《证明线段相等-角相等-线段垂直》的方法总结
初二几何证明方法 总结

初二几何证明方法总结一、证两线段相等方法1、证明三角形全等:全等三角形的对应边相等;2、两线段在同一三角形中,通常利用等角对等边;3、角平分线性质:角平分线上的点到角两边的距离相等;4、线段垂直平分线的性质:线段垂直平分线上的点到这条线段的两个端点的距离相等;5、等腰三角形的性质:三线合一,即等腰三角形的顶角平分线或底边上的高平分底边;6、等边三角形三边相等;7、线段的和、差、倍、分,即根据等式性质:等量的和、差、倍、分仍是相等,如:若a=b,则a-c=b-c;若a=b,则a+c=b+c;8、三角形中线或中点的定义;9、等量代换,即等于同一条线段的两线段相等,如a=b,b=c,则a=c;二、证明两角相等1、证明三角形全等:全等三角形的对应角相等;2、两个角在同一三角形中,通常证明等边对等角;3、等量代换即等于同一个角的两角相等;4、角平分线的定义;5、角平分线性质:到角的两边距离相等的点,在这个角的平分线上,再由角平分线的定义可证得两角相等6、同角或等角的余角(或补角)相等;7、证明两直线平行,同位角、内错角相等;8、等腰三角形的性质:三线合一,即等腰三角形的底边上的中线或高平分顶角,再由角平分线的定义可证得两角相等;9、等边三角形各角都相等,并且每个角都等于60°;10、角的和、差、倍、分,即根据等式性质:等量的和、差、倍、分仍是相等;其中有常用方法是:两个三角形如果分别有两个角相等,那么第三个角也相等;11、对顶角相等;三、证垂直或证一个角是直角的方法:1、线段垂直平分线的性质:到线段两个端点距离相等的点在线段的垂直平分线上,即若有到线段两个端点的距离相等的两个点,则过这两点的直线是线段的垂直平分线;2、若∠1+∠2=180°,∠1=∠2,则∠1=∠2=90°,即证互补的两个角相等;3、等腰三角形的性质:三线合一,即若有等腰三角形的顶角平分线,则平分底边并垂直于底边;4、利用角的和、差、倍、分计算出90°,根据垂直定义,证明垂直;5、轴对称的性质:对称轴垂直平分任意一对对应点的连线。
证明线段相等角相等平行垂直的方法 Microsoft Word 文档

平面几何定理总结1、证明两条线段相等的方法(1)全等三角形的对应边、对应角相等(2)在角的平分线上的点到这个角的两边的距离相等(3)如果一个三角形有两个角相等,那么这两个角所对的边也相等(4)有一个角等于60°的等腰三角形是等边三角形(5)在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半(6)直角三角形斜边上的中线等于斜边上的一半(7)线段垂直平分线上的点和这条线段两个端点的距离相等(8)直角三角形两直角边a、b的平方和、等于斜边c的平方(9)平行四边形的对边相等(10)夹在两条平行线间的平行线段相等(11)矩形的对角线相等(12)菱形的四条边都相等(13)正方形的四条边相等、两条对角线相等(14)等腰梯形的两条对角线相等(15)如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等(16)经过梯形一腰的中点与底平行的直线,必平分另一腰(17)经过三角形一边的中点与另一边平行的直线,必平分第三边(18)三角形的中位线平行于第三边,并且等于它的一半(19)梯形的中位线平行于两底,并且等于两底和的一半(20)垂直于弦的直径平分这条弦并且平分弦所对的两条弧(21)在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等(22)从圆外一点引圆的两条切线,它们的切线长相等(23)在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等(24)相交两圆的连心线垂直平分两圆的公共弦2、证明角相等的方法(1)同角或等角的补角相等(2)同角或等角的余角相等(3)两直线平行,同位角相等(4)两直线平行,内错角相等(5)两直线平行,同旁内角互补(6)等腰三角形的两个底角相等(7)平行四边形的对角相等(8)菱形的对角线互相垂直,并且每一条对角线平分一组对角(9)等腰梯形两底角相等(10)一条弧所对的圆周角等于它所对的圆心角的一半(11)同弧或等弧所对的圆周角相等(12)弦切角等于它所夹的弧对的圆周角(13)如果两个弦切角所夹的弧相等,那么这两个弦切角也相等(14)圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角(15)从圆外一点引圆的两条切线,圆心和这一点的连线平分两条切线的夹角(16)等边三角形的各角都相等,并且每一个角都等于603、证明平行的方法(1)如果两条直线都和第三条直线平行,这两条直线也互相平行(2)同位角相等,两直线平行(3)内错角相等,两直线平行(4)同旁内角互补,两直线平行(5)三角形的中位线平行于第三边,并且等于它的一半(6)梯形的中位线平行于两底,并且等于两底和的一半(7)如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边(8)到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线4、证明垂直的方法(1)等腰三角形顶角的平分线平分底边并且垂直于底边(2)等腰三角形的顶角平分线、底边上的中线和高互相重合(3)和一条线段两个端点距离相等的点,在这条线段的垂直平分线上(4)三角形两边a、b的平方和、等于第三边c的平方,则此三角形直角三角形(5)矩形的四个角都是直角(6)菱形的对角线互相垂直(7)正方形的四个角都是直角(8)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧(9)半圆(或直径)所对的圆周角是直角(10)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形(11)圆的切线垂直于经过切点的半径5、证明全等或相似的方法(1)有两边和它们的夹角对应相等的两个三角形全等(2)有两角和它们的夹边对应相等的两个三角形全等(3)有两角和其中一角的对边对应相等的两个三角形全等(4)有三边对应相等的两个三角形全等(5)有斜边和一条直角边对应相等的两个直角三角形全等(6)关于某条直线对称的两个图形是全等形(7)关于中心对称的两个图形是全等的(8)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似(9)两角对应相等,两三角形相似(10)两边对应成比例且夹角相等,两三角形相似(11)三边对应成比例,两三角形相似(12)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似(13)直角三角形被斜边上的高分成的两个直角三角形和原三角形相似6、有关比例的定理(1)比例的基本性质如果a:b=c:d,那么ad=bc(2)合比性质如果a/b=c/d,那么(a±b)/b=(c±d)/d(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n≠0),那么(a+c+…+m)/(b+d+…+n)=a/b(4)三条平行线截两条直线,所得的对应线段成比例(5)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例(6)平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例(7)相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比(8)相似三角形周长的比等于相似比(9)相似三角形面积的比等于相似比的平方(10)相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等(11)如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项(12)切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项(13)从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等7、几何不等式(1)三角形两边的和大于第三边(2)三角形两边的差小于第三边(3)三角形的一个外角等于和它不相邻的两个内角的和(4)三角形的一个外角大于任何一个和它不相邻的内角。
