∈R 3.(1) 求σ在基ε1=(1, 0, 0), ε2=(0, 1, 0), ε3=(0, 0, 1)下的矩阵;(2) 利用(1)中结论,求σ在基α1=(1, 1, 1),α2=(1, 1, 0),α3=(1, 0, 0)下的矩阵.解:(1) ⎪⎪⎪⎭⎫ ⎝⎛-=003041120),,(),,(321321εεεεεεσ(2)从基{}321,,εεε到基{}321,,ααα的过渡矩阵为⎪⎪⎪⎭⎫ ⎝⎛=001011111P .σ在{}321,,ααα下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--=⋅⎪⎪⎪⎭⎫ ⎝⎛-⋅-0010111110030411200111101000030411201P P=⎪⎪⎪⎭⎫ ⎝⎛---156266333.12. 已知M 2(F )的两个线性变换σ,τ如下σ (X )=X ⎪⎪⎭⎫ ⎝⎛-1111, τ (X )=⎪⎪⎭⎫ ⎝⎛-0201X , ∀X ∈M 2(F ). 试求σ+τ, στ在基E 11, E 12, E 21, E 22下的矩阵. 又问σ和τ是否可逆?若可逆,求其逆变换在同一基下的矩阵.证明:⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+021*********)(111111E E E τσ =12112E E +222102E E +-.⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+200102011111)(121212E E E τσ =12110E E +222120E E -+.⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+110002011111)(212121E E E τσ=121100E E +2221E E ++.⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛-+⎪⎪⎭⎫ ⎝⎛-=+10002011111)(222222E E E τσ =121100E E +2221E E -+.所以τσ+在基22211211,,,E E E E 下的矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=1120110200010012A . 同理可证στ在基22211211,,,E E E E 下的矩阵.121111)(E E E +=σ,121112)(E E E -=σ,222112112100)(E E E E E +++=σ,=)(22E σ2221121100E E E E -++.所以σ在此基下的矩阵为:⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=1100110000110011B . 显然,B 可逆.所以σ可逆. σ在同一基下的矩阵为: ⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=-2121002121000021210021211B . 同理可讨论τ的可逆性及求τ的矩阵.13. 设σ是数域F 上n 维向量空间V 的一个线性变换. W 1, W 2是V 的子空间,并且V =W 1⊕W 2证明,σ是可逆变换的充要条件是V =σ ( W 1)⊕σ ( W 2)证明:令 ,1α,r α是1W 的一个基. 令 ,1+r α,n α是2W 的一个基. 由已知得: ,1α, n α是ν的一个基.必要性:设σ可逆,则 ),(1ασ,)(r ασ, )(1+r ασ,)(n ασ 也是ν的一个基.但=)(1W σ£( ),(1ασ,)(r ασ).=)(2W σ£( )(1+r ασ,)(n ασ)所以=ν+)(1W σ)(2W σ,⋂)(1W σ}0{)(2=W σ,故V =σ ( W 1)⊕ σ ( W 2).充分性:将必要性的过程倒过去即可.14. 设R 3的线性变换σ定义如下:σ (x 1, x 2, x 3)=(2x 1-x 2, x 2-x 3, x 2+x 3)求σ在基ε1=(1, 0, 0), ε2=(0, 1, 0), ε3=(0, 0, 1)及基η1=(1, 1, 0), η2=(0, 1, 1),η3=(0, 0, 1)下的矩阵.解: σ在基{ε1, ε3, ε2}下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛--=110110012A .σ在基{321,,ηηη}下的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎭⎫ ⎝⎛--⎪⎪⎪⎭⎫ ⎝⎛=-1100110011101100121100110011B =⎪⎪⎪⎭⎫ ⎝⎛--211110011.15. 在M 2(F )中定义线性变换σ为 σ (X )=⎪⎪⎭⎫ ⎝⎛-3210X , ∀X ∈M 2(F ). 求σ在基{ E 11, E 12, E 21, E 22}下的矩阵,其中E 11=⎪⎪⎭⎫ ⎝⎛0001, E 12=⎪⎪⎭⎫ ⎝⎛0010, E 21=⎪⎪⎭⎫ ⎝⎛0100, E 22=⎪⎪⎭⎫ ⎝⎛1000. 解: σ在基{22211211,,,E E E E }下的矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=3020030210000100A . 16. 证明,与n 维向量空间V 的全体线性变换可交换的线性变换是数量变换.证明:由105P 习题二及第10题的结论易得.17. 给定R 3的两个基α1=(1, 0, 1), α2=(2, 1, 0), α3=(1, 1, 1);和 β1=(1, 2,-1), β2=(2, 2, -1), β3=(2, -1, -1). σ是R 3的线性变换,且σ(αi )=βi ,i =1, 2,3. 