最新换热器温度控制系统简单控制系统
换热器温度控制系统

1.E-0101B混合加热器设计为确保混合加热器(E-0101B)中MN(亚硝酸甲酯),CO(一氧化碳)的出口温度为408K,选用0.68Mpa,408K的加热蒸汽加热入口温度为294K的工艺介质。
为保证生成物的产量,质量,及最终生成物的转化率,且工艺介质较稳定,蒸汽源压力较小,变化不大,因此针对此实际情况,最后确定设计一个换热器的反馈控制方案。
1.1换热器概述换热器工作状态如何,可用几项工作指标加以衡量。
常用的工作指标主要有漏损率、换热效率和温度效率。
它们比较全面的说明了换热器的特点和工作状态,在生产和科学试验中了解这些指标,对于换热器的管理和改进都是必不可少的。
换热器是将热流体的部分热量传递给冷流体的设备,又称热交换器。
换热器在化工、石油、动力、食品及其它许多工业生产中占有重要地位,其在化工生产中换热器可作为加热器、冷却器、冷凝器、蒸发器和再沸器等,应用广泛。
换热器是一种在不同温度的两种或两种以上流体间实现物料之间热量传递的节能设备,是使热量由温度较高的流体传递给温度较低的流体,使流体温度达到流程规定的指标,以满足工艺条件的需要,同时也是提高能源利用率的主要设备之一。
1.2换热器的分类适用于不同介质、不同工况、不同温度、不同压力的换热器,结构型式也不同,换热器的具体分类如下:一按传热原理分类:间壁式换热器,蓄热式换热器,流体连接间接式换热器,直接接触式换热器,复式换热器二按用途分类:加热器,预热器,过热器,蒸发器三、按结构分类:浮头式换热器,固定管板式换热器,U形管板换热器,板式换热器等此设计要求是将进料温度都为297.99K的MN(亚硝酸甲酯)和CO(一氧化碳)加热到出口温度为473K,所以我们经过调查研究,综合比较之后选择了管壳式(又称列管式) 换热器。
管壳式换热器主要有壳体、管束、管板和封头等部分组成,壳体多呈圆形,内部装有平行管束或者螺旋管,管束两端固定于管板上。
在管壳换热器内进行换热的两种流体,一种在管内流动,其行程称为管程;一种在管外流动,其行程称为壳程。
第12章_简单控制系统

XD%
TD /℃
进料
回流F
塔顶产品
P/ MPa
苯-二甲苯的T-x图
Q入,X入,T
入
QZ 蒸汽 塔底产品
XD%
精馏过程示意图
苯-二甲苯的P-x图
塔顶易挥发组分纯度XD、塔顶温度TD、塔顶压力P三者之
间的关系为: XD= f (TD,P),两个独立变量。
12
12.2.2 被控变量的选择 2、被控变量选择的一般原则
答:拿一个对被控变量影响较显著的变量来控制。
K大一些,T小一些,τ最好为0。 测量仪表的选用和安装 执行器的选用和安装
4
第三个问题:以什么方式控制? 答:没有标准答案(选择合适的调节规律) 最常用的调节规律: 位式控制、P、PI、PD、PID
(需要充分理解各种调节规律的特点和适用场合)
后续问题:如何整定PID参数? 答:临界比例度法+经验 衰减曲线法+经验 经验凑试法 最好的方法就是“经验”
干扰作用与控制作用之间的关系
控制质量:系统的过渡过程形式——超调量、衰减比、
余差、过渡时间、振荡周期
对象特性:(1)系统的输入输出关系
(2)分为对象静态性质和对象动态性质
(3)考察对象特性对控制质量的影响,用以选择操纵变量
16
12.2.3 操纵变量的选择
3、对象稳态性质对控制质量的影响
Y 绝对放大系数 X
器,与图 2 相比,控制通道滞后较大,对干燥温度校正作用
灵敏度次之。
方案Ⅲ :蒸汽流量要经过换热器的热量交换去改变空
气温度,滞后最大,对干燥温度校正作用灵敏度最差。 综合考虑应选择方案II,以旁路空气量为操纵变量。
25
12.2.4 控制器控制规律的选择
化学工程0801化工仪表与自动化7.8习题解答

(4)系统对负荷改变时有一定的自适应能力。 串级控制系统主要应用于:对象的滞后和时间常数很大、干扰作用
强而频繁、负荷变化大、对控制质量要求较高的场合。