初中数学垂径定理的巧妙学习

初中数学垂径定理的巧妙学习垂径定理是“圆”中最基本、最重要的定理之一,是《圆》一章的重要考点,同时垂径定理及其推论在解决问题中有着广泛的应用.由于垂径定理及其推论涉及的弦 (线段)、弧以及相等、垂直等关系较多,初学者不易掌握,本讲将从三个方面介绍如何学好垂径定理.一、正确理解圆是轴对称图形,任何一条过圆心的直线都是它的对称轴.根据对称性,把图1中的圆按直径CD 对折,点A 和点B 重合,所以直径CD 垂直平分弦AB .这个结论用文字叙述就是:垂径定理:垂直于弦的直径平分弦,并且平分弦所对的两条弧. 从命题的角度来分析这个定理的结构,可知题设有两个:①过圆心(CD 是直径);②垂直于弦(CD AB );结论有三个:③平分弦(AE=BE );④平分弦所对的优弧();⑤平分弦所对的劣弧().在具体运用时,常这样表述:因为CD 是⊙O 的直径,且CD ⊥AB , 所以AE=BE ,,.总之,理解圆的轴对称性是理解垂径定理的关键.二、巧妙记忆1.事实上,对于一个圆和一条直线,只要具备下列五个条件中的任何两个,就可以推出其余三个.①垂直于弦,②过圆心,③平分弦,④平分弦所对的优弧,⑤平分弦所对的劣弧.譬如:(1)①② ③④⑤,即是垂径定理;(2)①③ ②④⑤,即是垂径定理的推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;按照这种方式,还可以得到其他一些真命题,如:②③ ①④⑤、①④ ②③⑤、……,它们都是正确的.相信同学们还能写出余下的结论.特别说明:(1)推论“平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧”中“弦不是直径”是它的重要条件,因为一个圆的任意两条直径总是互相平分的,但是它们未必垂直.(2)垂径定理是根据圆的对称性推导出来的,该定理及其推论是证明线段相等、角相等、垂直关系、弧相等和一条弦是直径的重要依据,同时也为圆的计算和作图提供了方法和依据.2.熟悉以下基本图形、基本结论.⊥AC BC =AD BD =AD BD =AC BC =⇒⇒⇒⇒图1三、灵活运用例1 如图(1),⊙O 中,弦的长为cm ,圆心到的距离为4cm ,则⊙O 的半径长为( ) A .3cm B .4cm C .5cm D .6cm解析:过圆心O 作于C ,如图(2)则又由垂径定理得, 在Rt △AOC 中,由勾股定理得:.即⊙O 的半径长为5cm ,故选C .点评:在圆中解决弦的问题时,常用到垂径定理,勾股定理等知识,经常添加的辅助线是连接半径或过圆心作已知弦的垂线(往往又只是作圆心到弦的垂线段,如本例),构造以半径、半弦、弦心距组成的直角三角形,然后运用垂径定理和勾股定理来求解.例2 工程上常用钢珠来测量零件上小孔的直径.假设钢珠的直径是12毫米,测得钢珠顶端离零件表面的距离为9毫米,如图(1)所示,求这个小孔直径AB 的长.分析:小孔直径AB 正是⊙O 的弦,因此我们可利用垂径定理将半径OA 、弦长AB 的一半AC 及弦心距OC 转化到一个直角三角形中,从而使问题获解.解:连接OA (如图(2)),因为OC ⊥AB 且OC =9-6=3,故在Rt △AOC 中, 有. 根据垂径定理,得.点评:垂径定理常与勾股定理结合在一起,进行有关圆的半径、圆心到弦的距离、弦长和弓形高等数量的计算,要能灵活运用.例3 某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,图(1)是水平放置的破裂管道的截面.若这个输水管道有水部分的水面宽AB =16cm ,水面最深地方的高度为4cm ,求这个圆形截面的半径.分析:把它抽象为数学问题,就是已知⊙O 中,弦AB=16cm ,弓形高是4cm ,求⊙O 的半径长.本题的解题关键是作垂直于弦的半径,然后构造直角三角形,应用勾股定理求解.但我们发现在构造的Rt△ADO 中(如图(2)),只知道一条边AD 的长,无法直接用勾股定理,因此我们可设△O 半径为x , 则OD=x -4,然后利用勾股定理列出方程便可以求出圆的半径长.解:如图(2),设圆形截面的圆心为O ,过O 作OC△AB 于D ,交弧AB 于C ,连接OA . △ OC△AB , △AD =21AB =21×16=8(垂径定理). 由题意可知,CD =4cm . AB 6O AB OC AB ⊥4OC cm =12AC AB ==3cm 2222345OA AC OC =+=+=22226333AC OA OC =-=-=263AB AC ==图(1) 图(2)图(1)图(2) 图(1) 图(2)设半径OA=x ,则OD =(x -4).在Rt△AOD 中,由勾股定理得:OD 2+AD 2=OA 2, △( x -4)2+82=x 2.△x =10.点评:本题利用勾股定理列方程求解,这是方程思想在解几何计算题中的应用.在利用垂径定理解决计算问题时,用方程思想解题的关键是若在直角三角形中,只知道一条边长,而另外两条边可用同一未知数表示出来,此时我们便可用勾股定理建立方程求解.例4 如图(1),AB 是OD 的弦,半径OC 、OD 分别交AB 于点E 、F ,且AE=BF ,请你写出线段OE 与OF 的数量关系,并给予证明.答:OE=OF .证法1:连接OA 、OB ,如图(2).∵ OA=OB ,∴ ∠A=∠B .又 AE=BF ,∴ △ADO ≌△ADO (SAS ). ∴OE=OF .证法2:作OM ⊥AB 于M ,如图(3).∴ AM=BM (垂径定理).∵ AE=BF ,∴ EM=FM .∴ OE=OF (线段垂直平分线上的点到线段两端的距离相等).点评:比较本题的两种证明方法可以看出,运用垂径定理要简单的多.【小结】1.本讲主要学习的内容:垂径定理及垂径定理推论的应用.2.在圆中解决弦的问题时,常用到垂径定理,勾股定理等知识,经常添加的辅助线是连接半径或过圆心作已知弦的垂线,构造以半径、半弦、弦心距组成的直角三角形,然后运用垂径定理和勾股定理来求解.3.在利用垂径定理解决计算问题时,若在直角三角形中,只知道一条边长,而另外两条边可用同一未知数表示出来,此时我们可用勾股定理建立方程求解.希望同学们通过本讲的学习能够掌握垂径定理,并能灵活运用垂径定理.图(1) 图(2) 图(3)。
中考二轮复习之证明两角相等的方法

