机械零件设计外文翻译

合集下载

外文翻译--机器零件的设计

外文翻译--机器零件的设计

毕业设计(论文)外文资料翻译系部:机械工程系专业:机械工程及自动化姓名:学号:外文出处:Design of machine elements(用外文写)附件:1.外文资料翻译译文;2.外文原文。

附件1:外文资料翻译译文机器零件的设计相同的理论或方程可应用在一个一起的非常小的零件上,也可用在一个复杂的设备的大型相似件上,既然如此,毫无疑问,数学计算是绝对的和最终的。

他们都符合不同的设想,这必须由工程量决定。

有时,一台机器的零件全部计算仅仅是设计的一部分。

零件的结构和尺寸通常根据实际考虑。

另一方面,如果机器和昂贵,或者质量很重要,例如飞机,那么每一个零件都要设计计算。

当然,设计计算的目的是试图预测零件的应力和变形,以保证其安全的带动负载,这是必要的,并且其也许影响到机器的最终寿命。

当然,所有的计算依赖于这些结构材料通过试验测定的物理性能。

国际上的设计方法试图通过从一些相对简单的而基本的实验中得到一些结果,这些试验,例如结构复杂的及现代机械设计到的电压、转矩和疲劳强度。

另外,可以充分证明,一些细节,如表面粗糙度、圆角、开槽、制造公差和热处理都对机械零件的强度及使用寿命有影响。

设计和构建布局要完全详细地说明每一个细节,并且对最终产品进行必要的测试。

综上所述,机械设计是一个非常宽的工程技术领域。

例如,从设计理念到设计分析的每一个阶段,制造,市场,销售。

以下是机械设计的一般领域应考虑的主要方面的清单:①最初的设计理念②受力分析③材料的选择④外形⑤制造⑥安全性⑦环境影响⑧可靠性及寿命在没有破坏的情况下,强度是抵抗引起应力和应变的一种量度。

这些力可能是:①渐变力②瞬时力③冲击力④不断变化的力⑤温差如果一个机器的关键件损坏,整个机器必须关闭,直到修理好为止。

设计一台新机器时,关键件具有足够的抵抗破坏的能力是非常重要的。

设计者应尽可能准确地确定所有的性质、大小、方向及作用点。

机器设计不是这样,但精确的科学是这样,因此很难准确地确定所有力。

注塑模具设计外文翻译

注塑模具设计外文翻译

毕业设计(论文)外文资料翻译及原文(2012届)题目电话机三维造型与注塑模具设计指导教师院系工学院班级学号姓名二〇一一年十二月六日【译文一】塑料注塑模具并行设计Assist.Prof.Dr. A. Y AYLA /Prof.Dr. Paş a YAYLA摘要塑料制品制造业近年迅速成长。