求(1) 由基{α1, α2 , α3}到基{β1, β2 , β3}的过渡矩阵;(2) σ关于基{α1, α2 , α3}的矩阵;(3) σ关于基{β1, β2 , β3}的矩阵.解: (1)令)0,0,1(1=ε,)0,1,0(2=ε,)1,0,0(3=ε.则由{α1, α2 , α3}到{ε1,ε3, ε2}的过渡矩阵为:1101110121-⎪⎪⎪⎭⎫ ⎝⎛. 由基{ε1, ε3, ε2}到基{β1, β2 , β3}的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛101110221.所以由基{α1, α2 , α3}到基{β1, β2 , β3}的过渡矩阵为: ⎪⎪⎪⎭⎫ ⎝⎛----⋅⎪⎪⎪⎭⎫ ⎝⎛---=-1111222211111101211P =⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---252112323123232 (2) σ ==),,(),,(321321βββαααP ),,(321ααα.所以σ在),,(321ααα下的矩阵为:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---252112323123232. σ关于基{β1, β2 , β3}的矩阵为: ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---252112323123232 18. 设α1=(-1, 0, -2), α2=(0, 1, 2), α3=(1, 2, 5),β1=(-1, 1, 0), β2=(1, 0, 1), β3=(0, 1, 2),ξ=(0, 3, 5)是R 3中的向量,σ是R 3的线性变换,并且σ(α1)=(2, 0, -1), σ(α2)=(0, 0, 1),σ(α3)=(0, 1, 2).(1) 求σ关于基{β1, β2 , β3}的矩阵;(2) 求σ(ξ)关于基{α1, α2 , α3}的坐标;(3) 求σ(ξ)关于基{β1, β2 , β3}的坐标.解:令⎪⎪⎪⎭⎫ ⎝⎛--=5222101011T ,⎪⎪⎪⎭⎫ ⎝⎛-=2101011112T .则从基{α1, α2 , α3}到基{β1, β2 , β3}的过渡矩阵为:⎪⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎪⎭⎫ ⎝⎛----=⋅=-0101210011222341212211T T T T .又321135310311)1,0,2()(αααασ-+-=-= 321203231)1,0,0()(αααασ+-== 321300)2,1,0()(αααασ++==所以σ关于),,(321ααα的矩阵为:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---03135132310031311.从而σ关于基{β1, β2 , β3}的矩阵为:⋅⎪⎪⎪⎭⎫ ⎝⎛-==-2111000011AT T B ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---03135132310031311⎪⎪⎪⎭⎫ ⎝⎛-⋅010121001= ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----31353103132343132310. (2)==)5,3,0(ξ321353135ααα+-.所以关于)(ξσ),,(321ααα的坐标为:⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-⋅926967956353135A 由(2)可知=)(ξσ⋅),,(321ααα⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--926967956=(β1, β2 , β3)⋅⋅-1T ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--926967956 所以关于)(ξσ{β1, β2 , β3}的坐标为:⋅-1T ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--926967956=⋅⎪⎪⎪⎭⎫ ⎝⎛-211100001⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--926967956=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--971926956. 19. 设R 3有一个线性变换σ定义如下:σ (x 1, x 2, x 3)=(x 1+x 2,x 2+x 3,x 3),∀(x 1, x 2, x 3)∈R 3. 下列R 3的子空间哪些在σ之下不变?(1) {(0, 0, c )| c ∈R }; (2) {(0, b , c )| b , c ∈R };(3) {(a , 0, 0)| a ∈R }; (4) {(a , b , 0)| a , b ∈R };(5) {(a , 0, c )| a , c ∈R }; (6) {(a , -a , 0)| a ∈R }.解:(3)与(4)在σ之下不变.20. 设σ是n 维向量空间V 的一个线性变换,证明下列条件等价:(1) σ (V )=V ; (2) ker σ={0}.证明:因为秩σ+σ的零度=n. 所以秩σ=n 当且仅当σ的零度是0,即n =)(dim νσ当且仅当0k e r d i m=σ,因此V V =)(σ当且仅当}0{=σK e r .21. 已知R 3的线性变换σ定义如下:σ (x 1, x 2, x 3)=(x 1+2x 2-x 3, x 2+x 3, x 1+x 2-2x 3),∀(x 1, x 2, x 3)∈R 3.求σ的值域σ (V )与核Ker σ的维数和基.