换热器温度控制系统

合集下载

换热器温度控制系统

换热器温度控制系统

1.E-0101B混合加热器设计为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K的加热蒸汽加热入口温度为294K的工艺介质。

为保证生成物的产量,质量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此实际情况,最后确定设计一个换热器的反馈控制方案。

1.1换热器概述换热器工作状态如何,可用几项工作指标加以衡量。

常用的工作指标主要有漏损率、换热效率和温度效率。

它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这些指标,对于换热器的管理和改进都是必不可少的。

换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。

换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。

换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的主要设备之一。

1.2换热器的分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触式换热器,复式换热器二按用途分类:加热器,预热器,过热器,蒸发器三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等此设计要求是将进料温度都为297.99K的MN(亚硝酸甲酯)和CO(一氧化碳)加热到出口温度为473K,所以我们经过调查研究,综合比较之后选择了管壳式(又称列管式) 换热器。

管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺旋管,管束两端固定于管板上。

在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。

换热器温度控制.

换热器温度控制.

任务一 强制对流换热器温度控制
将实验装置电源插头接到380V的三相交流电源。 打开电源三相带漏电保护空气开关,电压表指示380V。 打开总电源钥匙开关,按下电源控制屏上的启动按钮, 即可开启电源。 开启相关仪器和计算机软件,进入相应的实验。 运行组态软件,进入相应的实验,观察实时或历史曲 线,待水温基本稳定于给定值后,将调节器的开关由 “手动”位置拔至“自动”位置,使系统变为闭环控制 运行。待基本不再变化时,加入阶跃扰动(可通过改变 设定值来实现)。观察并记录在当前比例P时的余差和 超调量。每当改变值P后,再加同样大小的阶跃信号, 比较不同P时的ess和σp 。
任务一 强制对流换热器温度控制
任务一 强制对流换热器温度控制
Temperature Control of the Forced Convection Heat Exchanger
能力目标 :1.能够正确操作多种温度控制系统。 2.能够对温度控制系统PID整定。
知识目标 :1.温度控制系统分析。 2.比例积分(PI)调节器控制。 3.比例微分调节器(PD)控制。 4. 比例积分微分(PID)调节器控制
任务一 强制对流换热器温度控制
五、安全提示
实验前,锅炉内胆的水位必须高于热电阻的测 温点。 给定值必须要大于常温。 实验线路全部接好后,必须经指导老师检查认 可后,方可通电源开小组汇报
——操作
任务一 强制对流换热器温度控制
七、总结
作出比例调节器控制时,不同P值时的阶跃响 应曲线,得到的结论是什么? 分析PI调节器控制时,不同P和I值对系统性能 的影响? 绘制用PD调节器控制时系统的动态波形。 绘制用PID调节器控制时系统的动态波形。
任务一 强制对流换热器温度控制

06 换热器热流出口温度控制

06 换热器热流出口温度控制
修改OP的值,也就是不断改变阀门FV1103开度,观察SP和 PV的值,当其值达到120℃左右时,将控制器投自动。
15
实验步骤
整定控制器参数。
当比例增益Kc取1时,改变热流出口温度TI1104的SP,如从 120℃变为130℃,当TI1104稳定后再将SP从130℃改为 120℃,观察并记录TI1104的响应曲线。
控制器参数 Ti ----
0.85Tk 0.5Tk
Td ------0.13Tk
计算出控制器参数之后,先将K---c放在比计算值稍小一些
(一般小20%)的数值上,再依次放上Ti和Td的值,最后再
将K---c放回到计算值上即可。修改SP的值加入阶跃干扰,观
察1104的响应曲线,看衰减比是否达到4:1。
0.5Ts 0.3Ts
Td ------0.1Ts
计算出控制器参数之后,先将Kc放在比计算值稍小一些(一
般小20%)的数值上,再依次放上Ti和Td的值,最后再将Kc放
回到计算值上即可。施加扰动,观察换热器热流出口温度的
响应情况。
30
PID控制器参数的工程整定法
衰减振荡法
1.将TI1104设定值从120变为130,记录TI1104的响应曲线。 2.待TI1104稳定后,将TI1104设定值从130再变为120,记录 TI1104的响应曲线。 3.待系统稳定之后,手工将FV1105开度设置为40,观察 TI1104曲线的变化趋势。 4.当TI1104稳定后,再将FV1105开度调回到30,等待TI1104 稳定。
根据比例控制器的特点,不断修改Kc的值,每修改一次都要 通过改变SP来加入阶跃扰动,直到热流出口温度曲线出现4:1 衰减。观察并记录TI1104的响应曲线,同时记录下此时Kc的 值。