其中最受欢迎的制作过程是注塑塑料零件。

注塑模具的设计对产品质量和效率的产品加工非常重要。

模具公司想保持竞争优势,就必须缩短模具设计和制造的周期。

模具是工业的一个重要支持行业,在产品开发过程中作为一个重要产品设计师和制造商之间的联系。

产品开发经历了从传统的串行开发设计制造到有组织的并行设计和制造过程中,被认为是在非常早期的阶段的设计。

并行工程的概念(CE)不再是新的,但它仍然是适用于当今的相关环境。

团队合作精神、管理参与、总体设计过程和整合IT工具仍然是并行工程的本质。

CE过程的应用设计的注射过程包括同时考虑塑件设计、模具设计和注塑成型机的选择、生产调度和成本中尽快设计阶段。

介绍了注射模具的基本结构设计。

在该系统的基础上,模具设计公司分析注塑模具设计过程。

该注射模设计系统包括模具设计过程及模具知识管理。

最后的原则概述了塑料注射模并行工程过程并对其原理应用到设计。

关键词:塑料注射模设计、并行工程、计算机辅助工程、成型条件、塑料注塑、流动模拟1、简介注塑模具总是昂贵的,不幸的是没有模具就不可能生产模具制品。

每一个模具制造商都有他/她自己的方法来设计模具,有许多不同的设计与建造模具。

当然最关键的参数之一,要考虑到模具设计阶段是大量的计算、注射的方法,浇注的的方法、研究注射成型机容量和特点。

模具的成本、模具的质量和制件质量是分不开的在针对今天的计算机辅助充型模拟软件包能准确地预测任何部分充填模式环境中。

这允许快速模拟实习,帮助找到模具的最佳位置。

工程师可以在电脑上执行成型试验前完成零件设计。

工程师可以预测过程系统设计和加工窗口,并能获得信息累积所带来的影响,如部分过程变量影响性能、成本、外观等。

机械手臂外文翻译

机械手臂外文翻译

外文出处:《Manufacturing Engineering and Technology—Maching》附件1:外文原文ManipulatorFirst, an overview of industrial manipulatorWith the rapid development of China's industrial production, especially the reform and openingup after the rapid increase in the degree of automation to achieve the workpiece handling, steering,transmission or operation of brazing, spray gun, wrenches and other tools for processing and assembly operations since, which has more and more attracted our attention. Robot is to imitate the manual part of the action, according to a given program, track and requirements for automatic capture, handling or operation of the automatic mechanical devices.Production of mechanical hand can increase the automation level of production and labor productivity; can reduce labor intensity, ensuring product quality, to achieve safe production; particularly in the high-temperature, high pressure, low temperature, low pressure, dust, explosive, toxic andradioactive gases such as poor environment can replace the normal working people. Here I would like to think of designing a robot to be used in actual production.Why would a robot designed to provide a pneumatic power:1." Air inexhaustible, used later discharged into the atmosphere, does not require recycling and disposal, do not pollute the environment. (Concept of environmental protection)2." Air stick is small, the pipeline pressure loss is small (typically less than asphalt gas path pressure drop of one-thousandth), to facilitate long-distance transport.5." The air cleaner media, it will not degenerate, not easy to plug the pipeline. But there are also places where it fly in the ointment:2." As the use of low atmospheric pressure, the output power can notbe too large; in order to increase the output power is bound to the structure of the entire pneumaticsystem size increased.Air inexhaustible, used later discharged into the atmosphere, without recycling and disposal, donot pollute the environment. Accidental or a small amount of leakage would not be a serious impact on production. Viscosity of air is small, the pipeline pressure loss also is very small, easy long-distance transport.Compared with the hydraulic transmission, and its faster action and reaction, which is one of the outstanding merits of pneumatic.1.Implementing agencies2. Transmission3. Control SystemRobots are generally divided into three categories:Main features:First, mechanical hand (the upper and lower material robot, assembly robot, handling robot, stacking robot, help robot, vacuum handling machines, vacuum suction crane, labor-saving spreader, pneumatic balancer, etc.).Second, cantilever cranes (cantilever crane, electric chain hoist crane, air balance the hanging, etc.)Third, rail-type transport system (hanging rail, light rail, single girder cranes, double-beam crane)Four, industrial machinery, application of hand(3) The working conditions may be poor, monotonous, repetive easy to sub-fatigue working environment to replace human labor.(4) May be in dangerous situations, such as military goods handling, dangerous goods and hazardous materials removal and so on..(5) Universe and ocean development.(6), military engineering and biomedical research and testing.Help mechanical hands:附件1:外文资料翻译译文机械手机械手是近几十年发展起来的一种高科技自动化生产设备。

毕业论文和外文翻译要求内容

毕业论文和外文翻译要求内容

毕业论⽂和外⽂翻译要求内容沈阳农业⼤学本科⽣毕业论⽂(设计)撰写要求与格式规范(2008年7⽉修订)毕业论⽂(设计)是培养学⽣综合运⽤所学知识,分析和解决实际问题,提⾼实践能⼒和创造能⼒的重要教学环节,是记录科学研究成果的重要⽂献,也是学⽣申请学位的基本依据。

