(名校调研系列卷)吉林省(省命题)中考数学一模试卷(含解析)【含解析】

合集下载

2020年吉林省长春市名校调研中考数学一模试卷含答案

2020年吉林省长春市名校调研中考数学一模试卷含答案
22. 如图,在矩形 ABCD 中,AB=6,BC=10,将矩形沿直线 EF 析折叠,使得点 A 恰好 落在 BC 边上的点 G 处,且点 E、F 分别在边 AB、AD 上含端点),连结 CF,
(1)当 B=3 时,求 AE 的长; (2)当 AF 取得最小值时,求折痕 EF 的长; (3)连结 CF,当△FCG 是以 CG 为底的等腰三角形时,直接写出 BG 的长,
4.【答案】C
【解析】解:∵∠C=30°,∠ABC=20°, ∴∠BAD=∠C+∠ABC=50°, ∵EF∥AB, ∴∠AEF=180°-∠BAD=130°, 故选:C. 依据三角形外角性质,即可得到∠BAD,再根据平行线的性质,即可得到∠AEF 的度数. 本题主要考查了平行线的性质,解题时注意:两直线平行,同旁内角互补.
故选:A. 先求出不等式组中每一个不等式的解集,再求出它们的公共部分,然后把不等式的解集 表示在数轴上即可. 本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>, ≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示 解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个 .在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.
第 5 页,共 18 页
23. 如图,在平面直角坐标系中,把抛物线 y=x2 先向右平移 1 个单位长度,再向下平移 4 个单位长度,得到抛物线 y=( x-h)2+k,所得抛物线与 x 轴交于 A、B 两点(点 A 在点 B 的 左边),与 y 轴交于点 C,顶点为 M. (1)写出 h、k 的值及点 A、B 的坐标; (2)判断△BCM 的形状,并计算其面积; (3)点 P 是抛物线上的一动点,在 y 轴上存在点 Q,使以点 A、B、P、Q 为顶点组成的四边形是平行四边形,求点 P 的 坐标.