解: σ关于基)0,0,1(1=ε,)0,1,0(2=ε,)1,0,0(3=ε的矩阵为:⎪⎪⎪⎭⎫ ⎝⎛--=211110121A .)1,0,1()(1=εσ,)1,1,2()(2=εσ,)(νσ))(),((21εσεσL =.),(ker ξσL =其中)1,1,3(-=ξ,1ker dim =σ.22. 设σ是向量空间V 的一个线性变换,W 是σ的一个不变子空间,证明,W 是σ 2的不变子空间.证明:由不变子空间的定义易证.23. 设σ是数域F 上n (>0)维向量空间V 的一个线性变换,{α1, α2 ,…, αr , αr +1,…, αn }是V 的基. 证明,如果{α1, α2 ,…, αr }是Ker σ的基,那么{σ (αr +1),…, σ (αn )}是Im σ的基.证明:已知{α1, α2 ,…, αr }是Ker σ的基, 则σ (αi )=0, i =1,2, …, r .令 l r +1σ (αr +1)+ l r +2σ (αr +2)+ …+ l n σ (αn )=0, 则σ ( l r +1αr +1+…+ l n αn )=0, l r +1αr +1+…+ l n αn ∈ Ker σ .所以 l r +1αr +1+…+ l n αn =l 1α 1+…+ l r αr但 α1, α2 ,…, αr , αr +1,…, αn 是V 的一个基, 故 l r +1=…= l n =0.所以 σ (αr +1),…, σ (αn ) 线性无关.又 Im σ = £(σ (α1), σ (α2)…, σ (αn )) = (σ (αr +1),…, σ (αn )).从而结论成立.24. 对任意α∈R 4,令σ (α)=A α,其中A =⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---2122552131211201 求线性变换σ的核与象. 解: α1 = ⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--02232, α2 = ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--1021, Ker σ =£(α1,α2). σ (ε1) = ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2111, σ (ε2) = ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-2220.Im σ =£(σ (ε1), σ (ε2)).25. 设 σ,τ 是向量空间V 的线性变换,且σ+τ=ι,στ=τσ=θ. 这里ι是V 的恒等变换,θ 是V 的零变换. 证明:(1) V =σ(V )⊕τ (V );(2) σ(V )=Ker τ.证明: (1) ∀ξ∈ V , ξ=ι (ξ)=(σ+τ)(ξ)=σ (ξ)+τ (ξ).所以V =σ (V )+τ (V ).对任意ξ∈σ (V )∩τ (V ). 则ξ=σ (ξ1)+ τ (ξ2).由已知条件可得ξ= ι (σ (ξ1)) = (σ+τ)(σ (ξ1)) = σ·(σ (ξ1) = σ·(τ (ξ2)= στ (ξ2) = 0 .故结论成立.(2 ) 对任意σ (ξ)∈σ (V ), 则 τ(σ (ξ))= 0, 所以 σ (ξ)∈Ker τ .反之, 对任意ξ∈Ker τ , 则τ(ξ)= 0.由已知条件可得,ξ= (σ+τ)(ξ)=σ (ξ)+τ (ξ)=σ (ξ),所以ξ∈σ (V ).26. 在向量空间F n [x ]中,定义线性变换τ为:对任意f (x )∈F n [x ],τ(f (x )) =x f'(x )-f (x ). 这里f '(x )表示f (x )的导数.(1)求Ker τ及Im τ;(2)证明,V =Ker τ⊕Im τ.解: (1) 令τ ( f (x )) = x f '(x )-f (x ) = 0其中 f (x ) = a 0 + a 1x + … + a n x n . 则(a 1x +2a 2x 2+ … +n a n x n )- f (x ) = 0(0- a 0) + ( a 1- a 1)x + (2a 2- a 2) x 2 + … + (n a n -a n )x n = 0有 ⎪⎪⎩⎪⎪⎨⎧===00020n a a a, 所以 f (x ) = a 1x ,Ker τ =£(x ), Im τ=£(1,x 2, … ,x n ).(2) 显然 .27. 已知向量空间V 的线性变换σ在基{ε1, ε2, ε3}下的矩阵为A =⎪⎪⎪⎭⎫ ⎝⎛--121101365求σ的本征值及相应的本征向量. 问是否存在V 的一个基使得σ 关于这个基的矩阵是对角阵?解: 本征值λ=2 (三重), 属于λ=2的线性无关的本征向量为:ξ1=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛0131 , ξ2=⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-1031, 故σ 不能对角化.28. 设σ是向量空间V 的可逆线性变换,证明(1) σ的本征值一定不为0;(2) 如果λ是σ 的本征值,那么λ1是σ-1的本征值. 证明: (1) 反设σ 有一本征值为0,则存在ξ≠0,ξ∈ V , 使得σ (ξ)=0·ξ= 0 . 因为σ 可逆, 所以 σ -1(σ (ξ))=0, 即ξ= 0.矛盾.(2) 设λ是σ 的本征值,由(1)得λ≠0,且有σ (ξ)=λξ,ξ≠0.σ -1(σ (ξ))=λσ -1 (ξ). 即 σ -1 (ξ)=λ1ξ, 所以结论成立. 补 充 题1. 设σ是数域F 上n 维向量空间V 的一个线性变换. 证明(1) Ker σ ⊆Ker σ2 ⊆ Ker σ3 ⊆…(2) Im σ ⊇Im σ2 ⊇Im σ3 ⊇…证明: (1)对任意正整数n ,下证Ker σ n ⊆ Ker σ n +1对任意ξ∈ Ker σ n ., σ n (ξ)=0, σ (σ n (ξ))=0即σ n +1(ξ)=0, 所以ξ∈ Ker σ n +1.