为保证本科⽣毕业论⽂(设计)质量,促进国内外学术交流,特制定《沈阳农业⼤学本科⽣毕业论⽂(设计)撰写要求与格式规范》。

⼀、毕业论⽂(设计)的基本结构毕业论⽂(设计)的基本结构是:1.前置部分:包括封⾯、任务书、选题审批表、指导记录、考核表、中(外)⽂摘要、关键词和⽬录等。

2.主体部分:包括前⾔、正⽂、参考⽂献、附录和致谢等。

⼆、毕业论⽂(设计)的内容要求(⼀)前置部分1.封⾯由学校统⼀设计。

2.毕业论⽂(设计)任务书毕业论⽂(设计)任务由各教学单位负责安排,并根据已确定的论⽂(设计)课题下达给学⽣,作为学⽣和指导教师共同从事毕业论⽂(设计)⼯作的依据。

毕业论⽂(设计)任务书的内容包括课题名称、学⽣姓名、下发⽇期、论⽂(设计)的主要内容与要求、毕业论⽂(设计)的⼯作进度和起⽌时间等。

3.论⽂(设计)选题审批表4.论⽂(设计)指导记录5.毕业论⽂(设计)考核表指导教师评语、评阅⼈评审意见分别由指导教师和评阅⼈填写,答辩委员会意见、评定成绩以及是否授予学⼠学位的建议等材料应由答辩委员会填写。

6.中(外)⽂摘要摘要是毕业论⽂(设计)研究内容及结论的简明概述,具有独⽴性和⾃含性。

其内容包括论⽂(设计)的主要内容、试(实)验⽅法、结果、结论和意义等。

中⽂摘要不少于400字;英⽂摘要必须⽤第三⼈称,采⽤现在时态编写。

7.关键词关键词均应为专业名词(或词组),注意专业术语的通⽤性,数量⼀般为3-5个;外⽂关键词与中⽂关键词⼀⼀对应。

8.⽬录⽬录由论⽂(设计)的章、节、附录等序号、名称和页码组成。

(⼆)主体部分1.前⾔(引⾔或序⾔)简要说明本项研究课题的提出及其研究意义(学术、实⽤价值),本项研究的前⼈⼯作基础及其欲深⼊研究的⽅向和思路、⽅法以及要解决的主要问题等。

CA6140车床主轴箱的设计-外文翻译

CA6140车床主轴箱的设计-外文翻译

南京理工大学毕业设计(论文)外文资料翻译学院(系):机械工程学院专业:机械工程及自动化姓名:朱仁勇学号: 0501500241外文出处:Industrial Electronics,Control(用外文写)and Industrumental,1991,附件: 1.外文资料翻译译文;2.外文原文。

注:请将该封面与附件装订成册。

附件1:外文资料翻译译文CNC和PLC他们对于机床是同一概念吗?摘要设计一个计算机数字控制器(CNC),传统做法是将装置分为三个实体:一个可编程控制器(PLC),一个可以称之为CNC控制器(CNCD)的黑盒子,一个包含CNC轴向控制器和可以简单描述为轴向实体的合成体。