基于DCS换热器冷水出口温度控制系统

基于DCS换热器冷水出口温度控制系统

重庆化工职业学院课程设计任务书教培中心:自动化教培中心专业班级:学生姓名:设计题目:基于DCS换热器冷水出口温度控制系统起迄日期: 2011年6月2日~ 2011年6月23日摘要集散控制系统(Total Distributed Control System, DCS )是以微处理器为基础的集中分散型控制系统。

自20世纪70年代中期集散控制系统问世以来,已在工业控制领域得到了广泛的应用,越来越多的仪表和控制工程师已认识到集散控制系统并将成为工业自动控制的主流。

它具备分散控制、集中管理;采用局部网路通信技术;完善的功能控制;采用模块化和开放性结构,系统扩展方便;管理能力强;安全可靠性高等特点具有很强的实用价值。

本项目采用的是浙大中控(SUPCON JX-300X)的DCS,运用与之相配的AdvanTrol-Pro系统软件(V2.50)_SP06输出的组态软件。

实现现场数据实时记录和监控,设计了记录查询、报警、实时模拟等具有Windows风格的动态操作画面。

串级控制系统在生产过程中需要自动保持两个或多个参数之间的关系。

所以在工业生产过程中广泛运用,在此项目中运用的是浙大中控的DCS来做换热器冷水出口温度控制系统的比值控制,通过串级控制来保持两液位的稳态。

引言在现代工业生产过程中,主控制器的输出作为副控制器的给定值,副控制器的输出去操纵控制阀,以实现对变量的定值控制。

如果控制不稳定就会影响产品的质量,严重的甚至会造成生产事故。

为此在生产过程中需要主、副两个控制器串接工作,这种控制系统就是串级控制系统。

串级控制系统:串级控制系统是由其结构上的特征而得名的。

它是由主、副两个控制器串接工作的。

主控制器的输出作为副控制器的给定值,副控制器的输出去操纵控制阀,以实现对变量的定值控制。

串级控制系统的特点,使用场合:串级控制系统的主要特点为:(1)在系统结构上,它是由两个串接工作的控制器构成的双闭环控制系统;(2)系统的目的在于通过设置副变量来提高对主变量的控制质量}(3)由于副回路的存在,对进入副回路的干扰有超前控制的作用,因而减少了干扰对主变量的影响;(4)系统对负荷改变时有一定的自适应能力。