OA ECD B 中考二轮复习之证明两角相等的方法【相关定理或常见结论】 1、相交线、平行线: 〔1〕对顶角相等;〔2〕等角的余角〔或补角〕相等;〔3〕两直线平行,同位角相等、错角相等; 〔4〕凡直角都相等;〔5〕角的平分线分得的两个角相等. 2、三角形〔1〕等腰三角形的两个底角相等;〔2〕等腰三角形底边上的高〔或中线〕平分顶角〔三线合一〕; 〔3〕三角形外角和定理:三角形外角等于和它不相邻的角之和 〔4〕全等三角形的对应角相等; 〔5〕相似三角形的对应角相等. 3、四边形〔1〕平行四边形的对角相等;〔2〕菱形的每一条对角线平分一组对角; 〔3〕等腰梯形在同一底上的两个角相等. 4、圆〔1〕在同圆或等圆中,假设有两条弧相等或有两条弦相等,那么它们所对的圆心角相等; 〔2〕在同圆或等圆中,同弧或等弧所对的圆周角相等. ,圆心角相等.〔3〕圆周角定理:在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半. 〔4〕圆接四边形的性质:圆接四边形的对角互补;并且每一个外角都等于它的对角. 〔5〕三角形的心的性质:三角形的心与角顶点的连线平分这个角. 〔6〕正多边形的性质:正多边形的外角等于它的中心角.〔7〕从圆外一点引圆的两条切线,圆心和这一点的连线平分这两条切线的夹角; 5、利用等量代换、等式性质 证明两角相等. 6、利用三角函数计算出角的度数相等【典题精析】〔一〕 利用全等相关知识证明角相等例1 :如图,CD AB ⊥于点D ,BE AC ⊥于点E ,BE 与CD 交于点O ,且BD CE =. 求证:AO 平分BAC ∠.例2 如图,在四边形ABCD 中,AD ∥BC ,E 是四边形一点,ED ⊥AD ,BE=DC ,∠ECB=45 求证:∠EBC =∠EDC例3如图,四边形ABCD 中AC=BD ,CD ∥BA ,四边形AEBC 是平行四边形.求证:∠ABD =∠ABE .〔二〕利用平行、三角形的角和、外角关系证明角之间的关系 例4.:△ABC 中,AD 是高,CE 是中线,DC=BE ,DG ⊥CE ,G 是垂足, 求证:⑴G 是CE 的中点;⑵∠B=2∠BCE.例5 如图,直线AC BD ∥,连结AB ,直线AC BD ,与线段AB 把平面分成①、②、③、④四个局部,规定:线上各点不属于任何局部.当动点P 落在某个局部时,连结PA PB ,,构成PAC ∠,APB ∠,PBD ∠三个角.〔提示:有公共端点的两条重合的射线所组成的角是0角.〕〔1〕当动点P 落在第①局部时,求证:APB PAC PBD ∠=∠+∠;〔2〕当动点P 落在第②局部时,APB PAC PBD ∠=∠+∠是否成立〔直接回答成立或不成立〕?〔3〕当动点P 在第③局部时,全面探究PAC ∠,APB ∠,PBD ∠之间的关系,并写出动点P 的具体位置和相应的结论.选择其中一种结论加以证明.〔三〕利用四边形的相关知识证明角的有关问题例6:如图,在△ABC 中,AB =AC ,E 是AB 的中点,以点E 为圆心,EB 为半径画弧,交BC 于点D ,连结ED ,并延长ED 到点F ,使,连结FC .求证:∠F =∠A .A B C D①②③A B C D P ① ② ③ ④ A B C D ① ② ③ ④ ④〔四〕利用圆的相关知识例7如图,BC 是直径,AB AG =,AD ⊥BC.求证:〔1〕∠EAF=∠AFE 〔2〕BE=AE=EF例8 :如图,AD 为锐角△ABC 外接圆的直径,AE ⊥BC 于E ,交⊙O 于F 。
线段垂直的性质和判定

线段垂直的性质和判定线段垂直是指两条线段的交角为直角(即90度)。
这种性质在几何学中是非常重要的,因为它可以用于解决许多几何问题。
线段垂直的性质1. 垂直线段的对角线相交的四边形是矩形。
这个性质可以很容易地证明,因为直角的两个角是相等的,所以四边形的对角线中点重合,因此,对角线相等。
此外,对于矩形来说,对角线相等还意味着两组对边相等,因此矩形的四条边也相等。
2. 垂直线段的长度之积等于四边形对角线长度之积的一半。
这个性质可以用勾股定理(a² + b² = c²)推导。
假设两条垂直线段的长度为a和b,以它们为对角线的矩形的对角线长度为c。
根据勾股定理,c² = a² + b²。
因此,a² = c² - b²。
同样地,b² = c² - a²。
将这些方程代入四边形对角线长度之积等于垂直线段长度之积的一半的公式(c¹d¹ = 1/2ab),可得:c¹d¹ = 1/2(ab)= 1/2[(a² + b²)/2]= 1/2[c² - (c² - a²)]= 1/2[c² - (c² - b²)]= 1/2c²(a²和b²的和等于c²)因此,垂直线段的长度之积等于对角线长度之积的一半。
线段垂直的判定线段垂直的判定有很多种方法,以下是其中一些比较常见的方法:1. 通过斜率判定。
如果两条线段的斜率的乘积为-1,则它们垂直。
这可以通过以下公式获得:k1k2 = -1,其中k1和k2分别是两条线段的斜率。
2. 通过正弦余弦判定。
如果两条线段的交角的正弦值和余弦值互为倒数,则它们垂直。
这可以通过以下公式获得:sin(θ1)cos(θ2) + sin(θ2)cos(θ1) = 0,其中θ1和θ2分别是两条线段的交角。
八年级数学上学期全等三角形全章复习与巩固(基础)知识讲解——含课后作业与答案

全等三角形全章复习与巩固(基础)责编:杜少波【学习目标】1. 了解全等三角形的概念和性质,能够准确地辨认全等三角形中的对应元素;2.探索三角形全等的判定方法,能利用三角形全等进行证明,掌握综合法证明的格式;3.会作角的平分线,了解角的平分线的性质,能利用三角形全等证明角的平分线的性质, 会利用角的平分线的性质进行证明.【知识网络】【要点梳理】【高清课堂:388614 全等三角形单元复习,知识要点】要点一、全等三角形的判定与性质要点二、全等三角形的证明思路SAS HL SSS AAS SAS ASAAAS ASA AAS⎧→⎧⎪⎪→⎨⎪⎪⎪→⎩⎪⎪→→⎧⎪⎪→⎧⎪⎪⎨⎨⎪→⎨⎪⎪⎪⎪⎪→⎩⎩⎪⎪→⎧⎪⎨→⎪⎩⎪⎩找夹角已知两边找直角找另一边边为角的对边找任一角找夹角的另一边已知一边一角边为角的邻边找夹边的另一角找边的对角找夹边已知两角找任一边 要点三、角平分线的性质1.角的平分线的性质定理角的平分线上的点到这个角的两边的距离相等. 一般三角形 直角三角形 判定 边角边(SAS ) 角边角(ASA ) 角角边(AAS ) 边边边(SSS ) 两直角边对应相等 一边一锐角对应相等 斜边、直角边定理(HL ) 性质 对应边相等,对应角相等 (其他对应元素也相等,如对应边上的高相等) 备注 判定三角形全等必须有一组对应边相等2.角的平分线的判定定理角的内部到角的两边距离相等的点在角的平分线上.3.三角形的角平分线三角形角平分线交于一点,且到三边的距离相等.4.与角平分线有关的辅助线在角两边截取相等的线段,构造全等三角形;在角的平分线上取一点向角的两边作垂线段.要点四、全等三角形证明方法全等三角形是平面几何内容的基础,这是因为全等三角形是研究特殊三角形、四边形、相似图形、圆等图形性质的有力工具,是解决与线段、角相关问题的一个出发点.运用全等三角形,可以证明线段相等、线段的和差倍分关系、角相等、两直线位置关系等常见的几何问题.可以适当总结证明方法.1.证明线段相等的方法:(1) 证明两条线段所在的两个三角形全等.(2) 利用角平分线的性质证明角平分线上的点到角两边的距离相等.(3) 等式性质.2.证明角相等的方法:(1) 利用平行线的性质进行证明.(2) 证明两个角所在的两个三角形全等.(3) 利用角平分线的判定进行证明.(4) 同角(等角)的余角(补角)相等.(5) 对顶角相等.3.证明两条线段的位置关系(平行、垂直)的方法;可通过证明两个三角形全等,得到对应角相等,再利用平行线的判定或垂直定义证明. 4.辅助线的添加:(1)作公共边可构造全等三角形;(2)倍长中线法;(3)作以角平分线为对称轴的翻折变换全等三角形;(4)利用截长(或补短)法作旋转变换的全等三角形.5. 证明三角形全等的思维方法:(1)直接利用全等三角形判定和证明两条线段或两个角相等,需要我们敏捷、快速地发现两条线段和两个角所在的两个三角形及它们全等的条件.