吉林省名校调研2020年中考数学一模试卷解析版

吉林省名校调研2020年中考数学一模试卷解析版

中考数学一模试卷题号一二三四总分得分一、选择题(本大题共6小题,共12.0分)1.抛物线y=-x2+2的对称轴为( )A. x=2B. x=0C. y=2D. y=02.如图所示的几何体的俯视图是( )A. B. C. D.3.已知,关于x的一元二次方程x2+3x+m=0中,m<0,则该方程解得情况是( )A. 有两个相等的实数根B. 有两个不相等的实数根C. 没有实数根D. 不能确定4.若反比例函数y=的图象分布在第二、四象限,则k的取值范围是( )A. k<B. k>C. k>2D. k<25.如图,在平面直角坐标系中,直线OA过点(2,1),则cosα的值是( )A.B.C.D. 26.如图,△A′B′C′是△ABC以点O为位似中心经过位似变换得到的,若△A′B′C′的面积与△ABC的面积比是4:9,则OB′:OB为( )A. 2:3B. 3:2C. 4:5D. 4:9二、填空题(本大题共8小题,共24.0分)7.sin30°+tan45°=______.8.如图,将△ABC绕点A逆时针旋转150°,得到△ADE,这时点B,C,D恰好在同一直线上,则∠B的度数为______.9.在正方形网格中,△ABC的位置如图所示,则sin B的值为______.10.如图,△ABC中,P为边AB上一点.且∠ACP=∠B,若AP=2,BP=3,则AC的长为______.11.如图,AB是⊙O的直径,点C、D在⊙O上,连结AD、BC、BD、DC,若BD=CD,∠DBC=20°,则∠ABC的度数为______.12.如图,铁道路口的栏杆短臂长1m,长臂长16m,当短臂端点下降0.5m时,长臂端点升高为______.(杆的宽度忽略不计)13.在平面直角坐标系中,点A和点C分别在y轴和x轴的正半轴上,以OA,OC为边分别作矩形OABC,双曲线y=(x>0)交AB于点E,AE:EB=1:3,则矩形的面积为______.14.二次函数y=2x2-4x+4的图象如图所示,其对称轴与它的图象交于点P,点N是其图象上异于点P的一点,若PM⊥y轴,MN⊥x轴,则=______.三、计算题(本大题共2小题,共14.0分)15.如图,为测量小岛A到公路BD的距离,先在点B处测得∠ABD=37°,再沿BD方向前进150m到达点C,测得∠ACD=45°,求小岛A到公路BD的距离.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)16.如图,⊙O是△ABC的外接圆,E是弦BC的中点,P是⊙O外一点且∠PBC=∠A,连接OE并延长交⊙O于点F,交BP于点D.(1)求证:BP是⊙O的切线;(2)若⊙O的半径为6,BD=8,求弦BC的长.四、解答题(本大题共10小题,共82.0分)17.解方程:x2+8x=9.18.已知y是x的反比例函数,且x=3时,y=8.(1)写出y与x之间的函数关系式;(2)如果自变量x的取值范围为3≤x≤4.求y的取值范围.19.如图,已知△ABC中,AB=AC=5,cos A=.求底边BC的长.20.2019年中国北京世园会开园期间,为了满足不同人群的游览需求,组委会倾情打造了四条趣玩路线,分别是“解密世园会”、“爱我家,爱园艺”、“园艺小清新之旅”和“快速车览之旅”小明一家想通过抽签的方法选择其中的两条路线进行游玩,于是他们制作了如下四张卡片,然后从四张卡片中随机抽取其中的两张若小明最钟爱的游玩路线是“园艺小清新之旅“,小明的爸爸和妈妈最钟爱的游玩路线是“解密世园会”,请用列表法或画树状图法求出:他们同时抽中“园艺小清新之旅”和“解密世园会”的概率是多少?21.已知半圆的直径CD=12cm,如图所示,弧DE所对的圆心角∠ECD=30°,求阴影部分的周长.22.图(a)、图(b)是两张形状,大小完全相同的8×8的方格纸,方格纸中的每个小正方形的边长均为1,请在图(a)、图(b)中分别画出符合要求的图形,要求:所画图形各顶点必须与方格纸中的小正方形顶点重合.(1)以AB为一边,画一个成中心对称的四边形ABCD,使其面积为12;(2)以EF为一边,画△EFP,使其面积为的轴对称图形.23.如图,已知一次函数y=kx+b的图象交反比例函数y=的图象于点A(2,-4)和点B(h,-2),交x轴于点C.(1)求这两个函数的解析式;(2)连接OA、OB.求△AOB的面积;(3)请直接写出不等式kx+b>的解集.24.如图1,在Rt△ABC中,∠BAC=90°,AB=AC,D,E两点分别在AC,BC上,且DE∥AB,将△CDE绕点C按顺时针方向旋转,记旋转角为α.(1)问题发现:当α=0°时,的值为______;(2)拓展探究:当0°≤α<360°时,若△EDC旋转到如图2的情况时,求出的值;(3)问题解决:当△EDC旋转至A,B,E三点共线时,若设CE=5,AC=4,直接写出线段BE的长______.25.如图,一条顶点坐标为(-1,)的抛物线与y轴交于点C(0,5),与x轴交于点A和点B,有一宽度为1,长度足够的矩形(阴影部分)沿x轴方向平移,与y 轴平行的一组对边交抛物线于点P和Q,交直线AC于点M和N,交x轴于点E 和F(1)求抛物线的解析式;(2)当点M和N都有在线段AC上时,连接MF,如果MF=AF,求点Q的坐标;(3)在矩形的平移过程中,当以点P,Q,M,N为顶点的四边形是平行四边形时,求点M的坐标.26.如图,在▱ABCD中,∠ABD=90°,AD=5,BD=3,点P从点A出发,沿折线AB一BC以每秒1个单位长度的速度向终点C运动(点P不与点A、B、C重合).在点P的运动过程中,过点P作AB所在直线的垂线,交边AD或边CD于点Q,以PQ为一边作矩形PQMN,且QM=2,MN与BD在PQ的同侧,设点P的运动时间为t(秒).(1)当t=5时,求线段CP的长;(2)求线段PQ的长(用含t的代数式表示);(3)当点M落在BD上时,求t的值;(4)当矩形PQMN与▱ABCD重叠部分图形为五边形时,直接写出t的取值范围.答案和解析1.【答案】B【解析】解:∵抛物线y=-x2+2,∴该抛物线的对称轴为直线x=0,故选:B.根据题目中的抛物线y=-x2+2,可以直接写出该抛物线的对称轴.本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.2.【答案】C【解析】解:从上边看是左右各一个矩形,左边的矩形大,故选:C.根据从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从上边看得到的图形是俯视图.3.【答案】B【解析】解:△=9-4m,∵m<0,∴-4m>0,∴△=9-4m>0,故选:B.根据根的判别式即可求出答案.本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.4.【答案】B【解析】解:∵反比例函数y=的图象分布在第二、四象限,∴1-2k<0,解得k>,故选:B.根据反比例函数的图象和性质,由1-2k<0即可解得答案.本题考查了反比例函数的图象和性质:①、当k>0时,图象分别位于第一、三象限;当k<0时,图象分别位于第二、四象限.②、当k>0时,在同一个象限内,y随x的增大而减小;当k<0时,在同一个象限,y随x的增大而增大.5.【答案】C【解析】解:如图,作AH⊥x轴于H.∵A(2,1),∴OH=2,AH=1,∴OA===,∴cosα===,故选:C.如图,作AH⊥x轴于H.利用勾股定理求出OA,根据三角函数的定义解决问题即可.本题考查解直角三角形,坐标由图形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.6.【答案】A【解析】解:由位似变换的性质可知,A′B′∥AB,A′C′∥AC,∴△A′B′C′∽△ABC.∵△A'B'C'与△ABC的面积的比4:9,∴△A'B'C'与△ABC的相似比为2:3,∴=故选:A.先求出位似比,根据位似比等于相似比,再由相似三角形的面积比等于相似比的平方即可.本题考查的是位似变换的概念和性质,如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.7.【答案】【解析】解:原式=+1=.故答案为:.分别把各特殊角度的三角函数值代入进行计算即可.本题考查的是特殊角的三角函数值,熟记各特殊角度的三角函数值是解答此题的关键.8.【答案】15°【解析】解:∵将△ABC绕点A逆时针旋转150°,得到△ADE,∴∠BAD=150°,AD=AB,∵点B,C,D恰好在同一直线上,∴△BAD是顶角为150°的等腰三角形,∴∠B=∠BDA,∴∠B=(180°-∠BAD)=15°,故答案为:15°.先判断出∠BAD=150°,AD=AB,再判断出△BAD是等腰三角形,最后用三角形的内角和定理即可得出结论.此题主要考查了旋转的性质,等腰三角形的判定和性质,三角形的内角和定理,判断出三角形ABD是等腰三角形是解本题的关键.9.【答案】【解析】解:作AE⊥BC于E.在Rt△ABE中,∵AE=BE=4,∠AEB=90°,∴∠ABE=∠BAE=45°,∴sin B=sin45°=,故答案为.作AE⊥BC于E.利用等腰直角三角形的性质解决问题即可.本题考查解直角三角形,解题的关键是学会添加常用辅助线,构造直径三角形解决问题.10.【答案】【解析】解:AB=AP+BP=2+3=5,∵∠ACP=∠B,∠A=∠A,∴△ACP∽△ABC,∴=,∴AC2=AP•AB=2×5=10,∴AC=,故答案为:.AB=AP+BP=5,由∠ACP=∠B,∠A=∠A,得出△ACP∽△ABC,得出=,代入数值即可得出结果.本题考查了相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解题的关键.11.【答案】50°【解析】解:∵AB是⊙O的直径,∴∠ADB=90°,∵BD=CD,∠DBC=20°,∴∠C=∠DBC=20°,∴∠A=∠C=20°,∴∠ABD=90°-∠A=70°,∴∠ABC=∠ABD-∠DBC=70°-20°=50°故答案为50°先由直径所对的圆周角为90°,可得:∠ADB=90°,由BD=CD,∠DBC=20°,根据等腰三角形性质可得:∠C=20°,根据同弧所对的圆周角相等,即可求出∠A=20°,根据三角形内角和定理求得∠ABD=70°,进而即可求得∠ABC的度数.此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半,直径所对的圆周角为90°.12.【答案】8m【解析】解:如图,由题意知∠BAO=∠C=90°,∵∠AOB=∠COD,∴△ABO∽△CDO,∴,即=,解得:CD=8,故答案为:8m.由题意证△ABO∽△CDO,可得,即=,解之可得.本题主要考查相似三角形的应用,熟练掌握相似三角形的判定与性质是解题的关键.13.【答案】24【解析】解:设E点坐标为(t,),∵AE:EB=1:3,∴B点坐标为(4t,),∴矩形OABC的面积=4t•=24.故答案为:24.根据反比例函数图象上点的坐标特征设E点坐标为(t,),则利用AE:EB=1:3,B 点坐标可表示为(4t,),然后根据矩形面积公式计算.本题考查了反比例函数y=(k≠0)系数k的几何意义:从反比例函数y=(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.14.【答案】2【解析】解:∵二次函数y=2x2-4x+4=2(x-1)2+2,∴点P的坐标为(1,2),设点M的坐标为(a,2),则点N的坐标为(a,2a2-4a+4),∴===2,故答案为:2.根据题目中的函数解析式可得到点P的坐标,然后设出点M、点N的坐标,然后计算即可解答本题.本题考查二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.15.【答案】解:过A作AE⊥CD垂足为E,设AE=x米,在Rt△ABE中,tan B=,∴BE==x,在Rt△ABE中,tan∠ACD=,∴CE==x,∵BC=BE-CE,∴x-x=150,解得:x=450.答:小岛A到公路BD的距离为450米.【解析】过A作AE⊥CD垂足为E,设AE=x米,再利用锐角三角函数关系得出BE=x,CE=x,根据BC=BE-CE,得到关于x的方程,即可得出答案.此题主要考查了解直角三角形的应用,解一般三角形,求三角形的边或高的问题一般可以转化为解直角三角形的问题,解决的方法就是作高线.16.【答案】(1)证明:如图,连接OB,∵E是弦BC的中点,∴BE=CE,OE⊥BC,==,∴∠BOE=∠A,∠OBE+∠BOE=90°,∵∠PBC=∠A,∴∠BOE=∠PBC,∴∠OBE+∠PBC=90°.即BP⊥OB.∴BP是⊙O的切线(2)解:∵OB=6,BD=8,BD⊥OB.∴OD==10.∵△OBD的面积=OD•BE=OB•BD,∴BE==4.8.∴BC=2BE=9.6【解析】(1)连接OB,由垂径定理的推论得出BE=CE,OE⊥BC,=,由圆周角定理得出∠BOE=∠A,证出∠OBE+∠PBC=90°,得出∠OBD=90°即可;(2)由勾股定理求出OD,由△OBD的面积求出BE,即可得出弦BC的长.本题考查了切线的判定、垂径定理的推论、圆周角定理、勾股定理、三角形面积的计算;熟练掌握垂径定理的推论和圆周角定理是解决问题的关键.17.【答案】解:x2+8x=9,x2+8x-9=0,(x+9)(x-1)=0,x+9=0或x-1=0,解得x1=-9,x2=1.【解析】先把方程化为一般式,然后利用因式分解法解方程.本题考查了解一元二次方程-因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).18.【答案】解:(1)设反比例函数是y=(k≠0),当x=3时,y=8,代入可解得k=24.所以y=.(2)当x=3时,y=8,当x=4时,y=6,∴自变量x的取值范围为3≤x≤4.y的取值范围为6≤y≤8.【解析】(1)根据反比例函数的定义设出表达式,再利用待定系数法解出系数则可;(2)分别代入x的值求得y值后即可求得y的取值范围;本题考查了反比例函数的性质及反比例函数的定义,能够利用待定系数法确定反比例函数的解析式是解答本题的关键,难度不大.19.【答案】解:过点B作BD⊥AC,垂足为点D,在Rt△ABD中,cos A=,∵cos A=,AB=5,∴AD=AB•cos A=5×=3,∴BD==4,∵AC=AB=5,∴DC=2,∴BC==2.【解析】过点B作BD⊥AC,垂足为点D,解直角三角形即可得到结论.本题考查了解直角三角形,勾股定理,等腰三角形的性质,正确的作出辅助线是解题的关键.20.【答案】解:设上述四张卡片从左到右依次用字母A,B,C,D表示,则抽取结果可以用如下树状图表示:从树状图可知,所有等可能结果有12种,其中能同时能抽中A和D的结果有2种,所以他们同时抽中“园艺小清新之旅”和“解密世园会”的概率是.【解析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽中A 和D的情况,再利用概率公式即可求得答案.此题考查了树状图法与列表法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.【答案】解:CE交半圆于F,连接OF、DF,如图,∵弧DE所对的圆心角∠ECD=30°,∴的长为=2π,∵∠DOF=2∠ECD=60°,∴的长度为=2π,∵CD为直径,∴∠CFD=90°,∴DF=CD=6,CF=DF=6,∴EF=12-6,∴阴影部分的周长=2π+2π+12-6=4π+12-6.【解析】CE交半圆于F,连接OF、DF,如图,先利用弧长公式计算出的长为2π,再根据圆周角定理得到∠DOF=60°,∠CFD=90°,然后利用弧长公式计算出的长和EF=12-6,从而得到阴影部分的周长.本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径.也考查了弧长公式.22.【答案】解:(1)如图所示:四边形ABCD是面积为12的平行四边形;(2)如图所示:△EFP是面积为的等腰三角形.【解析】(1)根据平行四边形的底边为4,高为3,进行画图;(2)根据等腰三角形的腰为5,腰上的高为3,进行画图.本题主要考查了利用图形的基本变换进行作图,作图时需要运用平行四边形的性质以及等腰三角形的性质进行计算.注意:平行四边形是中心对称图形,等腰三角形是轴对称图形.23.【答案】解:(1)把A(2,-4)的坐标代入y=得:m=-8,∴反比例函数的解析式是y=-;把B(h,-2)的坐标代入y=-得:-2=-,解得:n=4,∴B点坐标为(4,-2),把A(2,-4)、B(4,-2)的坐标代入y=kx+b,得:,解得:,∴一次函数解析式为y=x-6;(2)∵y=x-6,∴当y=0时,x=0+6=6,∴OC=6,∴△AOB的面积=△AOC的面积-三角形BOC的面积=×6×4-×6×2=12-6=6;(3)由图象知,kx+b>的解集为0<x<2或x>4.【解析】(1)先把点A的坐标代入y=,求出m的值得到反比例函数解析式,再求点B的坐标,然后代入反比例函数解析式求出点B的坐标,再将A、B两点的坐标代入y=kx+b,利用待定系数法求出一次函数的解析式;(2)先求出C点坐标,再根据△AOB的面积=△AOC的面积-三角形BOC的面积即可求解;(3)观察函数图象即可求出不等式kx+b>的解集.本题主要考查了反比例函数图象与一次函数图象的交点问题以及观察图象的能力,待定系数法求函数解析式,求出点B的坐标是解题的关键.24.【答案】 7或1【解析】解:(1)∵∠BAC=90°,AB=AC,∴△ABC为等腰直角三角形,∠B=45°,∵DE∥AB,∴∠DEC=∠B=45°,∠CDE=∠A=90°,∴△DEC为等腰直角三角形,∴cos∠C==,∵DE∥AB,∴==,故答案为:;(2)由(1)知,△BAC和△CDE均为等腰直角三角形,∴==,又∠BCE=∠ACD=α,∴△BCE∽△ACD,∴==,即=;(3)①如图3-1,当点E在线段BA的延长线上时,∵∠BAC=90°,∴∠CAE=90°,∴AE===3,∴BE=BA+AE=4+3=7;②如图3-2,当点E在线段BA上时,AE===3,∴BE=BA-AE=4-3=1,综上所述,BE的长为7或1,故答案为:7或1.(1)先证△DEC为等腰直角三角形,求出=,再通过平行线分线段成比例的性质可直接写出的值;(2)证△BCE∽△ACD,由相似三角形的性质可求出的值;(3)分两种情况讨论,一种是点E在线段BA的延长线上,一种是点E在线段BA上,可分别通过勾股定理求出AE的长,即可写出线段BE的长.本题考查了等腰直角三角形的性质,锐角三角函数,相似三角形的判定与性质等,解题关键是注意分类讨论思想在解题过程中的运用.25.【答案】解:(1)根据题意,抛物线顶点为,设抛物线为.抛物线过点C(0,5),∴,抛物线解析式为.(2)易得:A(-5,0),B(3,0).如图,作FD⊥AC于D,∵OA=5,OC=5,∴∠CAO=45°.设AF=m,则.在△MEF中,FM2=ME2+EF2,∴,解得(不符合题意,舍去).∴AF=2,∴点Q的横坐标为-3.又点Q在抛物线上,∴Q(-3,4),(3)设直线AC的解析式y=kx+n,由题意,得∴直线AC的解析式y=x+5.由已知,点Q,N,F及点P,M,E横坐标分别相同.设F(t,0),E(t+1,0),N(t,t+5),M(t+1,t+6),.在矩形平移过程中,以P,Q,N,M为顶点的平行四边形有两种情况:①点Q,P在直线AC同侧时,QN=PM.∴,解得:t=-3.∴M(-2,3).②点Q,P在直线AC异侧时,QN=MP.∴,解得∴.∴符合条件的点M是(-2,3),.【解析】(1)设抛物线为,把点(0,5)代入即可解决问题.(2)作FD⊥AC于D,设AF=m,则,列出方程求出m的值即可解决问题.(3)设F(t,0),E(t+1,0),N(t,t+5),M(t+1,t+6),.①当MN是对角线时,由QN=PM,列出方程即可解决问题.②点Q,P在直线AC异侧时,QN=MP,解方程即可.本题考查二次函数综合题、平行四边形的判定与性质、勾股定理等知识,解题的关键是学会待定系数法确定函数解析式,学会分类讨论,用方程的思想解决问题,属于中考压轴题.26.【答案】解:(1)如图1中,在Rt△ABD中,∵∠ABD=90°,AD=5,BD=3,∴AB==4,∵四边形ABCD是平行四边形,∴AD=BC=5,CD=AB=4,当t=5时,点P在BC上,PB=1,∴PC=4.(2)①如图2中,当0<t<4时,∵PQ∥BD,∴=,∴=,∴PQ=t.②如图3中,当5<t<10时,∵PQ∥BD,∴=,∴=,∴PQ=(9-t).(3)①如图4中,当点P在线段AB上时,点M在线段BD上,∵QM∥AB,∴=,∴=,∴DQ=,∴AQ=DQ,∵PQ∥BD,∴AP=PB=2,∴t=2.②如图5中,当点P在线段BC上,点M与D重合时,易知QM=QC=2,PB=PC=,此时t=4+=.(4)①如图6中,当点P在线段AB上,重叠部分是五边形PBKMQ时,2<t<4.②如图7中,当点P在线段BC上,重叠部分是五边形PQDKN时,4<t<6.5.【解析】(1)如图1中,利用勾股定理求出AB的长,t=5时,点P在线段BC上,易知PB=1,PC=4;(2)分两种情形求解即可①如图2中,当0<t<4时,②如图3中,当5<t<10时;(3)分两种情形求解即可①如图4中,当点P在线段AB上时,点M在线段BD上,求出AP.②如图5中,当点P在线段BC上,点M与D重合时;(4)分两种情形分别求解即可①如图6中,当点P在线段AB上,重叠部分是五边形PBKMQ时,2<t<4.②如图7中,当点P在线段BC上,重叠部分是五边形PQDKN 时,4<t<6.5;本题考查四边形综合题、平行四边形的性质、平行线分线段成比例定理、勾股定理等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用平行线分线段成比例定理,构建方程解决问题,属于中考压轴题.。