换热器防超温措施方案最新

换热器防超温措施方案最新

换热器防超温措施方案最新引言换热器是工业中常用的设备之一,用于将热能从一种介质传递到另一种介质。

然而,由于操作不当或其他原因,换热器在工作过程中可能会出现超温现象,损坏设备甚至引发安全事故。

为了防止换热器超温,保障设备的安全运行,需要制定一系列的防超温措施方案。

1. 温度传感器监测在换热器的进出口、交换管道等关键位置安装温度传感器,实时监测热介质的温度变化。

温度传感器可以将温度信号传输给监控系统,并设置预警阈值,一旦温度超出预警阈值,监控系统会及时发出警报信号,提醒工作人员及时采取措施。

2. 压力监测超温往往伴随着压力升高,为了更加全面地监测设备工作状态,可以在关键位置安装压力传感器,实时监测热介质的压力变化。

与温度传感器类似,压力传感器也可以与监控系统连接,在设定的预警阈值被超过时,发出警报信号。

3. 设定温度警报根据热介质的特性和设备的工作要求,设定一个合理的温度警报阈值。

当监测到的温度超过设定的阈值时,及时发出声光警报,提醒工作人员注意,并及时采取措施进行处理。

4. 定期维护保养定期对换热器进行维护保养,检查设备的各项工作参数是否正常。

包括清洗设备内的沉淀物、修理或更换老化的设备部件等。

通过定期维护保养,可以有效预防一些潜在问题的发生,减少设备故障的风险。

5. 温度控制系统针对换热器的工作要求,配备可靠的温度控制系统。

该系统可以根据设定的温度范围,自动调节热介质的流量、压力等参数,保持换热器的稳定工作状态。

在温度超出设定范围时,控制系统可以自动断开供热介质的阀门,避免超温事故的发生。

6. 清洗系统换热器的清洗非常重要,积聚的污垢会导致换热效率降低,并且增加换热器的工作负荷。

因此,配置定期清洗系统非常必要。

清洗系统可以通过压力喷射或化学清洗等方式,有效去除污垢,保持换热器的工作效率。

7. 定期检查设备定期检查设备的工作状态,特别是检查换热器的密封性能。

检查是否存在漏水、泄露等现象,并及时修复。

热交换器温度控制系统课程设计

热交换器温度控制系统课程设计

热交换器温‎度控制系统‎一.控制系统组‎成由换热器出‎口温度控制‎系统流程图‎1可以看出‎系统包括换‎热器、热水炉、控制冷流体‎的多级离心‎泵,变频器、涡轮流量传‎感器、温度传感器‎等设备。

图1换热器‎出口温度控‎制系统流程‎图控制过程特‎点:换热器温度‎控制系统是‎由温度变送‎器、调节器、执行器和被‎控对象(出口温度)组成闭合回‎路。

被调参数(换热器出口‎温度)经检验元件‎测量并由温‎度变送器转‎换处理获得‎测量信号c‎,测量值c与‎给定值r的‎差值e送入‎调节器,调节器对偏‎差信号e进‎行运算处理‎后输出控制‎作用u。

二、设计控制系‎统选取方案‎根据控制系‎统的复杂程‎度,可以将其分‎为简单控制‎系统和复杂‎控制系统。

其中在换热‎器上常用的‎复杂控制系‎统又包括串‎级控制系统‎和前馈控制‎系统。

对于控制系‎统的选取,应当根据具‎体的控制对‎象、控制要求,经济指标等‎诸多因素,选用合适的‎控制系统。

以下是通过‎对换热器过‎程控制系统‎的分析,确定合适的‎控制系统。

换热器的温‎度控制系统‎工艺流程图‎如图2所示‎,冷流体和热‎流体分别通‎过换热器的‎壳程和管程‎,通过热传导‎,从而使热流‎体的出口温‎度降低。

热流体加热‎炉加热到某‎温度,通过循环泵‎流经换热器‎的管程,出口温度稳‎定在设定值‎附近。

冷流体通过‎多级离心泵‎流经换热器‎的壳程,与热流体交‎换热后流回‎蓄电池,循环使用。

在换热器的‎冷热流体进‎口处均设置‎一个调节阀‎,可以调节冷‎热流体的大‎小。

在冷流体出‎口设置一个‎电功调节阀‎,可以根据输‎入信号自动‎调节冷流体‎流量的大小‎。

多级离心泵‎的转速由便‎频器来控制‎。

换热器过程‎控制系统执‎行器的选择‎考虑到电动‎调节阀控制‎具有传递滞‎后大,反应迟缓等‎缺点,根具离心泵‎模型得到通‎过控制离心‎泵转速调节‎流量具有反‎应灵敏,滞后小等特‎点,而离心泵转‎速是通过变‎频器调节的‎,因此,本系统中采‎用变频器作‎为执行器。