我们将指出这一机构的缺点,展示一种新机构并介绍他的优势所在。

最后,在对比传统PLC和新机构之后,我们认为CNC就是一种改进的PLC。

PLC装置传统的可编程控制器(PLC)是基于两个主要模块:控制台和执行器。

控制台向操作者提供了一个交互式设计的人机界面,由于这个原因,他不能实现实时约束。

执行器控制基本任务的时序以使PLC工作和确保相关的时间约束。

执行器启动并管理不同的循环周期。

控制台的目标是人机界面而执行器的目标是时序安排。

可以这样说,在大多数情况下,PLC的主要目标是在没有控制台的情况下单机运行。

CNC使用的分类CNC对所有机床的应用本质上分为三个不同的种类:本地使用,直接数字化控制(DNC)和远程使用。

在本地使用中,操作者在机床附近。

他直接输入命令,通过按下按钮来控制机床和加工过程。

他也可以创建和修改刀具描述符和零件加工程序,这些是以CNC的标准代码或类似代码写入的。

在这一背景下,对零件的设计和辅助制造也是可能的,尽管此类活动显得与机床周围糟糕的环境质量(比如噪音,高温,灰尘)格格不入。

DNC(直接数字化控制)使用添加了从主机下载(向主机上传)零件加工程序的功能,主机汇集了零件加工程序,可以被看作是一个文件服务器。

工业机械手外文文献翻译、中英文翻译

工业机械手外文文献翻译、中英文翻译

第一章概述1. 1机械手的发展历史人类在改造自然的历史进程中,随着对材料、能源和信息这三者的认识和用,不断创造各种工具(机器),满足并推动生产力的发展。

工业社会向信息社会发展,生产的自动化,应变性要求越来越高,原有机器系统就显得庞杂而不灵活,这时人们就仿造自身的集体和功能,把控制机、动力机、传动机、工作机综合集中成一体,创造了“集成化”的机器系统——机器人。

从而引起了生产系统的巨大变革,成为“人——机器人——劳动对象”,或者“人——机器人——动力机——工作机——劳动对象”。

机器人技术从诞生到现在,虽然只有短短三十几年的历史,但是它却显示了旺盛的生命力。

近年来,世界上对于发展机器人的呼声更是有增无减,发达国家竞相争先,发展中国家急起直追。

许多先进技术国家已先后把发展机器人技术列入国家计划,进行大力研究。

我国的机器人学的研究也已经起步,并把“机器人开发研究”和柔性制造技术系统和设备开发研究等与机器人技术有关的研究课题列入国家“七五”、“八五”科技发展计划以及“八六三”高科技发展计划。

工业机械手是近代自动控制领域中出现的一项新技术,并已经成为现代机械制造生产系统中的一个重要组成部分。

这种新技术发展很快,逐渐形成一门新兴的学科——机械手工程。

1. 2机械手的发展意义机械手的迅速发展是由于它的积极作用正日益为人们所认识:其一、它能部分地代替人工操作;其二、它能按照生产工艺的要求,遵循一定的程序、时间和位置来完成工件的传送和装卸;其三、它能操作必要的机具进行焊接和装配。

从而大大地改善工人的劳动条件,显著地提高劳动生产率,加快实现工业生产机械化和自动化的步伐。

因而,受到各先进工业国家的重视,投入大量的人力物力加以研究和应用。

近年来随着工业自动化的发展机械手逐渐成为一门新兴的学科,并得到了较快的发展。

机械手广泛地应用于锻压、冲压、锻造、焊接、装配、机加、喷漆、热处理等各个行业。

特别是在笨重、高温、有毒、危险、放射性、多粉尘等恶劣的劳动环境中,机械手由于其显著的优点而受到特别重视。

机械专业外文文献翻译

机械专业外文文献翻译

利用CAD / CAM/ CAE系统开发操纵机器人H.S.李*,S.E.张华为技术学院,电力机械工程,云林,台湾,中国摘要在这项研究中,需要开发用于机器人操作臂的CAD/CAE/CAM集成系统。

通过变换矩阵,利用D-H坐标系变换方法对机器人的位姿进行分析,我们使用MATAB软件对其进行计算。

一般来说,利用PRO/E对机械臂的参数进行实体化建模,用Pro / Mechanical软体模拟动态仿真和工作空间,MasterCAM用来实现切削模拟仿真,而最终的模型用CNC数控铣床制造出来。

这样,一个用于机器人操作臂的CAD/CAE/CAM集成系统便开发出来了。

我们用一个范例来验证这种设计,分析以及制造的结果的正确性。

该集成系统不仅促进机器人的生产自动化功能,而且还简化了机械臂的CAD / CAE / CAM的分析过程。

这种集成系统是用于开发一个实用的计算机辅助机构设计课程的教学辅助工具。

©2003由Elsevier B.V.出版关键词:CAD / CAE/ CAM;机械臂;Denavit,Hartenberg坐标系变换引言许多研究已涉及到的CAD / CAE/ CAM集成系统的原理。