(2) 对任意正整数n ,下证Im σ n ⊇Im σ n +1.对任意ξ∈Im σ n +1, 则存在 η∈ V , 使得ξ=σ n +1(η)=σ n (σ (η))∈Im σ n .2. 设A 是数域F 上的n 阶矩阵. 证明,存在F 上的一个非零多项式f (x ), 使得f (A )=0.[不用Cayley-Hamilton 定理证. ]证明: 由于dimM n (F) = n 2, 所以I, A, A 2, …, A 2n 线性相关,故存在 F 上的不全为零的一组数k 0,, k 1, … ,k 2n ,使得+++2210A k A k I k ┄+022=n n A k .取=)(x f +++2210x k x k k ┄+ 022=n n x k ,结论得证. 3. 设V 是n 维向量空间, σ是V 的一个可逆线性变换, W 是σ的一个不变子空间. 证明, W 也是σ-1的不变子空间.证明:令{α1, α2 ,…, αr }是W 的一个基,因为W 是σ的不变子空间,所以 ,1,)(=∈i i ωασ,r .又σ是可逆的,所以 ),(1ασ,)(r ασ线性无关,故 ),(1ασ,)(r ασ也是W 的一个基.因为r i i i ,,1,))((1 =∈=-ωαασσ.所以W 关于1-σ不变.4. 设σ是数域F 上向量空间V 的一个线性变换, σ2=σ. 证明:(1) Ker σ ={ξ-σ (ξ)|ξ∈V };(2) V =Ker σ ⊕Im σ ;(3) 若τ是V 的一个线性变换, 那么Ker σ 和Im σ 都在τ之下不变的充要条件是στ=τσ.[提示:证(3)的必要性,利用(2). ]证明:(1)对于任意的,ker σξ∈则.0)(=ξσ那么{}V ∈-∈-=-=ξξσξξσξξξ)()(0.反之,任意的{}V ∈-∈-ξξσξξσξ)()(,有-=-)())((ξσξσξσ 0)()()(2=-=ξσξσξσ,故σξσξker )(∈-.(2)由(1)的解果可知:σσIm ker +=V ,对任意的σσξIm ker ⋂∈,则有:)()(211ησησηξ=-=,因此0)()()(121=-=ησησξσ.同时还有:ξησησξσ===)()()(222所以0=ξ,结论成立.(3)充分性易证.必要性:设Ker σ 和Im σ 都在τ之下不变,由(2)的结论得:1,ξξξ=∈∀V ),(2ξσ+其中σξker 1∈.又因为+-=+-=-))(())(())()(())((1121ξστξτσξσξτσστξτσστ )()))(((222ξτσξστσ-.由已知,,Im ))((,ker )(21σξστσξτ∈∈不妨设)())((32ξσξστ=,所以 0)()())(())(())((2323=-=-=-ξτσξσξστξσσξτσστ.5. 设σ是数域F 上n 维向量空间V 的一个线性变换, σ2=ι. 证明, V =W 1⊕W 2, 这里W 1={ξ∈V |σ(ξ)=ξ},W 2={η∈V |σ(η)=-η}.[提示:∀α∈V ,α=21(α+σ(α))+21(α-σ(α)). ]证明:首先对2)(2)(,ασαασααα-++=∈∀V ,由于 =+)2)((ασασ2)(2)()(2ασαασασ+=+,=-)2)((ασασ=-2)()(2ασασ 2)(ασα-- 所以12)(W ∈+ασα,22)(W ∈-ασα,故21W W V +=.其次对任意的21W W ⋂∈α,则αασ=)(,αασ-=)(.所以0,02==αα.那么V =W 1⊕W 2,结论成立.6. 设V 是复数域C 上一个n 维向量空间, σ, τ是V 的线性变换, 且στ=τσ . 证明(1) 对σ的每一本征值λ来说,V λ={ξ∈V |σ(ξ)=λξ}是τ的不变子空间;(2) σ与τ有一公共本征向量.[提示:证(2)时,考虑τ在V λ上的限制. ]证明: (1)易证.(2).由(1)可知λV 是τ的不变子空间.则λτV 是λV 的一个线性变换.因此λτV 在复数域C 上一定有一个本征值,不妨设为μ.即存在λαV ∈≠0,使得 μαατλ=))((V .而)())((ατατλ=V ,所以α是τ的属于μ的一个本征向量.由α的取法,结论得证.7. 设A 是秩为r 的n 阶半正定矩阵. 证明,W ={ξ∈R n |ξ T A ξ=0}是R n 的n -r 维子空间.[提示:利用习题三第33题的结论,可得W 是齐次线性方程组BX =0的解空间. ]证明:由习题三第33题的结论得:B B A T =,其中B 是秩为r 的n r ⨯矩阵.则)()(ξξξξξξB B B B A T T T T ==,那么0=ξξA T 当且仅当0=ξB .=W {}0=∈ξξB R n .因为秩r B =,所以齐次线性方程组0=Bx 的解空间是r n -维的.即r n W -=dim .8. 设σ,τ是F 上向量空间V 的线性变换,且σ2=σ,τ2=τ. 证明,(1) Im σ=Im τ 当且仅当 στ=τ, τσ=σ;(2) Ker σ=Ker τ 当且仅当 στ=σ, τσ=τ.证明:(1)必要性:设τσm m I I =,,V ∈∀ξ则σξτIm )(∈.令)()(1ξσξτ=,则 )()())(()(11ξτξσξσσξστ===.所以τστ=.同理可证στσ=. 充分性:设τστ=,στσ=.对任意的σξσIm )(∈,则τξστξτσξσIm ))(())(()(∈==所以τσIm Im ⊆,同理可证στIm Im ⊆.(2)必要性:设Ker σ=Ker τ.对任意的V ∈ξ,因为0)()())((2=-=-ξτξτξξττ所以τξξτker)(∈-,则0))((=-ξξτσ,即)())((ξσξτσ=,故σστ=.勤劳的蜜蜂有糖吃同理可证ττσ=.充分性:设ττσ=,σστ=.对任意的σξker ∈,则0)(=ξσ.且0)0())(())(()(====τξστξτσξτ所以τξker ∈,故τσker ker ⊆.同理可证στker ker ⊆.。