换热器温度控制系统_过程控制 - 副本

换热器温度控制系统_过程控制 - 副本

辽宁工业大学过程控制系统课程设计(论文)题目:换热器温度控制系统的设计院(系):电气工程学院专业班级:自动化102班学号: 100302042学生姓名:邢宏欢指导教师:(签字)起止时间:2013.6.25-2013.7.4课程设计(论文)任务及评语院(系):电气工程学院 教研室:自动化教研室注:成绩:平时20% 论文质量60% 答辩20% 以百分制计算 学 号 100302042 学生姓名 邢宏欢 专业班级 自动化102班 课程设计 换热器温度控制系统的设计课程设计(论文)任务课题完成的设计任务及功能、要求、技术参数 实现功能 设计换热器温度控制系统 换热器温度控制系统,通过换热器用蒸汽对冷物料进行加热,使换热器出口温度为某一定值。

工艺要求换热器出口温度在185±2℃以内,引起出口温度变化的扰动有:冷物料的流量与初温、蒸汽压力波动等,其中最主要的扰动是冷物料的流量Q 。

设计任务及要求 1、确定控制方案并绘制工艺节点图、方框图; 2、选择传感器、变送器、控制器、执行器,给出具体型号和参数; 3、确定控制器的控制规律以及控制器正反作用方式; 4、仿真分析/实验测试分析; 5、按规定的书写格式,撰写、打印设计说明书一份;设计说明书应在4000字以上。

技术参数测量范围:0-250℃控制温度:185±2℃最大偏差:8℃;进度计划1、确定控制方案并绘制工艺节点图、方框图;2、选择传感器、变送器、控制器、执行器,给出具体型号和参数;3、确定控制器的控制规律以及控制器正反作用方式;4、仿真分析/实验测试分析;5、按规定的书写格式,撰写、打印设计说明书一份;设计说明书应在4000字以上。

指导教师评语及成绩平时: 论文质量: 答辩:总成绩: 指导教师签字:年 月 日摘要随着工业的迅速发展,能量消耗量不断增加,能源紧张己成为一个世界性的问题。

近几年来,我国在节能方面虽然已取得很大的成绩,但能源的供应矛盾依然十分尖锐。

换热器热流出口温度控制

换热器热流出口温度控制

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载换热器热流出口温度控制地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容毕业设计说明书GRADUATE THESIS论文题目:换热器热流出口温度控制学院:电气工程学院摘要换热器作为一种标准工艺设备已经被广泛应用于动力工程领域和其他过程工业部门。

以工业上常用的列管式换热器为例,热流体和冷流体通过对流热传导达到换热的目的,从而使换热器物料出口温度满足工业生产的需求。

但由于目前制造工艺的限制,控制方式的单一性,换热器普遍存在控制效果差,换热效率低的现象,造成能源的浪费。

如何提高换热器的控制效果,提高换热效率,对于缓解我国能源紧张的状况,具有长远的意义。

本课题来源于对SMPT—1000实验平台换热器的研究,对于换热器热流出口温度的控制,使用PID控制来进行调节,通过不断的调整其参数,确定一个比较准确的参数值,通过调整冷水阀的开度调整其流量来控制热流的出口温度。