吕[1]讨论了平面五杆受电弓的运动学分析并设计制造了基于此弓的机械手。

通过研究五杆受电弓的运动性能,设计出一款简单的控制器来对机械手进行控制。

李某和陈某[2]描述了一个自动升降轮椅固定装置内的全尺寸货车的开发。

开发的过程中,包括机制的概念设计,运动仿真,工程分析,原型开发和测试。

周[3]使用参数化CAD系统的实体模型表达设计理念。

首先开发的是模具,其次是基于CAM系统的模型。

通过与产业界的合作,对试模调整,粉末形成,烧结,烧结后处理在专业的粉末冶金工厂进行了实验。

徐[4]在UG2通用CAD / CAM系统的基础上通过将注塑模具的CAD/CAM软件与注塑模具CAE软件集成建立了一个注塑用CAD / CAE/ CAM系统。

机械类数控车床外文翻译外文文献英文文献数控

机械类数控车床外文翻译外文文献英文文献数控

数控加工中心技术发展趋势及对策原文来源:Zhao Chang-ming Liu Wang-ju (CNC Machining Process and equipment, 2002,China)一、摘要Equip the engineering level, level of determining the whole national economy of the modernized degree and modernized degree of industry, numerical control technology is it develop new developing new high-tech industry and most advanced industry to equip (such as information technology and his industry, biotechnology and his industry, aviation, spaceflight, etc. national defense industry) last technology and getting more basic most equipment. Numerical control technology is the technology controlled to mechanical movement and working course with digital information, integrated products of electromechanics that the numerical control equipment is the new technology represented by numerical control technology forms to the manufacture industry of the tradition and infiltration of the new developing manufacturing industry,Keywords:Numerical ControlTechnology, E quipment,industry二、译文数控技术和装备发展趋势及对策装备工业的技术水平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