最新(完美版)第七章习题答案_数值分析

最新(完美版)第七章习题答案_数值分析

第七章习题解答2、试确定系数a ,b 的值使220[()cos ]ax b x dx p+-ò达到最小解:设220(,)[()cos ]I a b ax b x dx p=+-ò确定a ,b 使(,)I a b 达到最小,必须满足0,0I Ia b ¶¶==¶¶即3222222000022222000012[cos ]0cos 248212[cos ]0cos 82a b ax b x xdx a x dx b xdx xxdx a b ax b x dx a xdx b dx xdx p p p p p p p pp p p p p ììì+=-+-=+=ïïïïïïÞÞíííïïï+=+-=+=ïïïîîîòòòòòòòò解得:0.6644389, 1.1584689a b »-»5、试用Legendre 多项式构造()f x x =在[-1, 3]上的二次最佳平方逼近多项式 解:作变量代换,将区间[-1, 3]变为[-1, 1],令21x t =+,即12x t -=则()()(21)21(11)F t f x f t t t ==+=+-££对()F t 利用Legendre 多项式求其在}{21,,span t t上的最佳平方逼近多项式20()()j j j S t C P t ==å,其中11(,)21()()(0,1,2)(,)2j j j j j P f j C F t P t dt j P P -+===ò20121()=1,()=t,()=(31)2P t P t P t t - 则有:1121012112111212212121215[(21)(21)]24311[(21)(21)]285(31)(31)45[(21)(21)]22264C t dt t dt C t tdt t tdt t t C t dt t dt ---------=--++==--++=--=--++=òòòòòò 01251145()()()()4864S t P t P t P t \=++则()f x 在[-1, 3]上的最佳二次逼近多项式*01222151111451()()()()()()2428264251114511=()((3()1))4826422135+82243512x x x x S t S t S P P P x x x x ----===++--++-+=7、确定一条经过原点的二次曲线,使之拟合下列数据ix123iy0.2 0.5 1.0 1.2并求平方误差2d解:设2012()1,(),()x x x x x j j j ===由题,拟合函数须过原点 则令001122()()()()f x C x C x C x j j j =++,其中00C =,即212()f x C x C x =+ 12000.2110.5,,24 1.039 1.2Y f f æöæöæöç÷ç÷ç÷ç÷ç÷ç÷===ç÷ç÷ç÷ç÷ç÷ç÷èøèøèø 11122122(,)(,)1436(,)(,)3698G f f f f f f f f æöæö==ç÷ç÷èøèø 12(,) 6.1(,)15.3Y F Y f f æöæö==ç÷ç÷èøèø得法方程GC F = 121436 6.1369815.3C C æöæöæö=ç÷ç÷ç÷èøèøèø解方程得:120.61840.0711C C »»-2()0.61840.0711f x x x \=-误差222121(,) 2.730.6184(,)0.0711(,)0.04559j j j YC Y Y Y df f f ==-=-´+´=å8、已知一组数据ix1 2 3iy3 2 1.5试用拟合函数21()S x a bx =+拟合所给数据解:令2()f x a bx =+ 201()1,()x x x j j ==01()()()f x a x b x j j =+则123113111114,219213y A F y y æöæö÷ç÷çæöç÷ç÷ç÷ç÷===ç÷ç÷ç÷ç÷èøç÷ç÷ç÷ç÷èøèøT T a A A A F b æö\=ç÷èø,即331422514983a b æöç÷æöæö=ç÷ç÷ç÷ç÷èøèøç÷èø解方程组得0.3095,0.0408a b == 即210.30950.0408()x f x y=+=从而有21()0.30950.0408S x x =+补充题:用插值极小化法求()sin f x x =在[0, 1]上的二次插值多项式2()P x ,并估计误差 解:作变量替换1(1)2x t =+,将[0, 1]变换[-1, 1]取插值点11(21)cos 0,1,2222(1)K K x K n p+=+=+ 0120.933001270.50.0669873x x x ===利用这些点做插值商表i xi y一阶插商 二阶插商0.9330127 0.80341740.5 0.479425 0.74863250.0669873 0.0659372 0.9549092 -0.23818779则:20.9330127()0.80)0.2341740.743818779(0.9330127)(0.5)86325(x P x x x ---=+-同时误差213322()()()22(1)!3!24n n M M M R x f x P x n --+=-£==+其中(3)3max ()M f x = 由于1(1)2x t =+,即21t x =- 则(3)(3)3max (21)max sin (21)8max cos(21)8[0,1]M f x x x x =-=-=-=Î281()243R x \£=。

第7章 信号处理电路 习题解答

第7章 信号处理电路 习题解答
综上所述,仪表放大器的特点是:具备足够大的放大倍数、高的输入电阻和高共模抑制比。
7.3简述电荷放大器有什么特点,应用于何种场合。
解:电荷放大器应用于压电式加速度传感器、压力传感器等的后端放大。
上述两种传感器属于电容性传感器,这类传感器的阻抗非常高,呈容性,输出电压很微弱;他们工作时,将产生正比于被测物理量的电荷量,积分运算电路可以将电荷量转换成电压量,电路如下图所示。
解:1)LBF;2)BPF;3)HPF;4)BEF。
二、判断下列说法是否正确,用 “√”(正)和“ ”(误)填入括号内。
1)高通滤波器的通频带是指电压的放大倍数不变的频率范围。()
2)低通滤波器的截止频率就是电压放大倍数下降1/2的频率点。()
3)带通滤波器的频带宽度是指电压放大倍数大于或等于通带内放大倍数0.707的频率范围。()
其中 ;
该滤波器为二阶低通滤波电路,幅频特性如下图:
7.7试说明图P7-8所示各电路属于哪种类型的滤波电路,是几阶滤波电路。
(1)
(2)
图P7-7
解:
图(1)所示电路二阶带通滤波器或者二阶带阻滤波器。
前一个运放为高通滤波器(截止频率f1),后一个运放为低通滤波器(截止频率f2),如果 ,则f1<f2,该滤波器为二阶带通滤波器;如果 ,则f1>f2,该滤波器为二阶带阻滤波器。
电容性传感器可等效为因存储电荷而产生的电动势Ut与一个输出电容Ct串联,如图中虚线框内所示。根据集成运放的特点,可得到输出电压为: 。
7.4简述隔离放大器有什么特点,应用于何种场合。
解:隔离放大器通常应用于远距离信号传输。
在远距离信号传输的过程中,常因强干扰的引入使放大电路的输出有很强的干扰背景,甚至将有用信号淹没,造成系统无法正常工作。隔离放大器将电路的输入侧和输出侧在电气上完全隔离,它既可切断输入侧和输出侧电路间的直接联系,避免干扰混入输出信号,又可使有用信号畅通无阻。目前集成隔离放大器有变压器耦合式、光电耦合式和电容耦合式三种。