13、【p167图7-23 a,b】确定两个系统中执行器的正、反作用及控制器
的正、反作用。(30分)
(a)为一加热器出口物料温度控制系统,要求物料温度不能太低,
否则容易结晶。
(b)为一加热器出口物料温度控制系统,要求物料温度不能过高,
否则容易分解
换热器 温度控制系统a
换热器 温度控制系统b
容易分解,所以平时加热剂阀门是关的,有信号时才开加热剂阀门。
答 : 串级控制系统的目的是为了高精度地稳定主变量,对主变量要求 较高,一般不允许有余差,所以主控制器一般选择比例积分控制规律, 当对象滞后较大时,也可引入适当的微分作用。
串级控制系统中对副变量的要求不严。在控制过程中,副变量是不 断跟随主控制器的输出变化而变化的,所以副控制器一般采用比例控制 规律就行了,必要时引入适当的积分作用,而微分作用一般是不需要 的。 16.什么是前馈控制系统?它有什么特点?
反应器温度控制系统 答:简单控制系统的典型方块图为:
对象 控制器
执行器
测量变送装置
干扰 被控变量 给定值 偏差
所谓简单控制系统,通常是指由一个被控对象、一个检测元件及 变送器、 一个控制器和一个执行器所构成的单闭环控制系统,因此 有时也称为单回路控制系统。
被控对象:反应器 被控变量:反应器内物料的温度 操纵变量:蒸汽流量
被控对象环节:T(温度)“+” 加热剂(操纵变量)增加时,物料温度(被控变量)也增 加 控制 器 环节:控制 阀 环节----受控对象环节---控制器环 节,这三个环节构 成的开环系统各环节静态放大系数极性(符号)相乘。 ★ 相乘必须为负的原则来确定控制器的正、反作用方式。 所以控制器选定方向:“—” [ ★ 正 → 正 → 负 同理:(b) 执行器:气开“+” 被控对象:T(温度下降)为“—” 控制器:选定方向“+” 14.【p167】图7-24为液体储糟,需要对液体加以自动控制。为安全起 见,储糟内液体严格禁止溢出。试确定控制阀的气开、气关型式和控制 器的正、反作用。 (1)选择流入量Qi为操纵变量; (2)选择流出量Qo为操纵变量;
热交换器温度控制系统课程设计

热交换器温度控制系统一.控制系统组成由换热器出口温度控制系统流程图1可以看出系统包括换热器、热水炉、控制冷流体的多级离心泵,变频器、涡轮流量传感器、温度传感器等设备。
图1换热器出口温度控制系统流程图控制过程特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象(出口温度)组成闭合回路。
被调参数(换热器出口温度)经检验元件测量并由温度变送器转换处理获得测量信号c,测量值c与给定值r的差值e送入调节器,调节器对偏差信号e进行运算处理后输出控制作用u。
二、设计控制系统选取方案根据控制系统的复杂程度,可以将其分为简单控制系统和复杂控制系统。
其中在换热器上常用的复杂控制系统又包括串级控制系统和前馈控制系统。
对于控制系统的选取,应当根据具体的控制对象、控制要求,经济指标等诸多因素,选用合适的控制系统。
以下是通过对换热器过程控制系统的分析,确定合适的控制系统。
换热器的温度控制系统工艺流程图如图2所示,冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使热流体的出口温度降低。
热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。
冷流体通过多级离心泵流经换热器的壳程,与热流体交换热后流回蓄电池,循环使用。
在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。
在冷流体出口设置一个电功调节阀,可以根据输入信号自动调节冷流体流量的大小。
多级离心泵的转速由便频器来控制。
换热器过程控制系统执行器的选择考虑到电动调节阀控制具有传递滞后大,反应迟缓等缺点,根具离心泵模型得到通过控制离心泵转速调节流量具有反应灵敏,滞后小等特点,而离心泵转速是通过变频器调节的,因此,本系统中采用变频器作为执行器。