(名校调研系列卷)吉林省长春市(市命题)中考数学一模试卷(含解析)(1)

(名校调研系列卷)吉林省长春市(市命题)中考数学一模试卷(含解析)(1)

4。

7 相似三角形的性质第1课时 相似三角形中的对应线段之比学习目标:1、掌握并会证明相似三角形的性质定理1。

2、会用相似三角形的性质定理1解决有关问题。

学习重点:相似三角形的性质定理1的证明和简单应用.预设难点:相似三角形的性质定理1的灵活应用。

预习导航一、链接1、相似三角形的对应角______ ,对应边 。

2、相似三角形的判定方法有那些?3、全等三角形的对应高、对应中线、对应角平分线相等吗?请说明理由?二、导读阅读课本解决下列问题:1、已知:如图,△ABC∽△A′B′C′,相似比为k ,AD 与A′D′分别是△ABC 和△A′B′C′的高, 求证:k D A AD ''.2、证明:相似三角形对应中线的比、对应角平分线的比等于相似比。

A ’B ’C ’D ’A B C DB C A E F H G D合作探究1、电灯P 在横杆A B 的正上方,AB 在灯光下的影子为CD ,AB ∥CD ,AB=2m,CD=5m ,(1)若点P 到CD 的距离为3m 。

求P 到AB 的距离? (2)若PE ⊥CD 于D 交AB 于F ,E F=1m ,求PF2、已知在△ABC 中,BC=120mm , BC 边上的高为80mm ,在这个三角形内有一个内接正方形,正方形的一边在BC 上,另两个顶点分别在边AB 、AC 上.求这个正方形的边长.达标检测1、若两个相似三角形的相似比是2∶3,则它们的对应高的比是 ,对应中线的比是 ,对应角平分线的比是 .2、若△ABC ∽△A′B′C′, BC=3.6cm ,B′C′=6cm,AE 是△ABC 的一条中线,AE=2.4cm ,则△A′B′C′中对应中线A′E′的长是 。

D EF C A B P3、某人拿着一把分度值为厘米的小尺,站在距电线杆30m的地方,把手臂向前伸直,小尺竖直,看到尺上12cm的长度恰好遮住电线杆,已知臂长为60cm.求电线杆的高。

尊敬的读者:本文由我和我的同事在百忙中收集整编出来,本文稿在发布之前我们对内容进行仔细校对,但是难免会有不尽如人意之处,如有疏漏之处请指正,希望本文能为您解开疑惑,引发思考。

2021年吉林省名校调研(省命题A)中考数学一模试卷(附答案详解)

2021年吉林省名校调研(省命题A)中考数学一模试卷(附答案详解)