(2)如果要证明相等的两条线段或两个角所在的三角形全等的条件不充分时,则应根据图形的其它性质或先证明其他的两个三角形全等以补足条件.(3)如果现有图形中的任何两个三角形之间不存在全等关系,此时应添置辅助线,使之出现全等三角形,通过构造出全等三角形来研究平面图形的性质.【典型例题】类型一、全等三角形的性质和判定1、(2015•西城区模拟)问题背景:(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段BE,EF,FD之间的数量关系.小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是.探索延伸:(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°.E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.【思路点拨】(1)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题;(2)延长FD到点G.使DG=BE.连结AG,即可证明△ABE≌△ADG,可得AE=AG,再证明△AEF≌△AGF,可得EF=FG,即可解题.【答案与解析】证明:(1)在△ABE和△ADG中,,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为 EF=BE+DF.(2)结论EF=BE+DF仍然成立;理由:延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,,∴△ABE≌△A DG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF.【总结升华】本题考查了全等三角形的判定,考查了全等三角形对应边相等的性质,本题中求证△AEF≌△AGF是解题的关键.举一反三:【变式】如图,已知:AE⊥AB,AD⊥AC,AB=AC,∠B=∠C,求证:BD=CE.【答案】证明:∵AE⊥AB,AD⊥AC,∴∠EAB=∠DAC=90°∴∠EAB+∠DAE=∠DAC+∠DAE ,即∠DAB=∠EAC.在△DAB与△EAC中,DAB EAC AB AC B C ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△DAB ≌△EAC (ASA )∴BD =CE.类型二、巧引辅助线构造全等三角形(1).作公共边可构造全等三角形:2、 如图:在四边形ABCD 中,AD ∥CB ,AB ∥CD.求证:∠B =∠ D.【思路点拨】∠B 与∠D 不包含在任何两个三角形中,只有添加辅助线AC ,根据平行线的性质,可构造出全等三角形.【答案与解析】证明:连接AC ,∵AD ∥CB ,AB ∥CD.∴∠1=∠2,∠3=∠4在△ABC 与△CDA 中1243AC CA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△ABC ≌△CDA (ASA )∴∠B =∠D【总结升华】添加公共边作为辅助线的时候不能割裂所给的条件,如果证∠A =∠C ,则连接对角线BD.举一反三:【变式】在ΔABC 中,AB =AC.求证:∠B =∠ C【答案】证明:过点A 作AD ⊥BC在Rt △ABD 与Rt △ACD 中AB AC AD AD=⎧⎨=⎩∴Rt △ABD ≌Rt △ACD (HL )∴∠B =∠C.(2).倍长中线法:【高清课堂:388614 全等三角形单元复习,例8】3、己知:在ΔABC 中,AD 为中线.求证:AD <()12AB AC +【答案与解析】证明:延长AD 至E ,使DE =AD ,∵AD 为中线,∴BD =CD在△ADC 与△EDB 中DC DB ADC BDE AD ED =⎧⎪∠=∠⎨⎪=⎩∴△ADC ≌△EDB (SAS )∴AC =BE在△ABE 中,AB +BE >AE ,即AB +AC >2AD∴AD <()12AB AC +. 【总结升华】用倍长中线法可将线段AC ,2AD ,AB 转化到同一个三角形中,把分散的条件集中起来.倍长中线法实际上是绕着中点D 旋转180°.举一反三:【变式】若三角形的两边长分别为5和7, 则第三边的中线长x的取值范围是( )A.1 <x< 6B.5 <x< 7C.2 <x< 12D.无法确定【答案】A ;提示:倍长中线构造全等三角形,7-5<2x<7+5,所以选A选项.(3).作以角平分线为对称轴的翻折变换构造全等三角形:4、(2016秋•诸暨市期中)如图,已知∠1=∠2,P为BN上的一点,PF⊥BC于F,PA=PC.求证:∠PCB+∠BAP=180°.【思路点拨】过点P作PE⊥BA于E,根据角平分线上的点到角的两边距离相等可得PE=PF,然后利用HL证明Rt△PEA与Rt△PFC全等,根据全等三角形对应角相等可得∠PAE=∠PCB,再根据平角的定义解答.【答案与解析】证明:如图,过点P作PE⊥BA于E,∵∠1=∠2,PF⊥BC于F,∴PE=PF,∠PEA=∠PFB=90°,在Rt△PEA与Rt△PFC中,∴Rt△PEA≌Rt△PFC(HL),∴∠PAE=∠PCB,∵∠BAP+∠PAE=180°,∴∠PCB+∠BAP=180°.【总结升华】本题考查了角平分线上的点到角的两边距离相等的性质,全等三角形的判定与性质,作出辅助线构造出全等三角形是解题的关键.举一反三:【变式】(2015•开县二模)如图,已知,∠BAC=90°,AB=AC,BD是∠ABC的平分线,且CE⊥BD 交BD延长线于点E.求证:BD=2CE.【答案】解:如图2,延长CE、BA相交于点F,∵∠EBF+∠F=90°,∠ACF+∠F=90°,∴∠EBF=∠ACF,在△ABD和△ACF中∴△ABD≌△ACF(ASA),∴BD=CF,在△BCE和△BFE中,∴△BCE≌△BFE(ASA),∴CE=EF,∴BD=2CE.(4).利用截长(或补短)法构造全等三角形:5、如图所示,已知△ABC中AB>AC,AD是∠BAC的平分线,M是AD上任意一点,求证:MB-MC<AB-AC.【思路点拨】因为AB>AC,所以可在AB上截取线段AE=AC,这时BE=AB-AC,如果连接EM,在△BME中,显然有MB-ME<BE.这表明只要证明ME=MC,则结论成立.【答案与解析】证明:∵AB>AC,则在AB上截取AE=AC,连接ME.在△MBE中,MB-ME<BE(三角形两边之差小于第三边).在△AMC和△AME中,()()()AC AE CAM EAM AM AM =⎧⎪∠=∠⎨⎪=⎩所作,角平分线的定义,公共边, ∴ △AMC ≌△AME (SAS ).∴ MC =ME (全等三角形的对应边相等).又∵ BE =AB -AE ,∴ BE =AB -AC ,∴ MB -MC <AB -AC .【总结升华】充分利用角平分线的对称性,截长补短是关键.类型三、全等三角形动态型问题6、如图(1),AB ⊥BD 于点B ,ED ⊥BD 于点D ,点C 是BD 上一点.且BC =DE ,CD =AB .(1)试判断AC 与CE 的位置关系,并说明理由;(2)如图(2),若把△CDE 沿直线BD 向左平移,使△CDE 的顶点C 与B 重合,此时第(1)问中AC 与BE 的位置关系还成立吗?(注意字母的变化)【答案与解析】证明:(1)AC ⊥CE .理由如下:在△ABC 和△CDE 中,,90,,BC DE B D AB CD =⎧⎪∠=∠=︒⎨⎪=⎩∴ △ABC ≌△CDE (SAS ).∴ ∠ACB =∠E .又∵ ∠E +∠ECD =90°,∴ ∠ACB +∠ECD =90°.∴ AC ⊥CE .