本设计利用PCS7来完成整个系统自动控制,通过PCS7软件对系统进行硬件和软件组态,完成控制出口温度的编程,最后通过人机界面监控维护控制系统正常运行。

关键词换热器;温度;PID控制;PCS7AbstractHeat exchanger as a standard process equipment has been widely used in the field of power engineering and other process industries. In the industry commonly used shell and tube heat exchanger, for example, the hot fluid and cold fluid heat transfer by convection heat transfer to achieve the purpose, so that the heat exchanger outlet temperature of the material to meet the needs of industrial production. However, as the manufacturing process constraints, control unity, common heat exchanger control is poor, the phenomenonof low heat transfer efficiency, resulting in waste of energy. How to improve the control performance of the heat exchanger to improve heat transfer efficiency, to ease China's energy shortage situation, have long-term significance.The design comes from the SMPT-1000 test platform research exchanger for heat exchanger outlet temperature control, the use of PID control to adjust, through continuous adjusting its parameters to determine a more accurate parameter values by adjusting opening of the cold water valve to control the flow of adjustment of the outlet temperature of the heat flow.This design uses PCS7 to complete the system of automatic control by PCS7 software on the system hardware and software configuration, complete control of the outlet temperature of the programming, the last operating normally by HMI monitoring and control system.Keywords Heat;temperature; PID control; PCS7目录 TOC \o "1-3" \h \z \uHYPERLINK \l "_Toc421781690" 摘要 PAGEREF_Toc421781690 \h IHYPERLINK \l "_Toc421781691" Abstract PAGEREF_Toc421781691 \h IIHYPERLINK \l "_Toc421781692" 目录 PAGEREF_Toc421781692 \h IIIHYPERLINK \l "_Toc421781693" 第1章绪论 PAGEREF_Toc421781693 \h 1HYPERLINK \l "_Toc421781694" 1.1换热器设备 PAGEREF_Toc421781694 \h 1HYPERLINK \l "_Toc421781695" 1.2 选题背景及意义 PAGEREF _Toc421781695 \h 1HYPERLINK \l "_Toc421781696" 1.3国内外研究现状及发展史PAGEREF _Toc421781696 \h 2HYPERLINK \l "_Toc421781697" 1.4本设计主要内容 PAGEREF_Toc421781697 \h 4HYPERLINK \l "_Toc421781698" 1.5 本章小结 PAGEREF_Toc421781698 \h 4HYPERLINK \l "_Toc421781699" 第2章系统工艺流程及算法控制PAGEREF _Toc421781699 \h 5HYPERLINK \l "_Toc421781700" 2.1 SMPT-1000实验平台及换热器PAGEREF _Toc421781700 \h 5HYPERLINK \l "_Toc421781701" 2.2 换热器 PAGEREF_Toc421781701 \h 6HYPERLINK \l "_Toc421781702" 2.2.1 高阶换热器 PAGEREF_Toc421781702 \h 6HYPERLINK \l "_Toc421781703" 2.2.2换热器工作原理 PAGEREF _Toc421781703 \h 6HYPERLINK \l "_Toc421781704" 2.3 PID控制 PAGEREF_Toc421781704 \h 7HYPERLINK \l "_Toc421781705" 2.3.1 PID基本介绍 PAGEREF_Toc421781705 \h 7HYPERLINK \l "_Toc421781706" 2.3.2 参数整定 PAGEREF_Toc421781706 \h 10HYPERLINK \l "_Toc421781707" 2.3.3 主要功能和应用 PAGEREF _Toc421781707 \h 12HYPERLINK \l "_Toc421781708" 2.4控制系统的设计 PAGEREF_Toc421781708 \h 13HYPERLINK \l "_Toc421781709" 2.4.1温度控制特点 PAGEREF_Toc421781709 \h 13HYPERLINK \l "_Toc421781710" 2.4.2 换热器温度控制系统PAGEREF _Toc421781710 \h 13HYPERLINK \l "_Toc421781711" 2.5本章小结 PAGEREF_Toc421781711 \h 15HYPERLINK \l "_Toc421781712" 第3章基于PCS7实现系统控制PAGEREF _Toc421781712 \h 16HYPERLINK \l "_Toc421781713" 3.1 PCS7简介 PAGEREF_Toc421781713 \h 16HYPERLINK \l "_Toc421781714" 3.2 PCS7作用 PAGEREF_Toc421781714 \h 16HYPERLINK \l "_Toc421781715" 3.3 PCS7控制系统结构 PAGEREF _Toc421781715 \h 17HYPERLINK \l "_Toc421781716" 3.4工程项目的建立 PAGEREF_Toc421781716 \h 18HYPERLINK \l "_Toc421781717" 3.5 控制系统硬件设计与组态PAGEREF _Toc421781717 \h 19HYPERLINK \l "_Toc421781718" 3.5.1 硬件系统组成 PAGEREF _Toc421781718 \h 19HYPERLINK \l "_Toc421781719" 3.5.2 硬件选型选型以及通讯PAGEREF _Toc421781719 \h 20HYPERLINK \l "_Toc421781720" 3.5.3 操作员站组态 PAGEREF _Toc421781720 \h 22HYPERLINK \l "_Toc421781721" 3.5.4 网络连接组态 PAGEREF _Toc421781721 \h 23HYPERLINK \l "_Toc421781722" 3.6软件组态 PAGEREF_Toc421781722 \h 23HYPERLINK \l "_Toc421781723" 3.6.1系统软件程序 PAGEREF_Toc421781723 \h 23HYPERLINK \l "_Toc421781724" 3.6.2与硬件地址的连接 PAGEREF _Toc421781724 \h 24HYPERLINK \l "_Toc421781725" 3.6.3系统报警软件程序 PAGEREF _Toc421781725 \h 25HYPERLINK \l "_Toc421781726" 3.7人机界面创建 PAGEREF_Toc421781726 \h 25HYPERLINK \l "_Toc421781727" 3.8 过程趋势画面的创建 PAGEREF _Toc421781727 \h 26HYPERLINK \l "_Toc421781728" 第4章控制系统的投运 PAGEREF _Toc421781728 \h 28HYPERLINK \l "_Toc421781729" 4.1运前的准备工作 PAGEREF_Toc421781729 \h 28HYPERLINK \l "_Toc421781730" 4.2副环参数整定 PAGEREF_Toc421781730 \h 28HYPERLINK \l "_Toc421781731" 4.3主环参数整定 PAGEREF_Toc421781731 \h 28HYPERLINK \l "_Toc421781732" 4.4控制系统的仿真运行 PAGEREF _Toc421781732 \h 29HYPERLINK \l "_Toc421781733" 4.4.1 热流出口温度 PAGEREF _Toc421781733 \h 29HYPERLINK \l "_Toc421781734" 4.4.2 系统扰动测试 PAGEREF _Toc421781734 \h 30HYPERLINK \l "_Toc421781735" 第5章总结 PAGEREF_Toc421781735 \h 31HYPERLINK \l "_Toc421781736" 参考文献 PAGEREF_Toc421781736 \h 32HYPERLINK \l "_Toc421781737" 谢辞 PAGEREF_Toc421781737 \h 34第1章绪论1.1换热器概述换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足过程工艺条件的需要,同时也提高能源利用率的主要设备之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