2021年吉林省名校调研(省命题A)中考数学一模试卷1.在实数0,−π,√2,−4中,最小的数是()A. 0B. −πC. √2D. −42.被英国《卫报》誉为“新世界七大奇迹”的港珠澳大桥是中国境内一座连接香港、广东珠海和澳门的桥隧工程,它是世界上最长的跨海大桥,桥隧全长55000米,其中55000用科学记数法表示为()A. 55×104B. 5.5×104C. 5.5×105D. 0.55×1063.如图所示的几何体是由五个小正方体搭建而成的,则左视图是()A.B.C.D.4.如图表示下列四个不等式组中其中一个的解集,这个不等式组是()A. {x≥2x>−3B. {x≤2x<−3C. {x≥2x<−3D. {x≤2x>−35.如图,矩形ABCD的顶点A、C分别在直线a、b上,且a//b,∠1=60°,则∠2的度数为()A. 30°B. 45°C. 60°D. 75°6.如图,已知⊙O的半径为3,弦AB⊥直径CD,∠A=30°,则BD⏜的长为()A. πB. 2πC. 3πD. 6π7.√9−1=______.8.某种商品n千克的售价是m元,则这种商品8千克的售价是______元.9.分解因式:ab2−a=____________.10.一元二次方程x2+5x+7=0______ 实数根.(填“有”或“没有”)11.如图,在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,E、F分别为DB、BC的中点,若AB=8,则EF=______ .12.如图,在五边形ABCDE中,∠A+∠B+∠E=300°,DP、CP分别平分∠EDC、∠BCD,则∠P=______ .13.如图,在等边△ABC中,AC=10,点O在线段AC上,且AO=3,点P是线段AB上一点,连接OP,以O为圆心,OP长为半径画弧交线段BC于点D,连接PD.若PO=PD,则AP的长是______ .14.如图,正方形ABCD的边AB在x轴上,点A(−2,0)、点B(1,0),抛物线y=x2−4x+m与正方形有两个交点时,则m的取值范围是______ .15.先化简,再求值:(2a−1)2+2a(3−2a),其中a=1.16.一个不透明的盒子中装有两个红球和一个黄球,这些球除颜色外都相同,从中随机摸出一个球,记下颜色后不放回,再从中随机摸出一个球.请你用列表法或画树状图的方法求两次摸到的球的颜色都是红色的概率.17.已知:如图,A、C、F、D在同一条直线上,且AB//DE,AF=DC,AB=DE,求证:△ABC≌△DEF.18.2020年11月19日,长春市遭遇了罕见的极端暴雪天气,市环卫部门出动了多辆清雪车连夜清雪,已知一台大型清雪车比一台小型清雪车每小时多清扫路面6千米,一台大型清雪车清扫路面90千米与一台小型清雪车清扫路面60千米所用的时间相同.求一台小型清雪车每小时清扫路面的长度.19.图①、图②均是5×5的正方形网格,每个小正方形的边长均为1.只用无刻度的直尺,在给定的网格中按要求画图.(1)在图①中画等腰△ABC,使得∠CAB=90°;(2)在图②中画▱ABEF,使其面积为6.20.近年来,成都IFS商业大楼成了网红打卡地,楼上“翻墙”的大熊猫给游客留下了深刻的印象.小明使用测角仪测量熊猫C处距离地面AD的高度,他在甲楼底端A 处测得熊猫C处的仰角为53°,在甲楼B处测得熊猫C处的仰角为45°,已知AB=4.5米,求熊猫C处距离地面AD的高度.(结果保留一位小数,参考数据:sin53°≈0.80,cos53°≈0.60,tan53°≈1.33)21.在平面直角坐标系xOy中,直线l:y=x+b与反比例函数y=4在第一象限内的图x象交于点A(4,m).(1)求m、b的值;(2)点B在反比例函数的图象上,且点B的横坐标为1.若在直线l上存在一点P(点P不与点A重合),使得AP≤AB,结合图象直接写出点P的横坐标x p的取值范围.22.“精准扶贫”这是新时期党和国家扶贫工作的精髓和亮点,某校团委随机抽取七年级部分学生,对他们是否了解关于“精准扶贫”的情况进行调查,调查结果有三种:A、了解很多;B、了解一点;C、不了解.团委根据调查的数据进行整理,绘制了尚不完整的统计图如图,图1中C区域的圆心角为36°,请根据统计图中的相关的信息,解答下列问题(1)求本次活动共调查了______ 名学生;图1中,B区域的圆心角的度数是______ ;(2)补全条形统计图.(3)若该校七年级有2100名学生,请估算该校不是“了解很多”的学生人数.23.快、慢两车分别从相距360千米的A、B两地出发,匀速行驶.慢车在快车出发1小时后出发,到达A地停止行驶.快车到达B地停留1小时后原路原速返回A地(调头时间忽略不计),在两车行驶的过程中.快慢两车与A地的距离y(千米)关于慢车行驶的时间x(小时)之间的函数图象如图所示,请结合图象信息解答下列问题.(1)直接写出快、慢两车的速度;(2)求快车与A地的距离y(千米)关于x(小时)的函数关系式;(3)慢车出发后几小时,两车在途中相距60千米?请直接写出答案.24.综合与实践(1)问题发现:正方形ABCD和等腰直角△EBF按如图1所示的方式放置,点F在AB上,连接AE,CF,则AE,CF的数量与位置关系为______;(2)类比探究:如图2,正方形ABCD保持固定,等腰直角△EBF绕点B顺时针旋转,旋转角为α(0<α≤360°),请问(1)中的结论还成立吗?说明你的理由;(3)拓展延伸:在(2)的条件下,若AB=2BF=4,在等腰直角△EBF的旋转过程中,当CF为最大值时,请直接写出DE的长.25.如图所示,二次函数y=−x2+2x+m的图象与x轴的一个交点为A(3,0),另一交点为B,且与y轴交于点C.(1)求m的值;(2)求点B的坐标;(3)该二次函数图象上有一点D(x,y)(其中x>0,y>0),使S△ABD=S△ABC,求点D的坐标;(4)若点P在直线AC上,点Q是平面上一点,是否存在点Q,使以点A、点B、点P、点Q为顶点的四边形为矩形?若存在,请你直接写出Q点的坐标;若不存在,请说明理由.26.如图,在△ABC中,ACB=90°,AC=2cm,BC=4cm,点D是AB的中点,动点E从点A出发,以每秒√5cm的速度沿AB向终点B运动,过点E作AB的垂线,交折线AC−CB于点F,以DE、EF为邻边作矩形DEFG,设点E运动的时间为t(秒).(1)当点F与点C重合时,求t的值;(2)求EF的长(用含t的代数式表示);(3)当四边形DEFG是正方形时,求正方形DEFG与△ABC重叠部分的面积;(4)连接DF,当DF平行于△ABC的一条边时,直接写出t的值(不包括点F在AB上).答案和解析1.【答案】D【解析】解:由于负数小于0,0小于正数,又∵π<4,∴−π>−4,故选:D.首先根据负数小于0,0小于正数,然后判断−π和−4的大小即可得到结果.本题考查实数大小的比较,利用不等式的性质比较实数的大小是解本题的关键.2.【答案】B【解析】解:55000=5.5×104,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:从左边看底层是两个小正方形,上层右边是一个小正方形,故选:D.根据从左边看得到的图形是左视图,可得答案.本题考查了简单组合体的三视图,从左边看得到的图形是左视图.4.【答案】D【解析】解:∵−3处是空心圆点,且折线向右,2处是实心圆点,且折线向左,∴这个不等式组的解集是−3<x≤2.故选:D.根据在数轴上表示不等式解集的方法即可得出答案.本题考查的是在数轴上表示不等式的解集,熟知“小于向左,大于向右”是解答此题的关键.5.【答案】C【解析】【分析】本题考查了矩形的性质以及平行线的性质.注意准确作出辅助线是解此题的关键.首先过点D作DE//a,由∠1=60°,可求得∠3的度数,易得∠ADC=∠2+∠3,继而求得答案.【解答】解:过点D作DE//a,∵四边形ABCD是矩形,∴∠BAD=∠ADC=90°,∴∠3=90°−∠1=90°−60°=30°,∵a//b,∴DE//a//b,∴∠4=∠3=30°,∠2=∠5,∴∠2=90°−30°=60°.故选:C.6.【答案】B【解析】解:如图,连接OB.∵CD⊥AB,CD是直径,∴AC⏜=BC⏜,∴∠AOC=∠BOC,∵OA=OB,∴∠A=∠B=30°,∴∠AOB=180°−30°−30°=120°,∴∠COB=12∠AOB=60°,∴∠DOB=180°−60°=120°,∴BD⏜的长=120⋅π⋅3180∘=2π,故选:B.连接OB,求出∠BOD的度数,利用弧长公式求解即可.本题考查弧长公式,垂径定理等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.7.【答案】2【解析】解:原式=3−1=2.故答案为:2.直接利用二次根式的性质化简进而得出答案.此题主要考查了实数运算,正确化简二次根式是解题关键.8.【答案】8mn【解析】【分析】先求出1千克商品的价格,再乘以8,即可解答.本题考查了列代数式,解决本题的关键是先求出1千克商品的价格.【解答】解:根据题意,得:mn ×8=8mn元,故答案为:8mn.9.【答案】a(b+1)(b−1)【解析】【分析】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.首先将原式提取a,再利用平方差公式分解即可.【解答】解:原式=a(b2−1)=a(b+1)(b−1),故答案为a(b+1)(b−1).10.【答案】没有【解析】解:∵x2+5x+7=0,∴△=52−4×1×7=−3<0,∴方程没有实数根,故答案为:没有.先求出“△”的值,再根据根的判别式的内容判断即可.本题考查了根的判别式,能熟记根的判别式的内容是解此题的关键.11.【答案】2【解析】解:在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,AB=8,∴CD=12AB=12×8=4,∵E、F分别为DB、BC的中点,∴EF是△BCD的中位线,∴EF=12CD=12×4=2,故答案为:2.根据直角三角形的性质求出CD,再根据三角形中位线定理计算即可.本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.12.【答案】60°【解析】解:∵在五边形ABCDE中,∠A+∠B+∠E=300°,∴∠EDC+∠BCD=(5−2)×180°−300°=240°,又∵DP、CP分别平分∠EDC、∠BCD,∴∠PDC+∠PCD=120°,∴△CDP中,∠P=180°−(∠PDC+∠PCD)=180°−120°=60°.故答案为:60°.先根据五边形内角和求得∠EDC+∠BCD,再根据角平分线求得∠PDC+∠PCD,最后根据三角形内角和求得∠P的度数.本题主要考查了多边形的内角和以及角平分线的定义,解题时注意:多边形内角和= (n−2)⋅180°(n≥3且n为整数).13.【答案】7【解析】解:连接OD,如图:∵PO=PD,∴OP=DP=OD,∴∠DPO=60°,∵△ABC是等边三角形,∴∠A=∠B=60°,AC=AB=10,∴∠OPA=∠PDB=∠DAP−60°,在△OPA和△PDB中,{∠OPA=∠PDB ∠A=∠BPO=PD,∴△OPA≌△PDB(AAS),∵AO=3,∴AO=PB=3,∴AP=AB−PB=10−3=7,故答案为:7.连接OD,由题意可知OP=DP=OD,即△PDO为等边三角形,则∠OPA=∠PDB=∠DPA−60°,由AAS证得△OPA≌△PDB,根据全等三角形的对应边相等知OA=BP=3,则AP=AB−BP=7.本题主要考查全等三角形的判定和性质、等边三角形的判定与性质、圆的性质等知识;熟练掌握等边三角形的性质,证明△OPA≌△PDB是解题的关键.14.【答案】−12<m<6【解析】解:∵A(−2,0),B(1,0),四边形ABCD是正方形,∴AB=BC=3,点C坐标(1,3),当抛物线经过点C时,3=1−4+m,m=6,当抛物线经过点A时,4+8+m=0,m=−12,∴抛物线y=x2−4x+m与正方形有两个交点时,则m的取值范围是:−12<m<6.故答案为−12<m<6.把点C、A坐标分别代入抛物线解析式即可求出m的值,由此即可解决问题.本题考查正方形的性质、二次函数的性质等知识,解题的关键是理解题意,找到关键点代入抛物线解析式即可解决问题,属于中考常考题型.15.【答案】解:原式=4a2−4a+1+6a−4a2=2a+1,当a=1时,原式=2×1+1=3.【解析】直接利用整式的混合运算化简合并同类项,再把已知数据代入得出答案.此题主要考查了整式的混合运算,正确掌握相关运算法则是解题关键.16.【答案】解:画树状图如图:共有6个等可能的结果,两次摸到的球的颜色都是红色的结果有2个,∴两次摸到的球的颜色都是红色的概率为26=13.【解析】画树状图,共有6个等可能的结果,两次摸到的球的颜色都是红色的结果有2个,再由概率公式求解即可.