换热器温度控制系统的设计过程控制系统与装置课程设计(论文)--大学毕业设计论文

过程控制系统与装置课程设计(论文)题目:换热器温度控制系统的设计课程设计(论文)任务及评语院(系):电气工程学院教研室:测控技术与仪器学号学生姓名专业班级课程设计(论文)题目换热器温度控制系统的设计课程设计(论文)任务在某生产过程中,冷物料通过热交换器用热水(工业废水)和蒸汽对进行加热,工艺要求出口温度为140±2℃。
当用热水加热不能满足出口温要求时,则在同时使用蒸气加热,试设计换热器温度控制系统。
1.技术要求:测量范围:0-180℃控制温度:140±2℃最大偏差:5℃;2.说明书要求:确定控制方案并绘制原理结构图、方框图;选择传感器、变送器、控制器、执行器,给出具体型号;确定控制器的控制规律以及控制器正反作用方式;若设计由计算机实现的数字控制系统应给出系统硬件电气连接图及序流程图;编写设计说明书。
指导教师评语及成绩成绩:指导教师签字:年月日目录第1章换热器温度控制系统设计概述 .......................................................................第2章换热器温度控制系统设计方案论证 .................................................................第3章系统内容设计.....................................................................................................3.1 温度传感器的选择 ...............................................3.2 流量变送器的选择 ...............................................3.3 调节器的选择 ...................................................3.4 执行器的选择 ...................................................3.5 变送器的选择 ...................................................3.6 调节阀的选择 ...................................................第4章系统性能分析. (X)4.1参数整定........................................................4.2.控制算法的确定 (X)第5章课程设计总结 (XX)参考文献 (XX)第1章换热器温度控制系统设计概述换热器的应用广泛,比如中央空调系统,机械润滑油冷却系统,制药消毒系统,饮料行业消毒系统,船用冷却,化工行业特殊介质冷却系统日常生活中取暖用的暖气散热片、汽轮机装置中的凝汽器和航天火箭上的油冷却器等,都是换热器。
简单控制系统

第7章简朴控制系统随着现代石油化工等过程装置的日益大型化、复杂化,智能仪表和计算机控制系统的日益普及,各类控制系统特别是复杂控制和先进控制系统在生产过程中的作用越来越显得重要。
目前,占控制系统绝大多数的仍然是简朴控制系统,简朴控制系统也是各类复杂控制和先进控制系统的基础。
因此,掌握简朴控制系统的基本原理和设计方法非常重要。
由于简朴控制系统的工作原理在前述章节已做介绍与讨论,本章以简朴控制系统的设计、投运与整定为重要内容。
7.1 简朴控制系统结构与组成从第一章已知,自动控制系统是由被控对象和自动化装置两大部分组成,即测量元件及变送器自动化装置自动控制器(调节器)自动控制系统(起控制作用)执行器(控制阀)被控对象受控制的物理装置(生产设备)(对象)由于构成自动控制系统的这两大部分(重要是指自动化装置)的数量、连接方式及其目的不同,自动控制系统可以有许多类型。