附录1机械零件设计设计任何机械零件的理想情况为,工程师可以用大量的他所选用的这种材料的强度试验数据。

这些实验应该采用与所设计的零件有相同的热处理,表面光洁度和尺寸大小的试件进行,而且试验应该在与零件使用过程中承受的载荷完全相同的情况下进行。

这表明,如果零件将要承受弯曲载荷,那么就应该进行弯曲载荷实验。

如果零件将要承受弯曲和扭转的复合载荷,那么就应该进行弯曲和扭转的复合实验。

这些种类的试验可以提供非常游泳和精确的数据。

它们可以告诉工程师应该使用的安全系数和对于给顶的使用寿命的可靠性。

在设计工作中,只要能够获得这种数据,工程师就可以尽可能好的进行设计工作。

如果零件的失效可能会危害人的生命安全,或者零件有足够大的产量,则在设计前收集这样的数据所花费的费用是值得的。

例如,汽车和冰箱的零件产量非常大,可以在生产之前对它们进行大量的实验,使其具有较高的可靠性能。

如果把进行这些试验的费用摊到所生产的零件上的话,则每一个零件的费用是非常低的。

你可以对下列四类的设计作出评价:1.零件的失效可能危害人的生命安全,或者零件的产量非常大,为此在设计时安排一个完善的试验程序是被认为合理的。

2.零件的产量足够大,可以进行适当的系列试验。

3.零件的产量非常小,以至于进行试验根本不合算;或者要求很快完成设计,以至于么有足够的时间进行试验。

4.零件已经完成设计、制造和试验,但结果不能令人满意。

这时候需要采用分析法来弄清楚不能令人满意的原因和应该如何进行改进。

我们主要对后三种类型进行讨论。

这就是说,设计人员通常只能利用那些公开的屈服强度、极限强度和延伸率等数据资料。

人们期望着工程师在利用这些不是很多的数据资料的基础上,对静载荷与动载荷、两维应力状态与三维应力状太、高温有低温以及大零件与小零件进行设计。

而设计中的,有充分的时间产生应变。

到目前为止,还必须利用这些数据来设计每分钟承受几千次复杂的动载荷的作用的零件,因此机械零件有时会失效是不足为奇的。

概括来说,设计人员所遇到的基本问题是,不论对于哪一种应力状态或者载荷情况,都有利用通过简单拉伸实验所获得的数据并将其与零件的强度联系起来。

可能会有两种完全相同的强度和硬度值的金属,其中一种由于其本身的延展性而具有很好的承受载荷的能力。

延展性是用材料断裂时的延伸率来量度的。

通常将5%的延伸率定义为延展性和脆性的分界线。

断裂时候延展率小于5%的材料成为脆性材料,大于5%的成为延性材料。

材料的伸长量通常是在50mm的计算长度上测量的。

因为这并不是对实际应变量的测量,所以有时候也采用一种测量延展性的方法。

这个方法是在试件断裂后,测量其断裂处的横截面的面积。

因此,延展性可以表示为横截面的收缩率。

延展材料能够承受较大的载荷这特性是设计中的一个附加的安全因素。

延展材料的重要性在于他是材料冷变形性能的衡量尺度。

诸如弯曲和拉延这类金属加工过程中需要采用延性材料。

在选用抗磨损、抗侵蚀或者抗塑性变形的材料时,硬度通常是最主要的性能。

有几种可供选用的硬度试验方法,采用哪一种方法取决于最希望测量的材料的性能特性。

最常用的四种硬度数值是布氏硬度、洛氏硬度、维氏硬度和努氏硬度。

大多数硬度实验系统是将一个标准的载荷加在与被试验材料相接触的小球或者棱锥上。

因此,硬度可以表示为所生产的压痕尺寸的函数。

这表明由于硬度是非破坏性试验,而且不需要专门的试件,因而硬度是一个容易测量的性能。

通常可以直接在实际的机械零件上进行硬度试验。

对于球轴承和磙子轴承,一个机械设计人员应该考虑下面五个方面:a.寿命与载荷的关系;b.刚度,也就是在载荷作用下的变形;c.摩擦;d.磨损;e.噪音。

对于中等载荷和转速,根据额定负荷选定一个标准轴承,通常都可以保证其具有令人满意的工作性能。

当载荷较大时,轴承零件的变形,尽管它通常小于轴和其他与轴承一起工作的零部件的变形,将会变得重要起来。

在转速高的场合需要有专门的冷却装置,而这可能会增大摩擦阻力。

磨损主要是由于污染进入引起的,必须采用密封装置防止周围环境的不良影响。

因为大批量生产这种方式决定了球轴承和磙子轴承不但质量高,而且价格低,因而机器设计人员的任务是选择而不是设计轴承。

滚动轴承通常是用硬度为900HV、整体淬火钢制成。

但在许多机构上不使用专门的套圈,而是将相互作用的表面淬硬到600HV。

滚动轴承由于在工作时会产生高的应力,其主要失效形式是金属疲劳,这一点并不奇怪,目前正在进行大量的工作以求改进这种轴承的可靠性。

抽成设计可以基于能够被人们所接受的寿命值来进行。

在轴承行业中,通常将轴承的承载能力定义为这样的值,即承担的载荷小于这个值时,一批轴承中的会有90%的轴承具有超过100万转的寿命。

尽管球轴承和磙子轴承的基本设计责任不在轴承的制造厂家,机器设计人员必须对轴承所要完成的任务做出正确的评价,不仅要考虑轴承的选择,而且还要考虑轴承的正确安装条件。

轴承套圈与轴或轴承坐的配合非常重要,因为他们之间的配合不仅仅应该保证所需要的过盈量,而且也应该保证轴承的内部间隙。

不正确的过盈会产生微震腐蚀从而导致严重的故障。

内圈通常是通过靠近在轴肩上进行轴向定位的。

轴肩处的圆弧半径主要是为了避免应力集中。

在轴承内圈上加工出一个圆弧或者倒角,用来提供容纳轴肩处圆弧半径的空间。

在使用寿命不是设计中的决定因素的场合,通常根据轴承受载荷时产生的变形量来确定其最大载荷。

因此“静态承载能力”这个概念可以理解为对处于静止状态或者进行缓慢转动的轴承所能施加的载荷。

这个载荷对轴承在随后进行旋转运动时的质量没有不利影响。

按照实践经验确定,静态承载能力是这样一个载荷,当他作用在轴承上时,滚动体与套圈在任何一个接触点处的总变形量不超过滚动体直径的0.01%。

这相当于为25mm的球产生0.0025mm的永久变形。

只有将轴承与周围环境适当地隔离开,许多轴承才能够成功的实现他们的作用。

在某些情况下,必须保护环境,使其不受润滑剂和轴承表面磨损生成污染物的污染。

轴承设计的一个重要组成部分是使密封装置起到应有作用。

此外,对摩擦学研究人员来说,,为了任目的而应用于运动零部件上的密封装置都是他们感兴趣的。

因为密封装置是轴承的一部分,只有根据适当的轴承理论才能设计出令人满意的密封系统。

虽然它们很重要,与轴承其他方面的研究工作相比,在密封装置的研究方面所做的工作还是比较少的。

附录2Machine element designingIdeally in designing any machine element, the engineer should have at his diposal the results of a great many strengh tests of the particular material chosen. These tests should have been made on specimens having the same heat treatment, surface finish, and size as the element he propose to design; and the tests should be made under exactly the same loading conditions as the part will experience in service. This means that, if the part is to experience a bending load, it should be tested with a bending load. If it is to be subjected to a combined bending and torsion, it should be tested under combined bending and torsion. Such tests will provide very useful and precise information. They tell the engineer what factor of safely to use and what the reliability is for a given service life. Whenever such date are available for design purposes, theengineer can be assured that he is doing the best possible job of engineering.The cost of gathering such extensive date prior to design is justified if failure of the part may endanger human life, or if the part is manufactured in sufficiently large quantities. Automobiles and refrigerators, for example, have very good reliabilities because the parts are made in such large quantities that they can be thoroughly tested in advance of manufacture. The cost of making these tests is very low when it is divided by the total number of parts manufactured.You can now appreciate the following four design categories:(1) Failure of the part would endanger human life, or the part is made in extremely large quantities; consequently, an elaborae testing program is justified during design.