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式求事件A或B的概率.17.【答案】证明:∵AB//DE,∴∠A=∠D,∵AF=CD,∴AD+CF=CF+DF,∴AC=DF,在△ABC和△DEF中,{AC=DF ∠A=∠D AB=DE,∴△ABC≌△DEF(SAS).【解析】根据SAS证明三角形全等即可.本题考查全等三角形的判定,解题的关键是熟练掌握全等三角形的判定方法,属于中考常考题型.18.【答案】解:设一台小型清雪车每小时清扫路面的长度为x千米,则一台大型清雪车每小时清扫路面的长度为(x+6)千米,依题意得:90x+6=60x,解得:x=12,经检验,x=12是原方程的解,且符合题意.答:一台小型清雪车每小时清扫路面的长度为12千米.【解析】设一台小型清雪车每小时清扫路面的长度为x千米,则一台大型清雪车每小时清扫路面的长度为(x+6)千米,根据一台大型清雪车清扫路面90千米与一台小型清雪车清扫路面60千米所用的时间相同,即可得出关于x的分式方程,解之经检验后即可得出结论.本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.19.【答案】解:(1)如图,△ABC即为所求作.(2)如图,平行四边形ABEF即为所求作.【解析】(1)根据等腰直角三角形的定义画出图形即可.(2)利用数形结合的思想解决问题即可.本题考查作图−应用与设计作图,等腰直角三角形的判定和性质,平行四边形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题.20.【答案】解:如图,过点B作BE⊥CD于点E,由题意可知:∵∠CBE=45°,∠CAD=53°,AB=4.5米,∵∠ABE=∠BED=∠ADE=90°,∴四边形ABED是矩形,∴BE=AD,DE=AB=4.5米,设CE=x,则CD=BC+BD=x+4.5,在Rt△CEB中,BE=CE tan45∘=xtan45∘=x,在Rt△ADC中,CD=AD⋅tan53°,即x+4.5=x⋅tan53°,∴x≈13.64,∴CE=13.64(米),∴CD=CE+DE=13.64+4.5=18.14≈18.1(米).答:熊猫C处距离地面AD的高度为18.1米.【解析】过点B作BE⊥CD于点E,根据已知条件求出BE=AD,设CE=x,则CD=BC+ BD=x+4.5,根据锐角三角函数求出x的值,即可得出CD的值.本题考查了解直角三角形的应用,要求学生能借助仰角构造直角三角形并解直角三角形,注意方程思想的运用.21.【答案】解:(1)∵y=4x经过点A(4,m),∴m=1,∴A(4,1),∵y=x+b经过点A(4,1),∴4+b=1,b=−3.(2)如图,由题意A(4,1),B(1,4),∴AB=√32+32=3√2,∵PA≤AB,P与A不重合,当AP=AB时,P(1,−2),P′(7,4),∴满足条件的x P为:1≤x p≤7且x p≠4.【解析】(1)利用待定系数法解决问题即可.(2)根据AB=PA,求出点P的坐标,利用图象法即可判断.本题考查反比例函数与一次函数的交点问题,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考常考题型.22.【答案】200 108°【解析】解:(1)本次活动共调查了:20÷36°=200名学生,360∘B区域的圆心角度是:360°×200−120−20=108°,200故答案为:200,108°;(2)调查结果为B的学生有:200−120−20=60(人),补全的条形统计图如右图所示;(3)2100×60+20200=840(人),即估算该校不是“了解很多”的学生有840人.(1)根据结果为C 对应的圆心角度数和人数,可以求得本次活动共调查了多少名学生,再根据条形统计图中的数据,可以计算出B 区域的圆心角的度数;(2)根据(1)中的结果和条形统计图中的数据,可以计算出结果为B 的人数,从而可以将条形统计图补充完整;(3)根据条形统计图中的数据,可以估算该校不是“了解很多”的学生人数.本题考查条形统计图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.【答案】解:(1)由图可得,快车的速度为:120÷1=120(千米/小时),慢车的速度为:360÷6=60(千米/小时),即快、慢两车的速度分别为120千米/小时、60千米/小时;(2)设快车从A 地到B 地时,与A 地的距离y(千米)关于x(小时)的函数关系式是y =k 1x +b 1,360÷120−1=2(小时),即x =2时,y =360,则点(0,120),(2,360)在函数y =k 1x +b 1的图象上,{b 1=1202k 1+b 1=360, 解得:{k 1=120b 1=120, ∴快车从A 地到B 地时,与A 地的距离y(千米)关于x(小时)的函数关系式是y =120x +120(0≤x ≤2);快车到达B 地停留1小时,此时y =360(2≤x ≤3);快车从B 地返回A 地的过程中y(千米)与x(小时)的函数关系式是y =kx +b , 则点(3,360),(6,0)在函数y =kx +b 的图象上,{3k +b =3606k +b =0, 解得{k =−120b =720, 即快车从B 地返回A 地的过程中y(千米)与x(小时)的函数关系式是y =−120x +720(3≤x ≤6);∴快车与A 地的距离y(千米)关于x(小时)的函数关系式为:y ={120x +120(0≤x ≤2)360(2≤x ≤3)−120x +720(3≤x ≤6);(3)设慢车出发后x 小时,两车在途中相距60千米,当相向而行相遇前,120(x +1)+60x =360−60,解得x =1;当相向而行相遇后,快车未到达B 地前,120(x +1)+60x =360+60,解得x =53;快车从B 地返回A 地时,120(x −3)+60=60x ,解得x =5;由上可得,慢车出发后1小时、53小时或5小时,两车在途中相距60千米.【解析】(1)根据函数图象中的数据,可以计算出快、慢两车的速度;(2)根据题意和函数图象中的数据,分段求出快车与A 地的距离y(千米)关于x(小时)的函数关系式;(3)根据题意,利用分类讨论的方法可以解答本题.本题考查一次函数的应用,解答本题的关键是明确题意,利用数形结合的思想解答. 24.【答案】AE =CF ,AE ⊥CF【解析】解:(1)延长CF 交AE 于G ,如图1所示:∵四边形ABCD 是正方形,∴∠ABC =90°,AB =CB ,∴∠ABE =∠CBF =90°,∵△EBF 是等腰直角三角形,∴∠EBF =90°,BE =BF ,在△ABE 和△CBF 中,{AB =CB∠ABE =∠CBF BE =BF,∴△ABE≌△CBF(SAS),∴AE =CF ,∠BAE =∠BCF ,∵∠BCF+∠BFC=90°,∠AFG=∠BFC,∴∠BAE+∠AFG=90°,∴∠AGF=90°,∴AE⊥CF;故答案为:AE=CF,AE⊥CF;(2)(1)中的结论依然成立,理由如下:延长CF交AE于G,交AB于H,如图2所示:∵∠EBF=∠ABC=90°,∴∠ABE=90°−∠ABF,∠CBF=90°−∠ABF,∴∠ABE=∠CBF,在△ABE和△CBF中,{AB=CB∠ABE=∠CBF BE=BF,∴△ABE≌△CBF(SAS),∴AE=CF,∠BAE=∠BCF,∵∠BCF+∠BHC=90°,∠AHG=∠BHC,∴∠BAE+∠AHG=90°,∴∠AGH=90°,∴AE⊥CF;(3)在等腰直角△EBF的旋转过程中,当CF为最大值时,点F在CB的延长线上,如图3所示:则点E在AB的延长线上,∵四边形ABCD是正方形,∴∠A=90°,AD=AB=4,∵AB=2BF=4,∴BE=BF=2,∴AE=AB+BE=6,∴DE=√AD2+AE2=√42+62=2√13.(1)延长CF交AE于G,证明△ABE≌△CBF(SAS),得AE=CF,∠BAE=∠BCF,再证∠AGF=90°,则AE⊥CF;(2)延长CF交AE于G,交AB于H,证明△ABE≌△CBF(SAS),得AE=CF,∠BAE=∠BCF,进而得出AE⊥CF;(3)当CF为最大值时,点F在CB的延长线上,则点E在AB的延长线上,求出AE=AB+BE=6,由勾股定理即可得出DE的长.本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、旋转变换的性质、等腰直角三角形的性质、勾股定理、直角三角形的性质等知识;本题综合性强,熟练掌握正方形的性质和旋转变换的性质,证明三角形全等是解题的关键.25.【答案】解:(1)把A(3,0)代入二次函数y=−x2+2x+m得:−9+6+m=0,m=3;(2)由(1)可知,二次函数的解析式为:y=−x2+2x+3;当x=0时,y=3,∴C(0,3),当y=0时,−x2+2x+3=0,x2−2x−3=0,(x+1)(x−3)=0,∴x=−1或3,∴B(−1,0);(3)∵S△ABD=S△ABC,当y=3时,−x2+2x+3=3,−x2+2x=0,x2−2x=0,x(x−2)=0,x=0或2,∴只有(2,3)符合题意.综上所述,点D的坐标为(2,3);(4)存在,理由:①当AB是矩形的边时,此时,对应的矩形为ABP′Q′,∵AO=OC=3,故∠PAB=45°,∴矩形ABP′Q′为正方形,故点Q′的坐标为(3,4);②当AB是矩形的对角线时,此时,对应的矩形为APBQ,同理可得,矩形APBQ为正方形,故点Q的坐标为(1,−2),故点Q的坐标为(3,4)或(1,−2).【解析】(1)直接将点A的坐标代入到二次函数的解析式即可求出m的值,写出二次函数的解析式;(2)分别计算当x=0和y=0时的值,写出B、C两点的坐标;(3)因为S△ABD=S△ABC,则根据同底等高的两个三角形的面积相等,所以只要高与OC 的长相等即可,因此要计算y=3时对应的点即可;(4)分AB是矩形的边、AB是矩形的对角线两种情况,通过画图,利用数形结合即可求解.本题是二次函数综合题,主要考查的是一次函数的性质、矩形的性质、正方形的性质,面积的计算等,其中(4),要注意分类求解,避免遗漏.26.【答案】解:(1)如图所示,当点F与点C重合时,∵∠ACE+∠BCE=90°,∠A+∠ACE=90°,∴∠A=∠BCE,∵CE⊥AB,∴△ABC~△ACE,∴ACAB =AEAC,∵AC=2cm,BC=4cm,∴由勾股定理得,AB=√AC2+BC2=2√5cm,∴22√5=AE2,∴AE=2√55,∴t=2√55√5=25s,∴t的值为25s;(2)①当F点在AC上时,由(1)可知,总有△ABC∽△AFE,∴AEAC =FEBC,∵AE=√5t,∴√5t2=EF4,∴EF=2√5t,②当F点在BC上时,如图所示,BE=AB−AE=2√5−√5t,∵E从A到B的总用时t=2√5√5=2s,∴F点在BC上时,对应25≤t≤2,此时△ABC∽△FBE,∴EFAC =BEBC,∴EF2=2√5−√5t4,∴EF=−√52 t+√5,综上,EF ={2√5t(0≤t ≤25)−√52t +√5(25≤t ≤2); (3)①当E 点在AD 上时,如图所示,四边形DEFG 为正方形,∴EF =DE ,由(2)可知,此时EF =2√5t ,∵DE =AD −AE =√5−√5t ,∴2√5t =√5−√5t ,解得:t =13,∴当t =13s 时,四边形DEFG 为正方形;②当E 点在BD 上时,如图所示,四边形DEFG 为正方形,∴EF =DE ,由(2)可知,此时EF =−√52 t +√5, ∵DE =AD −AE =√5−√5t ,∴−√52 t +√5=√5−√5t ,解得:t =43,∴当t =43s 时,四边形DEFG 为正方形;综上,当t =13s 或t =43s 时,四边形DEFG 为正方形;(4)①当DF //BC 时,如图所示,此时DF ⊥AC ,F 为AC 的中点,∴AF=1,由(1)可知,△ABC∽AFE,∴AEAC =AFAB,∴√5t2=12√5,∴t=15,∴当t=15s时,DF//BC;②当DF//AC时,如图所示,此时DF⊥BC,F为BC的中点,∴BF=2,∵△ABC∽△FEB,∴FEAC =BFAB,∴−√52t+√52=22√5,∴t=65,∴当t=65s时,DF//BC;综上,当t=15s或t=65s时,DF平行于△ABC的一条边.【解析】(1)根据F与C重合时得到△ABC∽△ACE,利用相似三角形的性质求出此时AE的长度即可求解时间;(2)分别考虑F点在线段AC上和线段BC上两种情况进行讨论,结合相似三角形的性质求解即可;(3)分别考虑E点在AD上和BD上,结合(2)的结论建立方程求解即可;(4)分别考虑DF//BC和DF//AC两种情况,结合相似三角形的性质建立方程求解即可.本题考查三角形的动点问题,关键时学会用三角形相似去解决,抓住相似三角形的判定与性质以及灵活分类讨论是解题关键.。