(2)∵ △ABC 各顶点的位置没动,在△CDE 平移过程中,一直还有AB C D '=,BC =DE ,∠ABC =∠EDC =90°,∴ 也一直有△ABC ≌△C DE '(SAS).∴ ∠ACB =∠E .而∠E +∠EC D '=90°,∴ ∠ACB +∠EC D '=90°.故有AC ⊥C E ',即AC 与BE 的位置关系仍成立.【总结升华】变还是不变,就看在运动的过程中,本质条件(本题中的两三角形全等)变还是没变.本质条件变了,结论就会变;本质条件不变,仅仅是图形的位置变了.结论仍然不变.举一反三:【变式】如图(1),△ABC 中,BC =AC ,△CDE 中,CE =CD ,现把两个三角形的C 点重合,且使∠BCA =∠ECD ,连接BE ,AD .求证:BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等吗?为什么?【答案】证明:∵∠BCA =∠ECD ,∴∠BCA -∠ECA =∠ECD -∠ECA ,即∠BCE =∠ACD在△ADC 与△BEC 中ACD=BCE AC BC CD CE =⎧⎪∠∠⎨⎪=⎩∴△ADC ≌△BEC(SAS)∴BE =AD .若将△DEC 绕点C 旋转至图(2),(3)所示的情况时,其余条件不变,BE 与AD 还相等,因为还是可以通过SAS 证明△ADC ≌△BEC.【巩固练习】一.选择题1. 如图所示,若△ABE≌△ACF,且AB =5,AE =2,则EC 的长为( )A .2B .3C .5D . 2.52.(2015春•平顶山期末)请仔细观察用直尺和圆规作一个角∠A ′O ′B ′等于已知角∠AOB 的示意图,请你根据所学的图形的全等这一章的知识,说明画出∠A ′O ′B ′=∠AOB 的依据是( )A.SAS B.A SA C.A AS D.SSS3. (2016•新疆)如图,在△ABC和△DEF中,∠B=∠DEF,AB=DE,添加下列一个条件后,仍然不能证明△ABC≌△DEF,这个条件是()A.∠A=∠D B.BC=EF C.∠ACB=∠F D.AC=DF4. 在下列结论中, 正确的是( )A.全等三角形的高相等B.顶角相等的两个等腰三角形全等C. 一角对应相等的两个直角三角形全等D.一边对应相等的两个等边三角形全等5. 如图,点C、D分别在∠AOB的边OA、OB上,若在线段CD上求一点P,使它到OA,OB的距离相等,则P点是().A. 线段CD的中点B. OA与OB的中垂线的交点C. OA与CD的中垂线的交点D. CD与∠AOB的平分线的交点6.在△ABC与△DEF中,给出下列四组条件:(1)AB=DE,BC=EF,AC=DF;(2)AB=DE,∠B=∠E,BC=EF;(3)∠B=∠E,BC=EF,∠C=∠F;(4)AB=DE,AC=DF,∠B=∠E.其中,能使△ABC≌△DEF的条件共有()组.A.1组 B.2组 C.3组 D.4组7. 如果两个锐角三角形有两条边和其中一边上的高对应相等,那么这两个三角形的第三条边所对的角的关系是()A. 相等B.不相等C.互补D.相等或互补8. △ABC中,∠BAC=90° AD⊥BC,AE平分∠BAC,∠B=2∠C,∠DAE的度数是( )A.45°B.20°C.、30°D.15°二.填空题9. 已知'''ABC A B C △≌△,若△ABC 的面积为10 2cm ,则'''A B C △的面积为________2cm ,若'''A B C △的周长为16cm ,则△ABC 的周长为________cm .10. △ABC 和△ADC 中,下列三个论断:①AB =AD ;②∠BAC =∠DAC ;③BC =DC .将两个论断作为条件,另一个论断作为结论构成一个命题,写出一个真命题:__________.11.(2015春•成都校级期末)如图,在△ABC 中,∠C=90°,∠B=30°,AD 平分∠BAC ,CD=2cm ,则BD 的长是 .12. 下列说法中:①如果两个三角形可以依据“AAS ”来判定全等,那么一定也可以依据“ASA ”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是_____.13. 如右图,在△ABC 中,∠C =90°,BD 平分∠CBA 交AC 于点D .若AB =a ,CD =b ,则△ADB 的面积为______________ .14.(2016秋•扬中市月考)如图,AC ⊥AB ,AC ⊥CD ,要使得△ABC ≌△CDA .(1)若以“SAS ”为依据,需添加条件 ;(2)若以“HL ”为依据,需添加条件 .15. 如图,△ABC 中,H 是高AD 、BE 的交点,且BH =AC ,则∠ABC =________.16. 在△ABC 中,∠C =90°,AC =BC ,AD 平分∠BAC ,DE ⊥AB 于E.若AB =20cm ,则△DBE的周长为_________.三.解答题17. 已知:如图,CB=DE,∠B=∠E,∠BAE=∠CAD.求证:∠ACD=∠ADC.18.已知:△ABC中,AC⊥BC,CE⊥AB于E,AF平分∠CAB交CE于F,过F作FD∥BC交AB 于D.求证: AC=AD19. 已知:如图,AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,且BD=CD.求证:BE=CF.20.(2015•北京校级模拟)感受理解如图①,△ABC是等边三角形,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F,则线段FE与FD之间的数量关系是自主学习事实上,在解决几何线段相等问题中,当条件中遇到角平分线时,经常采用下面构造全等三角形的解决思路如:在图②中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形△OBC和△OAC,从而得到线段CA与CB相等学以致用参考上述学到的知识,解答下列问题:如图③,△ABC不是等边三角形,但∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,AD、CE相交于点F.求证:FE=FD.【答案与解析】一.选择题1. 【答案】B;【解析】根据全等三角形对应边相等,EC=AC-AE=5-2=3;2. 【答案】D;【解析】解:根据作图过程可知O′C′=OC,O′B′=OB,C′D′=CD,∴△OCD≌△O′C′D′(SSS).故选D.3. 【答案】D;【解析】∵∠B=∠DEF,AB=DE,∴添加∠A=∠D,利用ASA可得△ABC≌△DEF;∴添加BC=EF,利用SAS可得△ABC≌△DEF;∴添加∠ACB=∠F,利用AAS可得△ABC ≌△DEF;故选D.4. 【答案】D;【解析】A项应为全等三角形对应边上的高相等;B项如果腰不相等不能证明全等;C项直角三角形至少要有一边相等.5. 【答案】D;【解析】角平分线上的点到角两边的距离相等.6. 【答案】C;【解析】(1)(2)(3)能使两个三角形全等.7. 【答案】A;【解析】高线可以看成为直角三角形的一条直角边,进而用HL定理判定全等.8. 【答案】D;【解析】由题意可得∠B=∠DAC=60°,∠C=30°,所以∠DAE=60°-45°=15°.二.填空题9. 【答案】10,16;【解析】全等三角形面积相等,周长相等.10.【答案】①②③;11.【答案】4cm;【解析】解:∵∠C=90°,∠B=30°,∴∠BAC=90°﹣30°=60°,∵AD平分∠CAB,∴∠CAD=∠BAD=×60°=30°,∴AD=2CD=2×2=4cm,又∵∠B=∠ABD=30°,∴AD=BD=4cm .故答案为:4cm.12.