所谓简朴控制系统,通常是指由一个测量元件及变送器、一个控制器、一个控制阀和一个对象所构成的单闭环控制系统,因此也称为单回路控制系统。
图7-l所示的液位控制系统与图7-2所示的温度控制系统都是简朴控制系统的例子。
图7-1所示的液位控制系统中,贮槽是被控对象,液位是被控变量,变送器LT将反映液位高低的信号送往液位控制器LC。
控制器的输出信号送往执行器,改变控制阀开度使贮槽输出流量发生变化以维持液位稳定。
图7-1 液位控制系统图7-2 温度控制系统图7-2所示的温度控制系统,是通过改变进入换热器的载热体流量,以维持换热器出口物料的温度在工艺规定的数值上。
需要说明的是在本系统中画出了变送器LT及TT这个环节,根据第一章中所介绍的控制流程图,按自控设计规范,测量变送环节是被省略不画的,所以在本书以后的控制系统图中,也将不再画出测量、变送环节,但要注旨在实际的系统中总是存在这一环节,只是在画图时被省略罢了。
图7-3是图7-1和图7-2所示控制系统的方块图,也简朴控制系统的典型方块图。
换热器温度控制系统设计

换热器温度控制系统设计热交换器是工业生产中常用的设备之一,用于传递热量并调节流体温度。
热交换器温度控制系统的设计是为了确保热交换器能够稳定运行并提供所需的热量。
本文将介绍热交换器温度控制系统的设计要点和步骤。
1.系统需求分析在开始设计热交换器温度控制系统之前,首先需要对系统的需求进行分析。
这包括流体的类型、流量、温度范围以及所需的温度稳定性等。
根据这些需求,选择合适的控制器和传感器。
2.传感器选择传感器是热交换器温度控制系统中非常重要的组成部分,用来监测流体的温度并传输给控制器。
常用的温度传感器有热电偶和热敏电阻。
选择适合的传感器需要考虑精度、响应时间以及耐高温等因素。
3.控制器选择控制器是热交换器温度控制系统的核心部分,用于读取传感器的信号并根据设定的温度范围进行控制。
常用的控制器包括PID控制器和模糊控制器。
选择控制器时需要考虑可调节的参数、控制精度以及响应速度。
4.控制策略选择合适的控制策略是确保热交换器温度控制系统稳定运行的关键。
常用的控制策略有开环控制和闭环控制。
开环控制根据预先设定的参数进行控制,闭环控制根据传感器反馈的信息进行调节。
根据实际需求选择合适的控制策略。
5.温度设定和调节根据系统需求,设置所需的温度范围和稳定性。
通过控制器对热交换器的供热和冷却进行调节,以保持流体温度在设定的范围内。
6.安全保护热交换器温度控制系统设计中需要考虑安全保护措施,以防止超温和意外故障。
例如,可以设置过温报警和自动断电装置,当温度超出设定范围或发生故障时,及时停止热交换器的运行。
7.控制系统调试和优化在完成热交换器温度控制系统的设计和安装后,需要进行调试和优化,以确保系统的性能和稳定性。
在调试过程中,根据实际情况调整控制器的参数,以达到所需的温度控制效果。
总结:热交换器温度控制系统的设计需要从系统需求分析、传感器选择、控制器选择、控制策略、温度设定和调节、安全保护等方面进行考虑。
通过合理的设计和调试优化,可以确保热交换器能够稳定运行并提供所需的热量。
换热器出口温度单回路控制

换热器出口温度单回路控制(总11页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--1、概述换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。
本次课程设计我要完成换热器出口温度单回路控制系统设计,单回路控制系统又称简单控制系统,是指由一个控制对象、一个检测元件及变送器、一个调节器和一个执行器所构成的闭合系统,方框图如下:图1、单回路控制系统方框图单回路控制系统结构简单、易于分析设计,投资少、便于施工,并能满足一般生产过程的控制要求,因此在生产中得到广泛应用。
设计一个控制系统,首先应对被控对象做全面的了解。