第7章输入输出习题参考解答

第7章输入输出习题参考解答

第7章思考题与习题参考答案1.计算机的I/O系统的功能是什么?它由哪几个部分组成?答:计算机的I/O系统,主要用于解决主机与外部设备间的信息通讯,提供信息通路,使外围设备与主机能够协调一致地工作。

计算机的I/O系统由I/O硬件和I/O软件两大部分组成。

其中I/O硬件包括:系统总线、I/O接口、I/O设备及设备控制器。

I/O软件包括:用户的I/O程序、设备驱动程序、设备控制程序。

2.I/O硬件包括哪几个部分?各部分的作用是什么?答:I/O硬件包括:系统总线、I/O接口、I/O设备及设备控制器。

系统总线的作用是为CPU、主存、I/O设备(通过I/O接口)各大部件之间的信息传输提供通路。

I/O接口通常是指主机与I/O设备之间设置的一个硬件电路及其相应的控制软件。

它用于在系统总线和外设之间传输信号,并起缓冲作用,以满足接口两边的时序要求。

I/O设备的作用是为主机与外部世界打交道提供一个工具。

设备控制器用来控制I/O设备的具体动作,不同的I/O设备需要完成的控制功能不同。

3.什么是用户I/O程序?什么是设备驱动程序?什么是设备控制程序?答:用户I/O程序是指用户利用操作系统提供的调用界面编写的具体I/O设备的输入输出程序。

例如用户编写的用打印机输出文本的程序。

设备驱动程序是一种可以使计算机和设备通信的特殊程序。

可以说相当于操作系统与硬件的接口,操作系统只有通过这个接口,才能控制硬件设备的工作,假如某设备的驱动程序未能正确安装,便不能正常工作。

设备控制程序就是驱动程序中具体对设备进行控制的程序。

设备控制程序通过接口控制逻辑电路,发出控制命令字。

命令字代码各位表达了要求I/O设备执行操作的控制代码,由硬件逻辑解释执行,发出控制外设的有关控制信号。

4.说明设计I/O系统的三个要素的具体内容。

答:设计I/O系统应该考虑如下三个要素:①数据定位: I/O系统必须能够根据主机提出的要求进行设备的选择,并按照数据在设备中的地址找到相应的数据。

土力学第七章习题集及详细解答

土力学第七章习题集及详细解答

《土力学》第七章习题集及详细解答第7章土的抗剪强度一、填空题1. 土抵抗剪切破坏的极限能力称为土的___ _ ____。

2. 无粘性土的抗剪强度来源于____ _______。

3.粘性土处于应力极限平衡状态时,剪裂面与最大主应力作用面的夹角为。

4.粘性土抗剪强度库仑定律的总应力的表达式,有效应力的表达式。

5.粘性土抗剪强度指标包括、。

6. 一种土的含水量越大,其内摩擦角越。

7.已知土中某点,,该点最大剪应力值为,与主应力的夹角为。

8. 对于饱和粘性土,若其无侧限抗压强度为,则土的不固结不排水抗剪强度指标。

9. 已知土中某点,,该点最大剪应力作用面上的法向应力为,剪应力为。

10. 若反映土中某点应力状态的莫尔应力圆处于该土的抗剪强度线下方,则该点处于_____ _______状态。

【湖北工业大学2005年招收硕士学位研究生试题】11.三轴试验按排水条件可分为、、三种。

12.土样最危险截面与大主应力作用面的夹角为。

13.土中一点的摩尔应力圆与抗剪强度包线相切,表示它处于状态。

14. 砂土的内聚力(大于、小于、等于)零。

二、选择题1.若代表土中某点应力状态的莫尔应力圆与抗剪强度包线相切,则表明土中该点 ( )。

(A)任一平面上的剪应力都小于土的抗剪强度(B)某一平面上的剪应力超过了土的抗剪强度(C)在相切点所代表的平面上,剪应力正好等于抗剪强度(D)在最大剪应力作用面上,剪应力正好等于抗剪强度2. 土中一点发生剪切破坏时,破裂面与小主应力作用面的夹角为( )。