【答案】①③【解析】②不正确是因为存在两个全等的三角形与某一个三角形不全等的情况.13.【答案】ab 21; 【解析】由角平分线的性质,D 点到AB 的距离等于CD =b ,所以△ADB 的面积为ab 21. 14.【答案】AB=CD ;AD=BC【解析】(1)若以“SAS ”为依据,需添加条件:AB=CD ;△ABC ≌△CDA (SAS );(2)若以“HL ”为依据,需添加条件:AD=BC ;Rt △ABC ≌Rt △CDA (HL ).15.【答案】45°;【解析】Rt △BDH ≌Rt △ADC ,BD =AD.16.【答案】20cm ;【解析】BC =AC =AE ,△DBE 的周长等于AB.三.解答题17.【解析】证明:∵∠BAE =∠CAD ,∴∠BAE -∠CAE =∠CAD -∠CAE ,即∠BAC =∠EAD .在△ABC 和△AED 中,BAC EAD B E BC ED ∠∠⎧⎪∠∠⎨⎪⎩=,=,=, ∴△ABC ≌△AED . (AAS )∴AC =AD .∴∠ACD =∠ADC .18.【解析】证明:∵AC⊥BC,CE⊥AB∴∠CAB +∠1=∠CAB +∠3=90°,∴∠1=∠3又∵FD∥BC∴∠2=∠3,∴∠1=∠2在△CAF 与△DAF 中CAF=DAF 1=2AF=AF ∠∠⎧⎪∠∠⎨⎪⎩∴△CAF 与△DAF (AAS )∴AC =AD.19.【解析】证明:∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,(已知)∴DE=DF(角平分线上的点到角两边距离相等)又∵BD=CD∴△BDE≌△CDF(HL)∴BE=CF20.【解析】解:感受理解EF=FD.理由如下:∵△ABC是等边三角形,∴∠BAC=∠BCA,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠DAC=∠ECA,∠BAD=∠BCE,∴FA=FC.∴在△EFA和△DFC中,,∴△EFA≌△DFC,∴EF=FD;学以致用:证明:如图1,在AC上截取AG=AE,连接FG.∵AD是∠BAC的平分线,∴∠1=∠2,在△AEF和△AGF中,,∴△AEF≌△AGF(SAS),∴∠AFE=∠AFG,FE=FG,∵∠B=60°,∴∠BAC+∠ACB=180°﹣60°=120°,∵AD、CE分别是∠BAC、∠BCA的平分线,∴∠2=∠BAC,∠3=∠ACB,∴∠2+∠3=(∠BAC+∠ACB)=×120°=60°,∴∠AFE=∠CFD=∠AFG=60°.∴∠CFG=180°﹣∠AFG﹣∠CFD=180°﹣60°﹣60°=60°,∴∠CFG=∠CFD,∵CE是∠BCA的平分线,∴∠3=∠4,在△CFG和△CFD中,,∴△CFG≌△CFD(ASA),∴FG=FD,∴FE=FD.。
八年级数学竞赛例题专题讲解17:等腰三角形的判定(含答案)

专题17 等腰三角形的判定阅读与思考在学习了等腰三角形性质与判定后,我们可以对等腰三角形的判定、证明线段相等的方法作出归纳总结.1.等腰三角形的判定:⑴从定义入手,证明一个三角形的两条边相等; ⑵从角入手,证明一个三角形的两个角相等. 2.证明线段相等的方法:⑴当所证的两条线段位于两个三角形,通过全等三角形证明; ⑵当所证的两条线段位于同一个三角形,通过等角对等边证明; ⑶寻找某条线段,证明所证的两条线段都与它相等.善于发现、构造等腰三角形,进而利用等腰三角形的性质为解题服务,是解几何题的一个常用技巧.常见的构造方法有:平分线+平行线、平分线+垂线、中线+垂线.如图所示:例题与求解【例1】如图,在△ABC 中,AB =7,AC =11,点M 是BC 的中点,AD 是∠BAC 的平分线,MF ∥AD ,则CF 的长为____________.(全国初中数学竞赛试题)解题思路:角平分线+平行线易构造等腰三角形,解题的关键是利用条件“中点M ”.【例2】如图,在△ABC 中,∠B =2∠C ,则AC 与2AB 之间的关系是( ) A .AC >2AB B .AC =2AB C .AC ≤2AB D .AC <2AB(山东省竞赛试题)解题思路:如何条件∠B =2∠C ,如何得到2AB ,这是解本题的关键.ABCABDM FC【例3】两个全等的含300,600角的三角板ADE 和三角板ABC ,如图所示放置,E 、A 、C 三点在一条直线上,连结BD ,取BD 中点M ,连结ME ,MC ,试判断△EMC 的形状,并说明理由.(山东省中考试题)解题思路:从△ADE ≌△BAC 出发,先确定△ADB 的形状,为判断△EMC 的形状奠定基础.【例4】如图,已知在△ABC 中,AD 是BC 边上的中线,E 是AD 上一点,且BE =AC ,延长BE 交AC 于F ,求证:AF =EF .(天津市竞赛试题)解题思路:只需证明∠F AE =∠AEF ,利用中线倍长,构造全等三角形、等腰三角形.【例5】如图,在等腰△ABC 中,AB =AC ,∠A =200,在边AB 上取点D ,使AD =BC ,求∠BDC 度数.(“祖冲之杯”竞赛试题)解题思路:由条件知底角为300,这些角并不是特殊角,但它们的差却为600,600使我们联想到等边三角形,由此找到切入口.如图1,以BC 为边在△ABC 内作等边△BCO ;如图②,以AC 为边作等边△ACE .BCA D图2B CA D图1O ABCMD EEA BDCFBCAD能力训练A 级1.已知△ABC 为等腰三角形,由顶点A 所引BC 边的高线恰等于BC 边长的一半,则 ∠BAC =__________.2.如图,在Rt △ABC 中,∠C =900,∠ABC =660,△ABC 以点C 为中点旋转到△A ′B ′C 的位置,顶点B 在斜边A ′B ′上,A ′C 与AB 相交于D ,则∠BDC =_________.3.如图,△ABC 是边长为6的等边三角形,DE ⊥BC 于E ,EF ⊥AC 于F ,FD ⊥AB 于D ,则AD =_______.(天津市竞赛试题)4.如图,一个六边形的六个内角都是1200,其连续四边的长依次是1cm ,9cm ,9cm ,5cm ,那么这个六边形的周长是____________cm .(“祖冲之杯”邀请赛试题)5.如图,△ABC 中,AB =AC ,∠B =360,D 、E 是BC 上两点,使∠ADE =∠AED =2∠BAD ,则图中等腰三角形共有( )A .3个B .4个C .5个D .6个6.若△ABC 的三边长是a ,b ,c ,且满足44422a b c b c =+-,44422b ac a c =+-,44422c a b a b =+-,则△ABC ()A .钝角三角形B .直角三角形C .等腰直角三角形D .等边三角形(“希望杯”邀请赛试题)7.等腰三角形一腰上的高等于该三角形某一条边的长度的一半,则其顶角等于( ) A .300 B .300或1500 C .1200或1500 D .300或1200或1500(“希望杯”邀请赛试题)8.如图,已知Rt △ABC 中,∠C =900,∠A =300,在直线BC 或AC 上取一点P ,使得△P AB 是等腰三角形,则符合条件的P 点有( )A .2个B .4个C .6个D .8个(江苏省竞赛试题)第5题图 第8题图 第9题图ACDBB ′A ′(第2题)AB CDEF (第3题)(第4题)9915BACBCABCADFG E9.如图在等腰Rt △ABC 中,∠ACB =900,D 为BC 中点,DE ⊥AB ,垂足为E ,过点B 作BF ∥AC 交DE 的延长线于点F ,连接CF 交AD 于G .⑴ 求证:AD ⊥CF ;⑵ 连结AF ,度判断△ACF 的形状,并说明理由.10.