(2) The part is made in large enough quantities so that a moderate series of tests is feasible.(3) The part is made in such small quantities that testing is not justified at all; or the design must be completed so rapidly that there is not enough time of testing.(4) The part has already been designed, manuactured, and tested and foundto be unsatisfactiry. Analysis is required to understand why the part is unsatisfactory and what to do to improve it.It is with the last three categories that we shall be mostly concerned. This means that the designer will usually have only published values of yield strenth, ultimate strenth, and percentage elongation. With this meger information the engineer is expected to design against static and dynamic loads, biaxial and triaxial stress states, high and low temperratures, and large and small pars! The date usually available for design have been obtained from the simple tension test, where the load was applied gradually and the strain given time to develop. Yet these same date must be used in designing parts with complicated dynamic loads applied thousands of times per minute. No wonder machine parts sometimes fail.To sum up, the fundamental problem of the designer is to use the simple tension-test date and relate thenm to the strength of the part, regardless of the stress state of the loading situation.It is possible for two metals to have exactly the same strength and hardness, yet one of these metals may have a superior ability to absorb overloads, because of the property called ductility. Ductility is measured by the percentage elongation which occurs in the material at fracture. The usual dividing line between ductility and brittleness is 5 percent elongation. A material having less than 5 percent elongation at fracture is said to be brittle, while one having more is said to be ductile.The elongation of a material is usually measured over 50mm gauge length. Since this is not a measure of the actual strain, another method of determining ductility is sometimes used. After the specimen has been fractured, measurements are made of the area of the cross section at the fracture. Ductility can then be expressed as the percentage reduction in cross-sectional area.The characteristic of a ductile material which permits it to absorb large overloads is an addition safety factor in design. Ductility is also important because it is a measure of that property of a material which metal-processing operations which require ductile materials.When a material is to be selected to resist wear, erosion, or plastic deformation,hardness is generally the most important priperty. Several methods of hardness testing are available, depending upon which particular property is most desired. The four hardness numbers in greatest use are the Brinell, Rockwell, Vickers, and Knoop.Most hardness-testing systerm employ a standard load which is applied to a ball or pytamid in contact with the material to be tested. The hardness is then expressed as a function of the size of the resulting indentation. This means that hardness is an easy property to measure, because the test is nondestructive and test specimens are not required. Usually the test can be conducted directly on an actual machine element.The concern of a machine designer with ball and roller