(A) (B)(C) (D)3. 土中一点发生剪切破坏时,破裂面与大主应力作用面的夹角为( )。

(A) (B)(C) (D)4. 无粘性土的特征之一是( )。

(A)塑性指数(B)孔隙比(C)灵敏度较高(D)粘聚力5. 在下列影响土的抗剪强度的因素中,最重要的因素是试验时的( )。

(A)排水条件(B)剪切速率 (C)应力状态 (D)应力历史6.下列说法中正确的是( )(A)土的抗剪强度与该面上的总正应力成正比(B)土的抗剪强度与该面上的有效正应力成正比(C)剪切破裂面发生在最大剪应力作用面上(D)破裂面与小主应力作用面的夹角为7. 饱和软粘土的不排水抗剪强度等于其无侧限抗压强度试验的()。

第7章+静电场+习题和思考题

第7章+静电场+习题和思考题

Q
Q
Q
2 0a 2 j ( 2 0a 2 j ) 16 0a 2 i

Q
16 0a 2
i
从 O 点指向 x 轴正向
y
a 2Q Q O a 2a x a 2Q
(4)
Uo

3 i 1
1
4 0
qi ri
2Q 2Q
Q



4 0a 4 0a 4 0 (2a)
答:错误 。
根据静电感应,当导体达到静电平 衡时,导体内部电场强度处处为 0, 根据高斯定理,导体内表面所带电 荷与空腔导体包围的电荷代数和为 0,所以内表面带-Q 的电量 。
A Q
B
习题图7-3
第第七七章 章习题习解答题解答
三、综合题
1.如习题图 7-4,三个点电荷分别分布 在 x , y轴上。 (1) 分析各点电荷在 O 点产生电场强度的方向; (2) 写出各点 电荷在 O 点产生的电场强度的大小; (3) 计算 O 点的电场 强度大小; (4)计算 O 点电势的大小 。
(3)计算
利用高斯定理
e
1
EdS
S
0
qi
S内
1
E
dS
S
0
qi
S内
Q
+ +
+R + +
O
dq
·
+ +r +
++ +

S
d E
· P
dE
E
d q
E4
r2 1
0
qi
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题1. 设无向图G =(V ,E ),V ={v 1,v 2,v 3,v 4,v 5},E ={(v 1,v 2),(v 2,v 2),(v 2,v 4),(v 4,v 5),(v 3,v 4),(v 1,v 3),(v 3,v 1)}。

a) 画出G 的图形;b) 求出G 中各结点的度及奇数度结点的个数。

解答:a)b) d (v 1)=3,d (v 2)=4,d (v 3)=3,d (v 4)=3,d (v 5)=12. 下列序列中,哪些是可构成无向简单图的结点度数序列?1) (1,1,2,2,3) 2) (1,1,2,2,2) 3) (0,1,3,3,3) 4) (1,3,4,4,5) 5) (0,1,1,2,3,3)解答:1) N 2) Y 3) N 4) N 5) Y3. 设无向图G 有16条边,3个4度结点,4个3度结点,其余结点的度数均小于3,问:G 中至少有几个结点。

解答:11个4. 证明:若有n 个人,每个人恰恰有三个朋友,则n 必为偶数。

证明:n 个人对应n 个结点,每个人恰恰有三个朋友,即为每个结点有3度,根据握手定理的推论,n 必为偶数。

5. 设图G 有n 个结点,n +1条边,证明:G 中至少有一个结点度数≥3 。

证明:用反证法. 若 G 的最大度∆ (G ) ≤ 2, 则按握手定理 2m ≤ 2n , 其中 m 是边数. 从而 m ≤ n , 而这与题设矛盾.6. 证明:无向简单图G =(V ,E ),e =|E |,v =|V |则有e ≤v (v -1)/2.证明:无向简单图是完全图时边数最多,完全图的边数为v (v -1)/2,所以无向简单图有e ≤v (v -1)/2.7. 设图G =(V ,E ), e =|E |,v =|V |,d (v )min 为G 中结点的最小度数, d (v )max 为G 中结点的最大度数.证明: d (v )min ≤ 2e /v ≤ d (v )max . 证明:根据握手定理:将式(1)代入式(2),整理得:d (v )min ≤ 2e /v ≤ d (v )max .8. 有n 个抽屉,若每两个抽屉里有一种相同的物品,每种物品恰好放在两个抽屉中,问共有多少种物品?解:每个抽屉用一个结点表示;每两个抽屉放相同的物品,在每两个抽屉对应的结点间连接一条边,则构成一个n 个结点的完全图,每条边是一个物品。

n 个结点的完全图有1()2 (1)vii d v e ==∑min max 1()() () (2)vi i vd v d v vd v =≤≤∑n(n-1)/2条边,所以共有n(n-1)/2种物品。

9. 证明:简单图的最大度小于结点数。

10. 下列各图有多少个结点和多少条边?1)K n 2)C n 3)W n 4)K m ,n 5)Q n 解:1)n 个结点,n(n-1)/2条边 2)n 个结点,n 条边 3) n+1个结点,2n 条边 4) m+n 个结点,mn 条边 5)2n 个结点,n*2n-1条边 11. 当n 为何值时,下列各图是正则图?1)K n 2)C n 3)W n 4)Q n 解:(1)对所有n ≥1(2)对所有n>=3 (3)3(4) 对所有n ≥012. 证明:3正则图必有偶数个结点。