2024年中考数学第一次模拟考试(吉林省卷)(全解全析)

2024年中考数学第一次模拟考试(吉林省卷)(全解全析)

2024年中考第一次模拟考试(吉林省卷)数学·全解全析一、选择题(每题2分,共12分)1.面粉包装袋上有(10±0.5)kg 的标识,则下面几袋面粉重量不合格的是()A .9.7kgB.10.7kgC.10kgD.9.8kg【答案】B【解析】10+0.5=10.5;10-0.5=9.5.∴合格面粉应在9.5kg---10.5kg 之间(包括9.5kg 和10.5kg )故答案为B2.如图,是由四个相同的小正方体组成的立体图形,它的俯视图为()(2题图)【答案】D【解析】俯视图是从上往下看,此正方体组成的立体图形从上往下看,可以看到左侧的两个面,右侧的一个面。

故答案为D 3.下列运算中,正确的是()A.22423x x x B.236x x x C.326x x D.33xy xy 【答案】C【解析】A 是整式加法运算,系数相加指数不变;B 是同底数幂乘法计算,底数不变指数相加;C 是幂的乘方,底数不变指数相乘;D 是积的乘方,每个因式分别乘方.所以,只有C 计算正确,故答案为C.4.若,是关于方程07622 x x 的两个根,下列结论正确的是()A. B. C. D.【答案】D【解析】根据一元二次的根于系数关系,是方程的两个根,则可知正确,故答案为D.说明:本知识点2022年版《数学课程标准》以纳入必学内容,是2024年中考考察的知识内容.1x 2x 621 x x 621 x x 21x x ,2721x x 2721x x )0(02 a c bx ax a c x x a b x x 2121,2721 x x5.如图,在△ABC 中,,以A 为圆心,任意长为半径画弧分别交AB、AC 于点D、E 两点,再分别以D、E 为圆心,大于的长分别为半径画弧,两弧交于点F,作射线AF 交BC 于点G,若BG=3,AC=10,则△ACG 的面积为()A.30B.15C.20D.506.如图,四边形ABCD 的两边AD、CD 与⊙O 相切于A、C 两点,点B 在⊙O 上,若,则∠B的度数为()A. B. C.D.【答案】B【解析】连结OA 、OC ,∵AD 、CD 是⊙O 的切线,A 、C 为切点,∴∠OAD=∠OCD=90°∴∠OAD+∠OCD=180°∴∠AOC+∠D=180°,∵∠D=50°,∴∠AOC=180°-50°=130°∵(圆周角定理)∴故答案为B二、填空题(每小题3分,共24分)7.因式分解:.__________42a ax 【答案】【解析】解:故答案为8.人体内的淋巴细胞的直径是0.0000051米,将0.0000051用科学记数法表示为______________.【答案】【解析】绝对值小于1的数也可以用科学记数法表示为的形式.(其中,n 为负整数).指数的绝对值是由从左边起第一个不是0的数字前面0的个数决定的,即前面有多少个0指数就是负几,故答案为.9.不等式组527039x x 的解集是_________________.【答案】090 B DE 21【答案】B【解析】由作图可知,AF 是∠BAC 的平分线,∵∠B=90°∴GB ⊥AB ,过点G 作GF ⊥AC,垂足为F ,∴GF=GB=3,∵AC=10∴153102121GF AC S AGC ,故答案为B 006513021B AOC B21)2)(2()4(422 x x a x a a ax 6101.5 101 a n a 10 --------①527039x x 050 D 0130065060050)2)(2( x x a )2)(2( x x a 6101.5 31 x【解析】解:解不等式①得:,解不等式②得:∴不等式组的解集为:故答案为10.某地地震过后,红光村小学的同学用下面的方法检验教室的房梁是否水平,在等腰直角三角尺斜边中点拴一条线绳,线绳的另一端点挂一个铅锤,把这块三角尺的斜边贴在房梁上,结果线绳经过三角尺的直角顶点,同学们由此确定房梁是水平的,其数学道理是_____________________________.【答案】等腰三角形底边中线与底边高重合.【解析】∵△ABC 是等腰三角形,∴AC=BC,∵A0=BO,OC 垂直于地面∴AB 平行于地面,∴房梁是水平的,其道理是等腰三角形底边中线与底边高重合.故答案是其道理是等腰三角形底边中线与底边高重合.11.《九章算术》中记载有一问题“今有圆材埋在壁中,不知大小,以锯锯之,深一寸,锯道长一尺,问径几何?”小辉同学根据原文题意,画出圆材截面图如图所示,已知:锯口深1寸,锯道AB=1尺(1尺=10寸),则该圆材的直径为寸.【答案】26【解析】解:过圆心O 作弦AB 的垂线,交⊙O 于点C,交AB 于点D 由垂径定理可知AD=DB,∴∵CD=1寸设⊙O 的半径为R,则OD=R-1在Rt△ADO ∴解得:R=13∴圆材的直径为26寸,故答案为26.12.如图,用一个半径为6cm 的定滑轮拉动重物上升,滑轮旋转了150°,假设绳索粗细不计,且与滑轮之间没有滑动,则重物上升了_____cm.(结果保留 )【答案】5π【解析】解:上升的高度与滑轮转过的弧长相等.弧长重物上升的高度为cm.故答案为13.将一副直角三角板如图放置,点C 在FD 的延长线上,AB∥CF,∠F=∠ACB=090,∠A=060,∠E=045,则∠DBC 的度数为_______°.【答案】15-------②1 x 3 x 31 x 寸521AB AD 222)1(5R R 222AO OD AD 51806150180R n l 531 x5),(049【解析】解:∵∠F=90°,∠E=45°∴△EFD 是等腰直角三角形∴∠EDF=45°∵∠DBC+∠BCD=∠EDF=45°∵AB ∥CF ,∴∠BCD=∠ABC ,又∵∠ACB=90°,∠A=60°∴∠ABC=30°,∴∠BCD=30°∴,故答案为15.14.如图,正方形ABCD 的顶点B、C 在x 轴正半轴上,反比例函数在第一象限的图象经过顶点A(m,2)和CD 边上的点),(32n E ,过点E 的直线l 交x 轴于点F,交y 轴于点G(0,-2),则点F 的坐标是_________.【答案】【解析】解:∵四边形ABCD 是正方形,点A (m,2)∴AB=DC=2∴n=m+2∴∵A (m,2)、两点在反比例函数上,∴解得:∴设直线的函数解析式为,∵、G(0,-2)在直线上,∴解得:∴直线的函数解析式为:令y=0,则解得:∴故答案是三、解答题(每题5分,共20分)15.先化简再求值:【答案】见解析【解析】解:原式==xx x x 2)1(1 =1 x 当2x 时,原式=121 x 16.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其它民族生活的民间艺术.如图,)0(k xky 000015304545 BCD DBC 14题图)32,2( m E 32,2( m E )0(k xky 32,3(E12m k3222m k m k)0(1 k b x k y l 298x y298b k 23231b b k ),(049)(0,49F 49 x 0298 x 212)1112x x x xx ,其中(2)1()1111x xx x x ()32,3(E现有三张正面印有“中国梦”图案的不透明卡片A、B、C,卡片除正面图案不同外,其余均相同,将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片。

吉林省吉林市2023届九年级中考一模数学试卷(含解析)

吉林省吉林市2023届九年级中考一模数学试卷(含解析)