bearings is fivefold as follows: (a) life in relation to load; (b) stiffness, i.e. deflections under load; (c) friction;(d) wear; (e) noise. For moderate loads and speeds the correct seletion of a standard bearing on the basis of load rating will usually secure satisfactory performance. The deflection of the bearing elements will become important where loads are high, although this is usually of less magnitude than that of the shafts or other components associated with the bearing. Where speeds are high special cooling arrangements become necessary which may increase frictional drag. Wear is primarily associated with the introduction of contaminants, and sealing arrangements must be chosen with regard to the hostility of the environment.Because the high quality and low price of ball and roller bearings depends on quantity production, the task of the designer becomes one of selection rather than design. Rolling-contact bearings are generally made with steel which is though-hardened to above 900 HV, although in many mechanisms special races are not provided and the interacting surfaces are hardened to above 600 HV. It is not surprising that, owing to the high stresses involved, a predominant form of failure should be metal fatigue, and a good deal of work is currently in progress intended to improve the reliability of this type of bearing. Design can be based on accepted values of life and it is general practice in the bearing industy to define the load capacity of the bearing as that value below which 90 per cent of a batch will exceed a life of one milion revolutions.Notwithstanding the fact that responsibility for the basic design of ball and rollerbearings rests with the bearing manufacturer, the machine designer must form a correct appreciation of the duty to be performed by the bearing and be concerned not only with bearing selection but with conditions for correct instalation.The fit of the bearing races onto the shaft or onto the housings is of critical importance because of their combined effect on the internal clearance of the bearing as well as preserving the desired degree of interference fit. Inadequate interference can induce serious trouble from fretting corrosion . The inner race is frequently located axially by abutting against a shoulder. A radius at this point is essential for the avoidance of stress concentration and ball races are provided with a radius or chamfer to allow space for this.Where life is not the determining factor in design, it is usual to determine maximum loading by the amount to which a bearing will deflect under load. Thus the concept of "static load-carrying capacity" is understood to mean the load that can be applied to a bearing, which is its running qualities for subsequent rotational motion. This has been determined by practical experience as the load which when applied to a bearing results in a total deformation of the rolling element and raceway at any point of contact not exceeding 0.01 per cent of the rolling-element diameter. This would correspond to a permanent deformation of 0.0025mm for a ball 25mm in diameter.The successful functioning of many bearings depends upon providing them with adequate protection against their environment, and in some cicumstances the environment must be protected from lubricants or products of deterioration of the bearing surfaces. Achievement of the corrct functioning of seals is an essential part of bearing design. Moreover, seals which are applied to moving parts for any purpose are of interest to tribologists because they are bearing systems and can only be designed satisfactorily on the basis of appropriate bearing theoty. Notwithstanding their importance, the amount of reserch effort that has been devoted to the understanding of the behavior of seals has been small when compared with that。

相关文档
最新文档