除被控对象的动静态特性外,对于工艺过程、设备等也需要比较深入的了解;在此基础上,确定正确的控制方案,包括合理选择被控变量与操纵变量,选择合适的检测变送原件及检测位置,选用恰当的执行器、调节器以及调机器控制规律等;最后将调节器的参数整定到最佳值。
2、换热器温度控制原理以及控制方案的确定换热器温度控制过程有如下特点:换热器温度控制系统是由温度变送器、调节器、执行器和被控对象组成的闭合回路。
被调参数经检测元件测量并由温度变送器转换处理获得测量信号,测量值与给定值的差值送入调节器,调节器对偏差信号进行运算处理后输出控制作用。
换热器温度控制系统的工艺流程如下:冷流体和热流体分别通过换热器的壳程和管程,通过热传导,从而使冷流体的出口温度升高。
冷流体通过循环泵流经换热器的壳程,出口温度稳定在设定值附近。
热流体通过多级泵流经换热器的管程,与冷流体热交换后流回蓄水池,循环使用。
从控制任务要求可知,换热器温度控制系统是单点、恒值控制。
且题目要求用单回路控制系统,控制范围和控制精度要求一般,功能上无特殊要求,采用广泛使用的PID 控制。
图2 PID 控制系统原理图PID 控制是偏差比例(P )、偏差积分(I )、偏差微分(D )控制的简称。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录目录 (1)1、题目....................................................... 错误!未定义书签。
2、换热器概述................................................. 错误!未定义书签。
2.1换热器的用途........................................... 错误!未定义书签。
2.2换热器的工作原理及工艺流程图........................... 错误!未定义书签。
3、控制系统 (3)3.1控制系统的选择 (3)3.2工艺流程图和系统方框图 (3)4、被控对象特性研究 (4)4.1 被控变量的选择 (4)4.2 操纵变量的选择 (4)4.3 被控对象特性 (5)4.4 调节器的调节规律的选择 (6)5、过程检测控制仪表的选用 (7)5.1 测温元件及变送器 (7)5.2 执行器 (9)5.3 调节器 (10)5.4、仪表型号清单列表 (11)6、系统方块图 (11)7、调节控制参数,进行参数整定及系统仿真,分析系统性能 (12)7.1调节控制参数 (12)7.2 PID参数整定及系统仿真 (13)7.3 系统性能分析 (15)8、参考文献 (16)1、题目热交换器出口温度的控制。
2、换热器概述2.1 换热器的用途换热器又叫做热交换器(heat exchanger),是化工、石油、动力、食品及其它许多工业部门的通用设备,在生产中占有重要地位。
进行换热的目的主要有下列四种:①.使工艺介质达到规定的温度,以使化学反应或其他工艺过程很好的进行;②.生产过程中加入吸收的热量或除去放出的热量,使工艺过程能在规定的温度范围内进行;③.某些工艺过程需要改变无聊的相态;④.回收热量。
由于换热目的的不同,其被控变量也不完全一样。
在大多数情况下,被控变量是温度,为了使被加热的工艺介质达到规定的温度,常常取出温度问被控温度、调节加热蒸汽量使工艺介质出口温度恒定。
对于不同的工艺要求,被控变量也可以是流量、压力、液位等。
2.2 换热器的工作原理及工艺流程图换热器的温度控制系统换热器工作原理工艺流程如下:冷流体和热流体分别通过换热器的管程和壳程,通过热传导,从而使热流体的出口温度降低。
热流体加热炉加热到某温度,通过循环泵流经换热器的管程,出口温度稳定在设定值附近。
冷流体通过多级离心泵流经换热器的壳程。
在换热器的冷热流体进口处均设置一个调节阀,可以调节冷热流体的大小。