换热器温度控制系统一.控制系统组成由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。

图1换热器出口温度控制系统流程图控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。

被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。

二、设计控制系统选取方案根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。

其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。

对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。

以下是通过对换热器过程控制系统的分析,确定合适的控制系统。

换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。

热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。

冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。

在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。

在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。

多级离心泵的转速由便频器来控制。

换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。

图2换热器的温度控制系统工艺流程图引起换热器出口温度变化的扰动因素有很多,简要概括起来主要有:(1)热流体的流量和温度的扰动,热流体的流量主要受到换热器入口阀门的开度和循环泵压头的影响。

热流体的温度主要受到加热炉加热温度和管路散热的影响。

(2 )冷流体的流量和温度的扰动。

冷流体的流量主要受到离心泵的压头、转速和阀门的开度等因素的影响。

冷流体的温度与大气温度和换热器回流水的流量等因素有关。

(3)加热炉的启停机的影响。

(4)室内温度与管路内气体变化和阀门开度的影响。

首先考虑采用单回路控制系统。

方块图如下图3所示:图3单回路控制系统原理图从图3所示的控制系统中可以看出,从冷流体管路阀门或离心泵转速变化到热流体出口温度改变,在这中间要相继通过冷流体流量变化,换热器热交换速率变化,热流体出口温度变化等一系列过程,因此整个控制通道的容量滞后大、时间常数大、这就导致控制系统的控制作用不及时、最大偏差大、过度时间长、抗干扰能力差、控制精度降低。