如图,△ABC 中,AD ⊥BC 于D ,∠B =2∠C ,求证:AB +BD =CD .(天津市竞赛试题)11.如图,已知△ABC 是等边三角形,E 是AC 延长线上一点,选择一点D ,使得△CDE 是等边三角形,如果M 是线段AD 的中点,N 是线段BE 的中点,求证:△CMN 是等边三角形.(江苏省竞赛试题)12.如图1,Rt △ABC 中,∠ACB =900,CD ⊥AB ,垂足为D ,AF 平分∠CAB ,交CD 于点E ,交CB 于点F .⑴ 求证:CE =CF ;⑵ 将图1中的△ADE 沿AB 向右平移到△A ′D ′E 的位置,使点E ′落在BC 边上,其他条件不变,如图2所示,试猜想:BE ′与CF 有怎样的数量关系?请证明你的结论.(山西省中考试题)B ACDA BDFE C图1A B D FE C图2A ′E ′D ′C ENMBDB 级1.如图,△ABC 中,AD 平分∠BAC ,AB +BD =AC ,则∠B :∠C 的值=__________.2.如图,△ABC 的两边AB 、AC 的垂直平分线分别交BC 于D 、E ,若∠BAC +∠DAE =1500,则∠BAC 的度数是____________.3.在等边△ABC 所在平面内求一点P ,使△P AB 、△PBC 、△P AC 都是等腰三角形,具有这样性质的点P 有_________个.4.如图,在△ABC 中,∠ABC =600,∠ACB =450,AD 、CF 都是高,相交于P ,角平分线BE 分别交AD 、CF 于Q 、S ,则图中的等腰三角形的个数是( )A .2B .3C .4D .55.如图,在五边形ABCDE 中,∠A =∠B =1200,EA =AB =BC =12DC =12DE ,则∠D =( ) A .300B .450C .600D .67.50(“希望杯”竞赛试题)6.如图,∠MAN =160,A 1点在AM 上,在AN 上取一点A 2,使A 2A 1=AA 1,再在AM 上取一点A 3,使A 3A 2=A 2A 1,如此一直作下去,到不能再作为止,那么作出的最后一点是( )A .A 5B .A 6C .A 7D .A 8 7.若P 为△ABC 所在平面内一点,且∠APB =∠BPC =∠CP A =1200,则点P 叫作△ABC 的费尔马点,如图1.⑴若点P 为锐角△ABC 的费尔马点,且∠ABC =600,P A =3,PC =4,则PB 的值为_____.⑵如图2,在锐角△ABC 外侧作等边△ACB ′,连结BB ′.求证:BB ′过△ABC 的费尔马点P ,且BB ′=P A +PB +PC .(湖州市中考试题)ABC(第1题)(第2题)ABD E CA BPACBB ′图1图2A BD CEF PQS (第4题)A B CED第5题AA 1NMA 2A 3(第6题)8.如图,△ABC 中,∠BAC =600,∠ACB =400,P 、Q 分别在BC 、AC 上,并且AP 、BQ 分别是∠BAC 、∠ABC 的角平分线,求证:BQ +AQ =AB +BP .(全国初中数学联赛试题)9.如图,在△ABC 中,AD 是∠BAC 的平分线,M 是BC 的中点,过M 作ME ∥AD 交BA 延长线于E ,交AC 于F ,求证:BE =CF =12(AB +AC ). (重庆市竞赛试题)10.在等边△ABC 的边BC 上任取一点D ,作∠DAE =600,DE 交∠C 的外角平分线于E ,那么△ADE 是什么三角形?证明你的结论.(《学习报》公开赛试题)ABQCABD CFE11.如图,在平面直角坐标系中,O为坐标原点,直线l:12y x m=-+与x轴、y轴的正半轴分别相交于点A、B,过点C(-4,-4)作平行于y轴的直线交AB于点D,CD=10.⑴求直线l的解析式;⑵求证:△ABC是等腰直角三角形;⑶将直线l沿y轴负方向平移,当平移恰当的距离时,直线与x,y轴分别相交于点A′、B′,在直线CD上存在点P,使得△A′B′P是等腰直角三角形,请直接写出所有符合条件的点P的坐标.(宁波市江东区模拟题)12.如图1,在平面直角坐标系中,△AOB为等腰直角三角形,A(4,4).⑴求B点坐标;⑵如图2,若C为x轴正半轴上一动点,以AC为直角边作等腰直角△ACD,∠ACD=900,连接OD,求∠AOD度数;⑶如图3,过点A作y轴于E,F为x轴负半轴上一点,G在EF的延长线上,以EG为直角边作等腰Rt△EGH,过A作x轴垂线交EH于点M,连接FM,等式AM FMOF-=1是否成立?若成立,请证明;若不成立,说明理由.图1 图2 图3。
如何做几何证明题(方法总结)

如何做几何证明题知识归纳总结:1. 几何证明是平面几何中的一个重要问题,它对培养学生逻辑思维能力有着很大作用。
几何证明有两种基本类型:一是平面图形的数量关系;二是有关平面图形的位置关系。
这两类问题常常可以相互转化,如证明平行关系可转化为证明角等或角互补的问题。
2. 掌握分析、证明几何问题的常用方法:(1)综合法(由因导果),从已知条件出发,通过有关定义、定理、公理的应用,逐步向前推进,直到问题的解决;(2)分析法(执果索因)从命题的结论考虑,推敲使其成立需要具备的条件,然后再把所需的条件看成要证的结论继续推敲,如此逐步往上逆求,直到已知事实为止;(3)两头凑法:将分析与综合法合并使用,比较起来,分析法利于思考,综合法易于表达,因此,在实际思考问题时,可合并使用,灵活处理,以利于缩短题设与结论的距离,最后达到证明目的。
3. 掌握构造基本图形的方法:复杂的图形都是由基本图形组成的,因此要善于将复杂图形分解成基本图形。
在更多时候需要构造基本图形,在构造基本图形时往往需要添加辅助线,以达到集中条件、转化问题的目的。
一. 证明线段相等或角相等两条线段或两个角相等是平面几何证明中最基本也是最重要的一种相等关系。
很多其它问题最后都可化归为此类问题来证。
证明两条线段或两角相等最常用的方法是利用全等三角形的性质,其它如线段中垂线的性质、角平分线的性质、等腰三角形的判定与性质等也经常用到。
二. 证明直线平行或垂直在两条直线的位置关系中,平行与垂直是两种特殊的位置。
证两直线平行,可用同位角、内错角或同旁内角的关系来证,也可通过边对应成比例、三角形中位线定理证明。
证两条直线垂直,可转化为证一个角等于90°,或利用两个锐角互余,或等腰三角形“三线合一”来证。
例3. 如图3所示,设BP、CQ是的内角平分线,AH、AK分别为A到BP、CQ的垂线。
求证:KH∥BC例4. 已知:如图4所示,AB=AC,。
求证:FD⊥ED三. 证明一线段和的问题(一)在较长线段上截取一线段等一较短线段,证明其余部分等于另一较短线段。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《段相等,角相等,线段垂直》的专题复习
一.证明线段相等的方法:
1.中点:
2.等式的性质
3.全等三角形
4借助中介线段
二.证明角相等的方法
1.对顶角相等
2.等式的性质
3.角平分线
4垂直的定义
5.两直线平行(同位角,内错角)
6.全等三角形
7.同角的余角相等
8等角的余角相等
9.同角的补角相等
10等角的补角相等
11.三角形的外角等于与它不相邻的两内角之和三.证明垂直的方法
1.证明两直线夹角=90°
2.证明邻补角相等
3.证明邻补角的平分线互相垂直
4证明三角形两内角之和=90°
5.垂直于平行线中的一条直线,必定垂直于另一条
6.证明此角所在的三角形与已知的直角三角形全等
经典题型:
.利用角平分线的定义
例题1.如图,已知AB=AC,AD//BC,求证
2、基本图形“双垂直”
本节常用辅助线是围绕角平分线性质构造双垂直(需对其对称性形成感觉)。
例题2.如图,,与的面积相等.求证:OP平分.