图2 换热器温度控制系统工艺流程图从传热过程的基本方程式可知,为了保证出口的温度平稳,满足工艺生产的要求,必须对传热量进行调节,调节传热量有以下几条途径:①、调节载热体的流量。
调节载热体流量大小,其实只是改变传热速率方程中的传热系数K和平均温差△Tm,对于载热体在加热过程中不发生相变的情况,主要是改变传热速率方程的热系数K;而对于载热体在传热过程中发生相变的情况,主要是改变传热方程中的△Tm。
②、调节传热平均温差△Tm。
这种控制方案滞后较小反应迅速,应用比较广泛。
③、调节传热面积F。
这种方案滞后较大,只有在某些必要的场合才采用。
④、将工艺介质分路。
该方案是一部分工艺介质经换热,另一部分走旁路。
在设计传热设备自动化控制方案时,要视具体传热设备的特点和工艺条件而定。
而在某些场合,当被加热工艺介质的出口温度较低,采用低压蒸汽作载热体,传热面积裕量又较大时,为了保证温度控制平稳及冷凝液排除畅通,往往以冷凝器流量作为操纵变量,调节传热面积,以保持出口温度恒定。
3、控制系统3.1控制系统的选择由于本次设计的任务控制换热器被加热物料出口温度,工艺过程主要就是冷热流体热交换,且外来干扰因素主要是载热体的流量变化,故选择单回路控制系统便可以达到预定的控制精度。
3.2 工艺流程图和系统方框图单回路控制系统又称为简单控制系统,是有一个被控对象、一个检测元件及变送器、一个调节器和一个控制器所构成的闭合系统。
单回路控制系统结构简单、易于分析设计,投资少、便于施工,并能满足一般的一般生产过程的控制要求,因此在生产过程中得到广泛的应用,其方框图如下图所示。
图1、单回路控制系统方框图其中,被控变量:被加热物料的出口温度;操纵变量:载热体的流量。
如图所示:测量元件及变送器对冷物料出口温度进行测量,得到测量值Ym并传送给调节器,调节器把Ym与内部给定值Ys比较得到偏差信号e按一定的调节运算规律计算出控制信号,并将控制信u号传送给执行器,执行器接收到控制信号u,自动的改变阀门的开度,改变蒸汽的流量。
4、被控对象特性研究换热器是传热设备中较为简单的一种,也是最常见的一种。
通常它两侧的介质(工艺介质和载热体)在换热过程中均无相变。
换热器换热的目的是保证工艺介质加热(或冷却)到一定温度。
为保证出口温度平稳,满足工艺要求,必须对传递的热量进行调节。
4.1 被控变量的选择影响一个生产过程正常操作的因素很多,但并非对所有影响因素都要进行控制.被控参数是一个输出参数,应为独立变量,与输入量之间应有单值函数关系.对于换热器过程控制系统,人们最关心的是对换热器中介质即冷流体的温度和压力的自动控制与调节,而在这两项当中,温度的自动调节又处于首位.因为出口水温直接影响产品质量、产量、效率及安全性,即本系统把换热器出口水温作为被控参数.4.2 操纵变量的选择在控制系统中,用来克服干扰对被控变量的影响,实现控制作用的变量就是操纵变量。
将出口温度维持在一定值,影响冷物料出口温度的有很多因素,比说冷物料的流量,载热体的流量,载热体的温度等。
冷物料是工艺所需要的,不能选用冷物料作为被控变量,而若选载热体温度作为操纵变量,改变其温度还需改变其他工艺过程如锅炉的温度,考虑工艺合理性,我选择对热流体流量进行控制,保证出口温度的稳定。
4.3 被控对象特性换热器系统在连续生产中,其控制原理可通过热量平衡方程和传热速率方程来分析,这个方案的控制流程图如图6。
图6 换热器的温度控制系统工艺流程图为了处理方便,不考虑传热过程中的热损失,根据能量守恒定律,热流体失去的热量应该等于冷流体吸收的热量,热量平衡方程为:11i o22o iq=G c T T G c T T=1122(-)(-)式中,q为传热速率(单位时间内传递的热量);G为质量流量;c为比热容;T为温度。
式中的下标处1为载热体;2为冷流体;i为入口;o为出口。
传热过程中的传热速率为:q KF T=∆式中,K为传热系数;F为传热面积;T∆为两流体间的平均温差。