吉林市2022--2023学年度初中毕业年级第一次阶段性教学质量检测数学本试卷包括六道大题,共26道小题.共6页.全卷满分120分.考试时间为120分钟.考试结束后,上交答题卡.一、单项选择题(每小题2分,共12分)1. 中国是世界上最早使用负数的国家,战国时期李悝所著的《法经》中已使用负数.如果公元前500年记作年,那么公元2023年应记作()A. 年.B. 年.C. 年.D. 年.2. 如图是由4个相同小正方体组成的几何体,其三视图中面积最大的是()A. 主视图B. 左视图C. 俯视图D. 三视图的面积相等3. 下列运算正确的是()A. B. C. D.4. 斑马线的作用是为了引导行人安全地通过马路.某数学兴趣小组为了验证斑马线是由若干条平行线组成的,在保证安全的前提下,按照如图方式分别测出,这种验证方法的数学依据是()A. 两直线平行,同位角相等B. 同位角相等,两直线平行C. 内错角相等,两直线平行D. 同旁内角互补,两直线平行5. 在学习有序数对时,老师和同学们用如图所示的密码表玩听声音猜动物的游戏.当听到“叮叮-叮,叮叮叮-叮叮,叮-叮”时,分别对应的字母是“C,A,T”,表示的动物是猫.当听到“叮叮-叮叮,叮-叮叮叮,叮叮叮-叮”时,表示的动物是()A. 牛B. 鱼C. 狗D. 猪6. 图1是等边三角形铁丝框,按图2方式变形成以A为圆心,长为半径的扇形(图形周长保持不变),则所得扇形的圆心角的度数是()A. .B. .C. .D. .二、填空题(每小题3分,共24分)7. 2023年全国两会在北京圆满落下帷幕.《两会微博热度报告》显示,两会相关话题信息阅读量达78200000000.数据78200000000用科学记数法表示为______.8. 因式分解:______.9. 今年二月末吉林省政府免费发放第二轮冰雪消费券,王先生领了一张“逐冰戏雪券”,该券可以使票价打七折.若他凭此券在吉林市万科松花湖滑雪场购买了一张票价为a元的套票,则王先生实际花费______元.10. 一元二次方程的根的判别式的值是____.11. 五线谱是一种记谱法,通过在五根等距离的平行横线上标以不同时值的音符及其他记号来记载音乐.如图,,,为直线与五线谱的横线相交的三个点,则的值是_______.12. 如图,将等腰三角形纸片折叠,使底边落在腰上,展开后得到折痕,若,则______.13. 如图,,分别以A,B为圆心,长为半径画弧,两弧相交于M,N两点.连接,则四边形的面积为______.14. 如图,是等边三角形,,若的半径为2,圆心O在线段上运动,则点A到上的点的距离最小值为______.三、解答题(每小题5分,共20分)15. 先化简,再求值:,其中,.16. 图1是郝老师制作的风筝,图2是风筝骨架的示意图,其中,,.求的度数.17. 为了使学生树立正确的劳动观,吉林市某校在植树节当天开展劳动教育实践活动.在本次种树活动中,甲班平均每小时比乙班少种5棵树,甲班种100棵树与乙班种120棵树所用的时间相等.求乙班平均每小时种多少棵树?18. 李白是唐代伟大的浪漫主义诗人,被后人誉为“诗仙”.《春夜洛城闻笛》是他创作的一首名篇,这首古诗共有四句,如图,将这四句古诗分别制成编号为A,B,C,D的4张卡片,卡片除编号和内容外,其余完全相同.将这4张卡片背面朝上,洗匀放好.“诗圣”杜甫从4张卡片中随机抽取2张,请用列表或画树状图的方法,求出杜甫随机抽出2张卡片恰好为相邻两句古诗的概率.四、解答题(每小题7分,共28分)19. 图1是一架三角钢琴,图2是该三角钢琴的示意图.韩老师和学生测得,,.求此三角钢琴最高点M到地面的距离(结果精确到).(参考数据,,)20. “逐梦寰宇问苍穹——中国载人航天工程三十年成就展”的成功举办,标志着我国载人航天工程正式进入空间站应用与发展阶段.某中学为了解学生对“航空航天知识”的掌握情况,随机抽取m名学生进行测试,对成绩(百分制)进行整理、描述和分析,成绩划分为A(),B(),C(),D()四个等级,并制作出不完整的统计图如下.已知:B等级数据(单位:分):80 80 81 82 8586 86 88 89 89根据以上信息,回答下列问题:(1)补全条形统计图,并填空:m=______,n=______.(2)抽取的m名学生中,成绩的中位数是______分,成绩不低于80分的人数占测试人数的百分比为______.(3)这所学校共有2105名学生,若全部参加这次测试,请你估计成绩能达到A等级的学生人数.21. 一个用电器的电阻是可调节的,其范围为.已知电压为,这个用电器的电路图如图所示.(1)功率P与电阻R有怎样的函数关系?(2)这个用电器功率的范围是多少?22. 图1、图2、图3均是的正方形网格,每个小正方形的顶点为格点,点A,B,C均在格点上,⊙O 是的外接圆,只用无刻度的直尺,按下列要求作图.(1)在图1中作∠BMC,使,且格点M在⊙O上.(2)图2中作∠BNC,使,且格点N在⊙O上.(3)在图3中作∠PBC,使,且格点P在⊙O上.五、解答题(每小题8分,共16分)23. 受持续降雨影响,某水库的水位在最近内持续上涨.下表记录了这内6个时间点的水位高度,其中t表示时间,y表示水位高度.t/h012345...y/m300 3.05 3.10 3.15 3.20 3.25...(1)在平面直角坐标系中描出表中数据对应点,并依次连接各点.(2)依据水位高度y与时间t的变化规律,求符合表中数据的函数解析式.(3)据估计这种上涨规律还会持续2h,请预测再过2h水位高度.24. 下面是张老师数学课堂教学实践活动的一个片段:【问题背景】如图1,一副三角板的直角顶点重合,两条直角边分别共线,将它们分别记作,.其中,,,.现固定三角板,将三角板绕点逆时针旋转,旋转角记为,射线与射线交于点,在射线上取一点,使,连接CQ.(1)【特例探究】如图2,当时,直接写出和的数量关系和位置关系.(2)【归纳证明】如图3,当点在线段BC上时,【特例探究】中得到的结论是否成立,若成立,请给出证明;若不成立,请说明理由.(3)【类比迁移】当点在线段延长线上时,请直接写出【特例探究】中结论是否成立,不必说明理由.(4)【拓展应用】连接.若,的面积等于,请直接写出的长.六、解答题(每小题10分,共20分)25. 如图,在矩形中,,,连接.点P从点A出发,沿折线A→B→C向终点C运动,在上速度为每秒2个单位长度,在上的速度为每秒个单位长度;过点P作于点E,交线段或于点F,连接,.设点P运动的时间为x秒,与重合部分的图形面积为y.(1)当点P在上时,用含x的式子表示的长,并写出x的取值范围.(2)求y关于x的函数解析式,并写出x的取值范围.(3)当点E为的三等分点时,直接写出x的值.26. 如图,函数的图象经过点,,.(1)求关于的函数解析式.(2)当时,求的值.(3)点在函数的图象上,其横坐标为,将点向右平移个单位得到点,连接,以为边向上作正方形.①当点在函数的图象上时,直接写出的取值范围.②将函数的图象在正方形内部(包括边界)的部分记为图象,设图象的最高点的纵坐标与最低点的纵坐标的和为,直接写出时的取值范围.答案1. C解:公元前500年记作年,公元前为“”,公元后为“”,公元2023年就是公元后2023年,公元2023年应记作年.故选:C.2. A解:小立方块的边长为1,那么看到的一个正方形面积为1.从主视图看,得到从四个面,面积为4;从左视图看,得到2个面,面积为2;从俯视图看,得到3个面,面积为3;∴三视图中面积最大的是主视图.故选:A.3. B解:A. ,故本选项错误,不合题意;B. ,故本选项正确,符合题意;C. ,故本选项错误,不符合题意;D. ,故本选项错误,不合题意.故选:B.4. B解:,斑马线互相平行.故选:B.5. C解:依题意,“叮叮-叮叮,叮-叮叮叮,叮叮叮-叮”,对应的字母分贝为D,O,G,故选:C.6. D解:设,,,解得:,圆心角的度数为:故选:D.7.解:从右往左数到最后一个非“”数字是,小数点共移动了个位数,.故答案:.8.解:,故答案为:.9. ##解:根据该券可以使票价打七折,若他凭此券在吉林市万科松花湖滑雪场购买了一张票价为a元的套票,∴王先生实际花费故答案为:10.解:由题意得,故答案为:8.11. 2过点作于,交于,∵,∴,故答案为:2.12. 105解:∵将等腰三角形纸片折叠,使底边落在腰上∴,∵,∴,∴,∴.故答案为:105.13. 24解:如图:连接,∵分别以A和B为圆心,的长为半径画弧,两弧相交于M、N,∴,∴四边形是菱形,∴,∴由勾股定理得:,∴,∴四边形的面积,故答案为:2414. 4连接,交于点D,如图,由图可知:点A到上的点的距离为,∵的半径为2,∴,∴,即当最小时,也最小,∴根据垂线段最短可知:当时,最小,∵是等边三角形,,∴,当时,有,∴,∴,∴点A到上的点的距离的最小值为4,故答案为:4.15. 解:原式.当,时,原式.16. 解:在和中,,,,,∴.17. 解:设乙班平均每小时种x棵树.根据题意,得.解这个方程,得.经检验是原分式方程的解,且符合题意.答:乙班平均每小时种30棵树.18. 解:根据题意,列表如下:第一张第二张由表格可以看出,所有等可能出现的结果共有种,其中杜甫抽出两张恰好为相邻两句诗的情况有种,所以(抽出两张恰好为相邻两句古诗).19. 解:过点M作于点E,交于点F.根据题意,得,,在中,,.∵,∴,∴.答:此三角钢琴最高点M到地面的距离约为.20. (1)解:由图得:等级有人,占,,,.故答案:50,20.等级的人数:,补全条形统计图如图:(2)解:把数据按从小到大排列后,中间两个数是、,中位数是;.故答案:,.(3)解:(名),答:成绩能达到A等级的学生人数约为842名.21. 解:(1)根据电学知识,当时,得.①(2)根据反比例函数的性质可知,电阻越大,功率越小.把电阻的最小值代入①式,得到功率的最大值;把电阻的最大值代入①式,得到功率的最小值.因此用电器功率的范围为.22. (1)如图所示:(2)如图所示:(3)如图所示:23. (1)解:如图所示:(2)解:设,把,代入,得:,解得:,∴符合表中数据的函数解析式为.(3)解:把代入中,得.∴预测再过水位高度为.24. (1)特例探究,∵,∴,∴.∵,∴.在△ABP和△ACQ中,∴.∴,.∴.∴.(2)归纳证明:结论成立.证明:∵,∴,∴.∵,∴.在△ABP和△ACQ中,∴.∴,.∴.∴.(3)类比迁移:结论成立.证明:∵,∴,∴.∵,∴.在△ABP和△ACQ中,∴.∴,.∴.∴.(4)连接.若,的面积等于,请直接写出拓展应用解:∵,,设,则,当点在线段上时,∴,∴,即,解得:或,∴,当点在的延长线上时,∴,∴,即,解得:或(舍去),∴,综上所述,的长为或.25. (1)解:当点P在上时,根据题意有:,∵,∴,∴,在矩形中,,,,∴,∴,∵,∴中,,即;(2)∵,,∴,即,,∵,,∴利用勾股定理可得,如图①,当时,由(1)可知.∵,∴.∴;如图②,当时,∵,,∴.∴.如图③,当时,即,即,∵,∴,.∴.∴,综上所述:;(3)分情况讨论:如图①,当时,由(1)可知,,由(2)可知,,即:,∵,∴点E不可能为的三等分点,此种情况舍去;如图②,当时,由(1)可知,,由(2)可知,,即:,∵点E为的三等分点,∴或者,即:或者,解得或者;如图③,当时,由(2)可知,,,即,即,∴点E不可能为的三等分点,此种情况舍去;即:x的值为:或.26. (1)解:把和代入,得解得把代入,得.解得.综上可得.(2)当时,,解得;当时,,解得(舍),.综上可得或.(3)解:如图所示,当时,,依题意,,则∴在上,当点与点重合时,解得:,∴,当时,,设,则∵在上,即,综上所述,或;②当时,如图所示,当在正方形内部时,依题意,,∵即,则解得:,当在射线上时,此时最大值为则依题意解得:或∴时;当时,如图所示,设,则则∴当纵坐标之和小于0时,则当时,点在抛物线上,符合题意,时,只有点在图象上,不合题意,当纵坐标之和大于0时,则解得:或当时,只有点在图象上,不合题意,综上所述,或或。