而工艺上对出口温度要求比较严格,一般希望波动范围不超过+-(1%~2%)。

根据大量的工程实践经验和实验的结果证明,采用图3所示单回路控制系统是达不到要求的,必须寻求其他控制方案。

分析各种影响热器出口温度的因素,除了热流体的流量和温度外,冷流体的流量、阀门的开度等因素和进入系统的位置,首先影响冷流体的流量,而后经过换热器从而影响影响热流体的出口温度。

如果以冷流体流量为被控变量,输送冷流体的离心泵转速为操纵变量,够成单回路控制系统,则该控制系统的通道的容量滞后大大减少,对来自离心泵的转速、阀门开度变化等干扰能及时克服,减少他们对热流体出口温度的影响。

但是很显然,热流体的流量和温度的变化没有包含在内,同时系统也没有对热流体出口温度构成闭环控制,因此,仍然不能保证出口温度稳定在设定值上,还需进行改造。

为了解决上述滞后时间和控制要求之间的矛盾,保持热流体的出口温度稳定,可以根据管路冷流量的变化,先调节离心泵的转速,然后再根据热流体出口温度与设定值之间的偏差,根据合适的控制算法,进一步调节流体的流量,以保持出口温度的稳定,这样组成流体出口温度调节器和流体流量调节器串联起来的串级控制系统。

其方块图如下图4所示:图4串级控制系统原理图根据图4可以看出来自冷流体流量方面的干扰因素包括在副回路内,因此可以大大减少这些扰动因素对于热流体出口温度的影响。

对于热流体流量和温度方面的干扰,采用串级控制系统也可以得到改善,具体控制效果明显改善。

综上所述,我们可以对串级控制系统方案的基本参数进行确定:主回路:热流体出口温度——冷流体流量控制回路副回路:冷流体流量——离心泵转速控制回路主变量:换热器出口温度副变量:冷流体流量主检测变送器:铂电阻温度传感器副检测变送器:涡轮流量传感器执行器:变频器三、仪表的选型以及参数的确定1.温度的测量选择装配式热电偶如图5所示图5装配式热电偶测量范围及允许误差范围注:t为感温元件实测温度值(℃)热电偶时间常数热电偶公称压力:一般是指在工作温度下保护管所能承受的静态外压而破裂。

热电偶最小插入深度:应不小于其保护套管外径的8-10倍(特列产品例外)绝缘电阻:当周围空气温度为15-35℃,相对湿度<80%时绝缘电阻≥5兆欧(电压100V)。

具有防溅式接线盒的热电偶,当相对温度为93± 3℃ 时,绝缘电阻≥0.5兆欧(电压100V)高温下的绝缘电阻:热电偶在高温下,其热电极(包括双支式)与保护管以及双支热电极之间的绝缘电阻(按每米计)应大于下表规定的值。

2温度变送器选择通用型智能温度变送器如图6所示,接线端子如图7所图6通用型智能温度变送器图7接线端子性能简介输入单路或双路热电偶、热电阻信号,变送输出隔离的单路或双路线性的电流或电压信号,并提高输入、输出、电源之间的电气隔离性能。

技术特点本产品采用了先进的数字化技术,具备了传统模拟仪表所不具备的多项先进性能,在对高、低频干扰信号的抑制方面均有着优异表现,即使在大功率变频控制系统中依然能够可靠应用,同时,数字化技术的应用彻底克服了传统温度变送器线性差的缺点,内部采用数字化调校、无零点及满度电位器、自动动态校准零点、温度飘移自动补偿等诸多先进技术,并符合IEC61000-4-4:1995中所规定的第四类(恶劣工业现场)环境对产品的抗电磁干扰要求,这一系列技术的应用使产品的稳定性及可靠性得到科学的保证。

以上各项技术领先国际先进水平.适用性可以与单元组合仪表及DCS、PLC等系统配套使用,在油田、石化、制造、电力、冶金等行业的重大工程中有着广泛应用。

技术参数系统传输准确度:±0.2%×F·S温度漂移:≤0.0015%F·S/℃冷端温度补偿准确度:±0.1% 测量热电阻时允许的引线电阻:≤50Ω工作温度:工业级标准 -10~+55℃电流输出允许外接的负载阻抗:4-20mA输出时0~500Ω;0-10mA输出时0~1KΩ需要更大的负载能力请在订货时说明。