其中,平均温差T∆对于逆流、单程的情况为对数平均值:i o o i121i1o122o2iT T T T T TT=T T TlnlnTT T∆-∆∆=-∆∆-1122(-)-(-)当1i 1o 2o 2iT T 133T T -≤≤-时,其误差在5%以内,可采用算术平均值来代替,算术平均值表示为: i 1oo i T T T T T ∆=122(-)+(-)2由于冷流体间的传热既符合热量平衡方程,又符合传热速率方程,因此有下列关系22o i G c T T KF T ∆22(-)=整理后得 o i 22KF T T T G c ∆=+22从上式可以看出,在传热面积F 、冷流体进口流量2G 、温度2i T 和比热容2c 一定的情况下,影响冷流体出口温度的因素主要是传热系数K 以及平均温差T ∆。
4.3 调节器调节规律的选择调节器的作用是对来自变送器的测量信号与给定值比较所产生的偏差e(t)进行比例(P)、比例积分(PI)、比例微分(PD)或比例积分微分(PID)运算,并输出信号到执行器。
选择调节器的控制规律是为了使调节器的特性与控制过程的特性能很好配合,使所设计的系统能满足生产工艺对控制质量指标的要求。
比例控制规律(P)是一种最基本的控制规律,其适用范围很广。
在一般情况下控制质量较高,但最后有余差。
对于过程控制通道容量较大,纯时延较小,负荷变化不大,工艺要求又不太高的场合,可选用比例控制作用。
比例控制规律(P)的微分方程数学模型为:()()p u t e t k =比例积分(PI)控制规律,结合了比例控制反应快,积分控制能消除余差。
但是当过程控制通道的纯时延和容量时延都较大时,由于积分作用容易引起较大的超调,可能出现持续振荡,所以要尽可能避免用比例积分控制规律,不然会降低控制质量。
通常对管道内的流量或压力控制,采用比例积分作用其效果甚好,所以应用较多。
比例积分(PI)控制规律的微分方程数学模型为:01(){()()}t p u t e t e t dt Tik =+⎰比例微分(PD)控制规律,由于引入微分,具有超前作用,对于被控过程具有较大容量时延的场合,会大大改善系统的控制质量。
但是对于时延很小,扰动频繁的系统,由于微分作用会使系统产生振荡,严重时会使系统发生事故,所以应尽可能不用微分作用。
比例微分(PD)控制规律的微分方程数学模型为:()(){()}d p de t u t e t dtk T =+ 比例积分微分(PID)作用是一种理想的控制作用,一般均能适应不同的过程特性。
当要求控制质量较高时,可选用这种控制作用的调节器。
比例积分微分(PID)控制规律的微分方程数学模型为:01()(){()()}t d p de t u t e t e t dt Ti dt k T =++⎰ 其中:()u t :为调节器的输出号p k :放大倍数i T :积分时间常数 dT :微分时间常数 ()e t :设定值与测量值偏差信号通过以上几种调节规律的分析及本系统是温度控制为被控参数,温度检测本身具有滞后性,为了弥补这个缺点,本系统选用比例积分微分(PID)控制规律。
5、过程检测控制仪表的选用5.1 测温元件及变送器根据生产实践和现场使用条件以及仪表的性能,我们选用普通热电偶测温仪表。
热电偶温度仪表是基于热电效应原理制成的测温仪器,它由热电偶、电测仪表和连接导线组成,其核心元件是热电偶。
热电偶温度计有以下特点:①测温精度高、性能稳定;②结构简单,易于制造,产品互换性好;③将温度信号转换为电信号,便于信号远传和实现多点切换测量;④测温范围广,可达-200~2000℃;⑤形式多样,适用于多种测温条件;被控温度在500℃以下,由[1]表3-5选用铂热电阻温度计,为了提高检测精度,应采用三线制接法,并配用DDZ-Ⅲ型热电偶温度变送器。
DDZ-Ⅲ型热电偶温度变送器主要性能指标如下:①测量范围最小量程3mV,最大量程60mV;零点迁移-50~+50mV。
②基本误差0.5%±③温度特性环境温度每变化25℃,附加误差不超过千分之五。
④恒流性能当负载电阻在0~100Ω范围变化时,附加误差不超过千分之五。