例题3、如图,,E是BC的中点,DE平分.求证:AE是的平分线.
3.利用等腰三角形三线合一
例题4.正方形ABCD中,F是CD的中点,E是BC边上的一点,且AE=DC+CE,求证:AF平分∠DAE。
4.利用定理
定理:到一个角的两边距离相等的点,在这个角的平分线上。
例5.如图,已知ΔABC的两个外角∠MAC、∠NCA的平分线相交于点P,求证点P在∠B的平分线上。
5..和平行线结合使用,容易得到相等的线段。
基本图形:
P是∠CAB的平分线上一点,PD∥AB,则有∠1=∠2=∠3,所以AD=DP。
例6.如图,ΔABC中,∠B的平分线与∠C外角的平分线交于D,过D作BC的平行线交AB、AC于E、F,求证EF=BE-CF。
6.利用角平分线的对称性。
例7.如图,已知在ΔABC中,AB>AC,AD是ΔABC的角平分线,P是AD上一点,求证AB-AC>PB-PC。
7.角平分线与垂直平分线综合
例题8、如图,在△ABC中,AD平分∠BAC,DG⊥BC,且平分BC于G,DE⊥AB于E,DF⊥AC延长线于F.(1)求证:BE=CF.
角平分线专题复习(解答部分)
一、平分线的应用。
几何题中,经常出现“已知角的平分线”这一条件。
这个条件一般有下面几个方面的应用:(1)利用“角的平分线上的点到这个角的两边距离相等”的性质,证明两条线段相等。
(2)利用角是轴对称图形,构造全等三角形。
(3)构造等腰三角形。
二、应用举例:
1.利用角平分线的定义
例题1.如图,已知AB=AC,AD//BC,求证AD平分∠EAC。
证明:因AB=AC,故∠B=∠C。
又因AD//BC,故∠1=∠B,∠2=∠C,
故∠1=∠2,即AD平分∠EAC。
2、基本图形“双垂直”
本节常用辅助线是围绕角平分线性质构造双垂直(需对其对称性形成感觉)。
例题2.如图,,与的面积相等.求证:OP平分.
分析:观察已知条件中提到与,显然与全等无关,而面积相等、底边相等,于是自然想到可得两三角形的高线相等,联系到角平分线判定结论可得。
证明:作于M,于N
,,且
又
又
平分
例题3、如图,,E是BC的中点,DE平分.求证:AE是的平分线.分析: 在初一学习平行线时就围绕这个图做过很多练习,当时我们证明过DE垂直AE等。
还是这个图条件变了,由角平分线条件不难想到做辅助线构造“双垂直”的基本图形,用“角平分线性质”推得距离相等,再由另一侧距离相等用“角平分线判定”AE为角平分线。
证明:作于F
平分,,
又 E是BC的中点
又,
AE是的平分线
3.利用等腰三角形三线合一
例题4.正方形ABCD中,F是CD的中点,E是BC边上的一点,且AE=DC+CE,求证:AF平分∠DAE。
证明:连结EF并延长,交AD的延长线于G,则ΔFDG≌ΔFCE,
故CE=DG,EF=GF,于是AG=AD+DG=DC+CE=AE。
又因EF=GF,故AF是等腰三角形的底边上的中线,于是AF平分∠DAE。
4.利用定理
定理:到一个角的两边距离相等的点,在这个角的平分线上。
例5.如图,已知ΔABC的两个外角∠MAC、∠NCA的平分线相交于点P,求证点P在∠B的平分线上。
证明:过P作PD⊥AB,PE⊥AC,PF⊥BC,垂足分别是D、E、F,因P在∠MAC的平分线上,故PD=PE。
又因P在∠ACN的平分线上,故PE=PF,于是PD=PF,故点P在∠B的平分线上。
5..和平行线结合使用,容易得到相等的线段。
基本图形:
P是∠CAB的平分线上一点,PD∥AB,则有∠1=∠2=∠3,所以AD=DP。
例6.如图,ΔABC中,∠B的平分线与∠C外角的平分线交于D,过D作BC的平行线交AB、AC于E、F,求证EF=BE-CF。
分析:由BD平分∠ABC,ED∥BC,不难得出BE=DE。
要证EF=BE-CF,就转化为要证EF=DE-CF。
下面要证FD=FC,即要证∠FCD=∠FDC。
由CD平分∠ACG,ED∥BC,很容易得出∠FCD=∠FDC,从而问题得证。
6.利用角平分线的对称性。
例7.如图,已知在ΔABC中,AB>AC,AD是ΔABC的角平分线,P是AD上一点,求证AB-AC>PB-PC。
分析:证明不等关系,一般要把所证明的有关线段放在一个三角形内。
通过角平分线这一条件可以构造全等三角形:在AB上截取AC'=AC,则有ΔAC'P≌ΔACP,AC'=AC,PC'=PC。
在ΔBPC'中,BC'+C'P>PB, 即AB-AC'>PB-PC',从而得出AB-AC>PB-PC
7.角平分线与垂直平分线综合
例题8、如图,在△ABC中,AD平分∠BAC,DG⊥BC,且平分BC于G,DE⊥AB于E,DF⊥AC延长线于F.(1)求证:BE=CF.
(2)如果AB=a,AC=b,求AE、BE的大小
(用含有a、b的式子表示).
证明:(1)连结BD、CD
DG⊥BC,且平分BC于G
(此处提前用到了垂直平分线的性质,即垂直平分线上的点到线段两端距离相等,
可由证明得到)
AD平分∠BAC,DE⊥AB,DF⊥AC
,
在和中
(2)AD平分∠BAC
同理:
即AD平分
又
而AE=AB-BE=a-BE,AF=AC+CF=b+CF
a-BE= b+CF
又
,AE=a-BE=a-=
角平分线练习题
1. 如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D,如果AC=3,那么AE+DE=()
A.2 B.3 C.4 D.5
2. 如图,△ABC的两个外角的平分线相交于点P,则点P到△ABC的三边所在直线的距离的关系是
()
A.均不相等B.均相等、C.其中有两个相等D.无法确定
3. 如图,表示三条相互交叉的公路,现要建一个货物中转站,要求它到三条公路的距离相等,
则可选择的地址有()
A.一处B.二处 C.三处 D.四处
4. 在△ABC内部到三条边的距离相等的点有____________个.
5. 如图,OP平分∠AOB,PC⊥OA于C,PD⊥OB于D,下列结论:(1)PC=PD;(2)OC=OD;(3)OC=2PC;(4)∠DPO=∠CPO
中,错误的是__________.
(第3题)(第5题)(第6题)
6. 如图,已知∠C=90°,AD平分∠BAC,BD=2CD,点D到AB的距离等于5cm,则BC的长为____cm.
7. 如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于O,AO的延长线交BC于F,则图中全等的直角三角形的对数为___________.
(第7题)(第8题)(第9题)(第10题)
8. 如图,,要使,请你增加一个条件是___________.(只需要填一个你认为合适的条件)
9. 如图所示,点F、C在线段BE上,且∠1=∠2,AC=DF,若使△ABC≌△DEF,则需补充一个条件是___________.
10. 如图,△ABC中,AB=AC,BD平分∠ABC,E为BC上一点,∠A与∠DEC互补,若BC=11cm,则△DEC周长为___________.
答案:1、B 2. B 3、D 4、1 5、(3)
6. 15;7、 6 ; 8、∠B=∠C ; 9、BC=EF; 10、11cm。