电磁兼容:符合IEC61000-4-4:1995中所规定的第四类(恶劣工业现场)环境对产品的抗电磁干扰要求.输入/输出/电源/通讯/双路间绝缘强度:≥1500V.ac储运环境温度:-40~+80℃相对湿度:10-90%RH(40℃时)供电电源:交流: AC 95~265V直流:DC12V~32V(反接保护)输入功率:0.9~1.8W(与型号有关,详见本手册附录中关于输入功率的计算方法)通讯接口:RS232 或 RS485,MODBUS软件协议(选配)。

外形尺寸:宽×高×深:22.5×100×115mm净重:140g±20g3流量传感器选用SKLUCB型插入式涡街流量计如图8所示图8SKLUCB型插入式涡街流量计工作原理按国际标准化组织IS07145(在环形截面封闭管道中的流体流量测定—在截面一点的速度测量法),采用埋入压电晶体的涡街测速探头,插入大口径工业管道内,将卡门旋涡频率转换为与流量成正比的电流或电压脉冲信号或4~20mADC 电流信号。

仪表特点1、可测量蒸汽,气体,液体的体积流量和质量流量;2、无机械运动部件,测量精度高,结构紧凑维护方便;3、压力损失小,量程范围宽;范围度达1:25;4、采用消扰电路和抗振传感头;5、采用消扰电路和抗振传感头,使仪表具有一定抗环境振动性能;6、可测介质温度达+250℃。

7、可实现不断流拆装传感器,可实现放大器与传感器分离(分离距离15m);技术参数4调节器选用SK-808/900系列智能PID调节仪如图9所示,接线端子如图10所示图9 SK-808/900系列智能PID调节仪图10接线端子主要技术指标基本误差:0.5%FS或 0.2%FS±1个字分辨力:1/20000、14位A/D转换器显示方式:双排四位LED数码管显示采样周期:0.5S报警输出:二限报警,报警方式为测量值上限、下限及偏差报警,继电器输出触点容量 AC220V/3A控制输出:⑴继电器触点输出⑵固态继电器脉冲电压输出(DC12V/30mA)⑶单相/三相可控硅过零触发⑷单相/三相可控硅移相触发⑸模拟量4~20mA、0~10mA、1~5V、0~5V 控制输出通讯输出:接口方式--隔离串行双向通讯接口RS485/RS422/RS232/Modem波特率--300~9600bps内部自由设定馈电输出:DC24V/30mA电源:开关电源 85~265VAC 功耗4W以选型表输入类型表5调节阀选用电动三通合流(分流)调节阀如图11所示ZAZQ(X)型电动三通合流(分流)调节阀有合流和分流二种型式,由DKZ电动执行机构和三通合流或三通分流调节组成,以电源为动力,接受统一的标准信号0~10mA DC或4-20mA Dc驱使阀门开度与此操作信号相对应。

合流阀的作用是将一种流体分成两路流体。

分流合流阀只能对应选用,但当DN≤80时,和流阀可用于分流场合。

可替代两台单、双座调节阀,节省投资,占据空间小。

三通调节阀通常用于热交换器的两种介质调节,及简单的配比调节。

图11动三通合流(分流)调节阀主要技术参数性能指标四、仪表清单1.、装配式热电偶2、通用型智能温度变送器3、SKLUCB型插入式涡街流量计4、SK-808/900系列智能PID调节仪如图5、电动三通合流(分流)调节阀五、参考文献[1]张毅.自动检测技术及仪表控制系统.北京:化学工业出版社.2008.[2]周泽魁.控制仪表与计算机控制装置. 北京:化学工业出版社.2008.[3]金以慧.过程控制.北京:清华大学出版社.2007.[4]胡寿松.自动控制原理.北京:科学出版社.2006.[5]王平主.仪器仪表.北京:新时代出版社.2002.[6]江苏苏科科技有限公司主页。

相关文档
最新文档