13. 试证明下图中两个图不同构。

(a) (b ) 14. 证明:下图中的图是同构的。

15. 证明:下面两图是同构的。

16. 证明:简单图的同构关系是等价关系。

提示:简单图的同构关系是自反、对称和传递的。

17. 连通图G 有n 个结点,e 条边,则e ≥ n -1。

18. 给定图G ,如下图所示,求出G 中从v 1到v 6的所有基本通路。

abcde fgh(1)(2)(1)(2)bdr19. 给定图G ,如下图所示,找到G 中从v 2出发的所有基本回路。

20. 设G 为无向连通图,有n 个结点,那么G 中至少有几条边?为什么?对有向图如何?解答:n-1, n-1 21. 设V '和E '分别为无向连通图G 的点割集和边割集,G -E '的连通分支数一定是多少?G -V '的连通分支数也是定数吗?解答:G -E '的连通分支数一定是2,G -V '的连通分支数不是一个确定的数。

22. 一个有向图是强连通的,当且仅当G 中有一个回路,它至少包含每个结点一次。

23. 若有简单图至多有2n 个结点,每个结点度数至少为n ,G 是连通图。

又若简单图G 至多有2n 个结点,每个结点度数至少为n -1,那么G 是连通图吗?为什么?证明:假设G 是不连通的,有两个连通分支,若简单图至多有2n 个结点,则至少有一个连通分支的结点数≤n ,这个连通分支的结点最大度数≤n-1,和每个结点度数至少为n 矛盾,所以G 是连通图。

若简单图G 至多有2n 个结点,每个结点度数至少为n -1,那么G 不一定是连通图。

因为由2个n 个结点的完全图组成的图有2n 个结点,每个结点度数为n -1,是不连通的图。

24. 简单图G 有n 个结点,e 条边,设e >0.5(n -1)(n -2),证明:G 是连通的。

证明: 用反证法。

假若简单无向图G 不是连通图,那么G 必可成K (≥2)个连通分支G 1,G 2,…,G k ,每个连通分支G i (1≤i ≤k )都是一个简单无向图,因此它们的结点数分别为n 1,n 2,m 2,…n k ,边数分别为e 1,e 2,…,e k ,显然有n=n 1+n 2+…n k ,e=e 1+e 2+…e k ,且n i ≤n-1(1≤i ≤k )于是有e=e 1+e 2+…e k2)1n )(1n (2)1n )(1n (2)1n )(1n (2)1n (n 2)1n (n 2)1n (n k 21kk 2211--++--+--≤-++-+-≤=(n-1)·21·((n 1-1)+(n 2-1)+…+(n k -1))=21(n-1)((n 1+n 2+…+n k )-k) = 21(n-1)(n-k) v 1v 2v 3v 4v 5v 6v v v v 5≤21(n-1)(n-2) (k≥2) 这与已知e >0.5(n-1)(n-2)矛盾。

因此假设错误,G 是连通图。

25. 设图 G =<V ,E >,V ={v 1,v 2,v 3,v 4}的邻接矩阵则 v 1的入度是多少? v 4的出度是多少? 从v 1到v 4长度为2的通路有几条?26. 有向图G 如图所示,求G 中长度为4的路径总数,并指出其中有多少条是回路。

v 3到v 4的简单通路有几条。

26题图 27题图 27. 给定图G ,求: a )给出G 的邻接矩阵 ,b ) 求各结点的出、入度 ,c ) 求从结点c 出发长度为3的所有回路 28. 给定G 如图所示, a )写出邻接矩阵 b )G 中长度为4的路有几条? c )G 中有几条回路?28题图 30题图 29. 试用矩阵法判断有向图G =({a ,b ,c ,d },{<a ,b >,<a ,d >,<c ,b >,<c ,d >})的连通性。

解答:1)图G 的邻接矩阵:01011011()11001000A G ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦01010000()01010000A G ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦200000000()00000000A G ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦342()()()A G A G A G ==23401010000()()()()()0101000B G A G A G A G A G ⎡⎤⎢⎥⎢⎥=+++=⎢⎥⎢⎥⎣⎦因为B (G )中存在0元素,所以图G 不是强连通图。

2)图G 的可达矩阵为:因为可达矩阵关于主对角线对称位置的元素都为0,所以图G 不是单向连通。

3)若将图G 视为无向图,则邻接矩阵为B 无(G)的元素全为1,所以图G 是弱连通。

30. 求出所示图G 的邻接矩阵、可达矩阵,找出从v 2到v 3长度为3的通路,并计算出A 2,A 3进行验证。

31. 设图G 中的边满足W (G -e )>W (G ),称e 为G 的割边(桥)。

证明:e 是割边,当且仅当e不包含在G 的任一回路中。

证明: 1) e 为割边 =〉e 不包含于G 的任一回路中(反证法)假设e 包含在某一回路Ci 中,那么删除此边,但边关联的两个邻接点依然连通,所以没有破坏原图的连通性。

因此e 不是割边,矛盾。

所以假设不成立, e 不包含于G 的任一回路中;2)e 不包含于G 的任一回路中 =〉e 为割边假设e 不是割边,那么删除此边,生成子图依然连通。

e 关联的两个邻接点有基本通路存在,此基本通路连同e 构成一个回路,与题设矛盾。

所以假设不成立, e 为割边。

根据1),2)可知,题设结论成立.01011010()01011010A G ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦无211111111()11111111A G ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦无342()()()A G A G A G ==无无无11111111()11111111B G ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦无11010100()01110001P G ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦。

相关文档
最新文档