2024吉林省长春市二道区中考初三一模数学试题及答案

2024吉林省长春市二道区中考初三一模数学试题及答案

(第8题)九年级质量调研数学试题本试卷包括三道大题,共24题,共6页.全卷满分120分.考试时间为120分钟.考试结束后,只交答题卡.一、选择题(本大题共8道小题,每小题3分,共24分)1.下列计算结果是负数的是A .2-B .()3--C .()21-D .12-⨯2.长白山脉,粉雪静风,滑雪爱好者驰骋雪浪;查干湖畔,冰湖腾鱼,八方来客熙熙攘攘.这个雪季,吉林省冰雪旅游异常火热,数据显示,2024年春运期间,吉林省接待国内游客约为20500000人次.其中20500000这个数用科学记数法表示为A .62.0510⨯B .620510⨯C .72.0510⨯D .520.510⨯3.下列几何体均由五个大小相同的小正方体搭成,其中主视图与其它三个都不同的是A .B .C .D .4.不等式21x +>的解集在数轴上表示为A .B .C .D .5.如图,O 是量角器的中心,点M 是量角器上一点,直尺ABCD 的一边AB 与量角器的零刻度线重合,OM 与CD 相交于点N .若量角器上显示∠MOB 的读数为70,则∠DNM 的度数为A .70°B .110°C .130°D .140°6.近年,长春市城区内的背街小巷都安装上了路灯,为市民提供更多的出行方便.如图所示,其中一款路灯的灯杆AC 高9米,灯臂AB 长1米,灯臂与水平面的夹角为α,则灯臂的最高点B 到地面的距离为A .(9+sin α)米B .(9+cos α)米C .(9+tan α)米D .9cos α米7.如图,已知∠AOB 小于60°,在射线OA 上取一点C ,以点О为圆心,OC 长为半径作 MN交OB 于点D ,连结CD .以点D 为圆心,CD 长为半径作弧,交 MN 于点P ,再以点P 为圆心,CD 长为半径继续作弧,交 MN于点Q ,连结OQ ,CQ .根据以上作图过程及所作图形,下列结论错误的是A .∠BOQ =2∠AOB B .∠AOB =∠QCDC .CQ =3CDD .∠DOQ =2∠QCD8.如图,在平面直角坐标系中,点A 是反比例函数110k y k x =(>)第一象限内图象上一点,过点A 分别作AB ⊥x 轴,AC ⊥y 轴,交反比例函数220ky k x=(>)的图象于点B 和点C ,过点B 作BP ⊥y 轴于点P ,连结PA ,PC .若2024.04(第5题)(第6题)(第7题)PC 平分∠APB ,tan ∠ACP =12,则12k k 的值为A .13B.12C .25D .38二、填空题(本大题共6道小题,每小题3分,共18分)9.计算:91-=.10.因式分解:221m m ++=.11.若关于x 的一元二次方程220x x m -+=没有实数根,则m 的取值范围是.12.如图,在平面直角坐标系中,点A ,B 的坐标分别为(1,4),(4,0),将△AOB 沿x 轴正方向平移至△CBD ,此时点C 的坐标为.13.如图,四边形ABCD 是O 的内接四边形,AB =AD ,直线MN 与O 相切于点A .若∠MAD =40°,则∠C 的大小为度.14.如图,排球运动员站在点О处练习发球,将球从О点正上方发出,把球看成点,其运行的高度y (米)与运行的水平距离x (米)满足表达式y =-0.02x 2+0.24x +a .已知球网与О点的水平距离为9米,高度为2.43米,球场的边界距О点的水平距离为18米.若排球不碰球网且不出界,则a 的取值范围是.(排球落在边界线上时为界内)三、解答题(本大题共10小题,共78分)15.(6分)先化简,再求值:21211x x x x++--,其中23x =-.16.(6分)在一个不透明的盒子中装有三张卡片,分别标有数字0、1、2,这些卡片除数字不同外其余均相同.洗匀后,小亮同学从盒子中随机抽取一张卡片记下数字后放回,洗匀后再随机抽取一张卡片并记下数字.用画树状图或列表的方法,求两次抽取的卡片上数字之和为偶数的概率.17.(6分)用计算机处理数据,为了防止数据输入出错,某研究室安排两位程序操作员各输入一遍,比较两人的输入是否一致.两人各输入2640个数据,已知甲的输入速度是乙的2倍,结果甲比乙少用2小时输完.这两个操作员每分钟各能输入多少个数据?(第12题)(第13题)(第14题)18.(7分)如图,已知平行四边形ABCD 的对角线AC 的垂直平分线EF 与边AB 、CD 分别交于点E 、F .(1)求证:四边形AECF 是菱形;(2)若4EF =,1tan 3BAC ∠=,则菱形AECF 的面积为.19.(7分)图①、图②、图③均是4×4的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,点A 、B 、C 均为格点.只用无刻度的直尺,分别在给定的网格中按下列要求作图:(1)在图①中,确定一个格点M (不与B 重合),连结AM 、CM ,使得△ACM 的面积和△ABC 的面积相等;(2)在图②中,确定一个格点M ,连结AM 、CM ,使得△ACM 的面积是△ABC 的面积的2倍;(3)在图③中,确定两个格点M 和N ,连结BM 、MN 和CN ,使得四边形BMNC 的面积是△ABC 的面积的3倍.20.(7分)近期,许多市民对我市“道路交通拥堵指数”很感兴趣,它相当于把拥堵情况数字化,其计算公式是:=拥堵时期所花费时间道路交通拥堵指数畅通时期所花费时间.例如:从A 点→B 点畅通期只需要10分钟,拥堵期需要20分钟,那么就意味着拥堵期从A 点→B 点需要花费的时间是畅通期的2倍,这个时候的道路交通拥堵指数将会显示为2.目前,我市界定交通状况的道路拥堵指数范围如下:1≤拥堵指数<1.5为畅通;1.5≤拥堵指数<1.8为缓行;1.8≤拥堵指数<2.2为拥堵;拥堵指数≥2.2为严重拥堵.小张同学为了解本市早高峰时段部分路段的交通情况,随机查阅了本市某天的早高峰道路交通拥堵指数,整理这些数据并绘制了如下两幅不完整的统计图.(第18题)图①图②图③(第19题)(第20题)抽取道路早高峰拥堵指数条形统计图抽取道路早高峰拥堵指数扇形统计图根据以上信息回答下列问题:(1)补全条形统计图;(2)估计我市360条重点管理道路中早高峰时段处于拥堵和严重拥堵的总条数;(3)基于以上统计结果,我市交通管理部门建议交通参与者要绿色出行,文明行车,使我市360条重点管理道路中早高峰时段交通状况为畅通或缓行的道路条数占比达到85%,则我市交通管理部门应在保证现有的通畅和缓行道路条数的基础上至少要改变_________条拥堵或严重拥堵的道路.21.(8分)小明和小红两同学分别从甲地出发,沿同一条道路骑自行车到乙地参加社会实践活动,小明同学先从甲地出发,0.5小时后小红出发.小明和小红距甲地的距离y (千米)与小明出发的时间x (小时)之间的函数图象如图所示.(1)小红同学骑自行车的速度为千米/小时;(2)当0.5 2.5x ≤≤时,求小明距甲地的距离y 与x 之间的函数关系式;(3)当小红到达乙地时,求小明距乙地的距离.22.(9分)【发现问题】数学兴趣小组在活动时,老师提出了这样的一个问题:如图①,在△ABC 中,AB =6,AC =8,第三边上的中线AD =x ,则x 的取值范围是______.图①图②图③图④图⑤(第22题)【探究方法】小明同学通过组内合作交流,得到了如下解决方法:(1)如图②,延长AD 至点'A ,使得'DA AD =,连结'A C ,根据“SAS ”可以判定ABD △≌__________,得出'A C AB =6=.在'AA C △中,'6A C =,8AC =,'2AA x =,故中线AD 的长x 的取值范围是_______.【活动经验】当条件中出现“中点”,“中线”等条件时,可以考虑将中线延长一倍,构造全等三角形,把分散的已知条件和所求的问题集中到同一个三角形中,进而解决问题,这种作辅助线的方法叫做“倍长中线”法.【问题解决】(2)如图③,已知AB AC =,AD AE =,180BAE CAD ∠+∠=︒,连结BE 和CD ,点F 是CD 的中点,连结AF .求证:2BE AF =.小明发现,如图④,延长AF 至点'A ,使'FA AF =,连结'A D ,通过证明'ABE DA A △△≌,可推得'2BE AA AF ==.下面是小明的部分证明过程:证明:延长AF 至点'A ,使'FA AF =,连结'A D ,∵点F 是CD 的中点,∴CF DF =.(第21题)∵'AF A F =,'AFC A FD ∠=∠,∴'(SAS)ACF A DF △≌△,∴'A D AC =,'A DF ACF ∠=∠,∴'A D AC ∥,'180A DA CAD ∠+∠=︒.请你补全余下的证明过程.【问题拓展】(3)如图⑤,在ABC △和AEF △中,AB AE =,AC AF =,180BAC EAF ∠+∠=︒,点M ,N 分别是BC 和EF 的中点.若4BC =,6EF =,则MN 的取值范围是.23.(10分)如图,在Rt △ABC 中,∠ACB =90°,BC =8,AB =10,点M 是AC 的中点,动点P 从点C 出发,沿折线CB —BA 向终点A 运动,点P 在CB 上的运动速度为每秒4个单位长度,在BA 上的运动速度为每秒5个单位长度,作点P 关于点C 的中心对称点Q ,连结BM 、QM .设点P 的运动时间为t (t >0)秒.(1)线段MC 的长为;(2)设点P 到AC 的距离为h ,用含t 的代数式表示h ;(3)当∠BMQ 是直角时,求t 的值;(4)当点P 在CB 上运动时,在边AB 上存在一点N ,使四边形AMPN 是轴对称图形,直接写出此时t 的值及AN 的长度.24.(12分)在平面直角坐标系中,点O 为坐标原点,抛物线21y x bx =-++(b 为常数)的顶点坐标为(1,2),抛物线与y 轴的相交于点A ,点P 在此抛物线上,其横坐标为m ,该抛物线在A 、P 两点之间的部分(包括A 、P 两点)记为图象G .(1)求该抛物线对应的函数表达式;(2)当图象G 与x 轴有交点时,求m 的取值范围;(3)设图象G 的最高点与最低点的纵坐标差为h ,横坐标差的绝对值为l ,当h =3l时,求m 的值;(4)过P 点作PQ ⊥y 轴,点Q 的横坐标为2-m ,连结AQ ,以AQ 和PQ 为邻边构造▱AQPM ,若图象G 与▱AQPM 的边有交点(不包括▱AQPM 的顶点),交点记为点N ,当▱AQPM 的面积被直线QN 分成1:3的两部分时,直接写出m 的值.(第23题)九年级数学学科参考答案2024.04阅卷说明:1.评卷采分最小单位为1分,每步标出的是累计分.2.考生若用本“参考答案”以外的解(证)法,可参照本“参考答案”的相应步骤给分.一、选择题(每小题3分,共24分)1.D2.C3.B4.B5.B6.A 7.C 8.D二、填空题(每小题3分,共18分)9.210.()21m +11.1m >12.()5,413.8014.1.89 2.16a <≤三、解答题(本大题10小题,共78分)15.解:21211x xx x++--2121x x x -=+-(1)(1)21x x xx +-=+-(2分)12x x =++31x =+.(4分)当23x =-时,原式=23()12113⨯-+=-+=-.(6分)16.解:根据题意,树状图如下:(4分)P(两次抽取的卡片上数字之和为偶数)59=.(第24题)(6分)17.解:设乙每分钟能输入x 个数据,则甲每分钟能输入2x 个数据,根据题意,得(1分)264026402602x x=-⨯.(4分)解得11x =.(5分)经检验,x =11是原方程的解.并且,当x =11时,2x =2×11=22,所以乙用了240分钟,甲用了120分钟,甲比乙少用了120分钟,符合题意.(6分)答:甲每分钟能输入22个数据,乙每分钟能输入11个数据.评分说明:设未知数得1分;等量关系正确得3分;求解正确得1分;检验得1分;不答不扣分.18.解:(1)∵四边形ABCD 是平行四边形,∴AB CD ∥,∴EAO FCO ∠=∠.(1分)∵EF 平分AC ,∴OA OC =.(2分)又∵90AOE COF ∠=∠=︒,∴AOE △≌COF △,∴OE OF =,∴四边形AECF 是平行四边形.(4分)∵EF AC ⊥,∴四边形AECF 是菱形.(5分)(2)24(7分)19.解:(1)如图.(3分)(第18题)(2)如图.(5分)(3)如图.(7分)评分说明:字母标错或不标扣1分.不用直尺画每题扣1分,画成虚线不扣分.20.解:(1)(2分)(2)413609020+⨯=(条)(5分)答:我市360条重点管理道路中早高峰时段处于拥堵和严重拥堵的总条数约为90条.(3)36(7分)21.解:(1)10(2分)(2)设当0.5 2.5x ≤≤时,小明距甲地的距离y 与x 之间的函数关系式为(0)y kx b k =+≠.把(0.5,5)、(2.5,15)分别代入y kx b =+得:0.552.515k b k b +=⎧⎨+=⎩解得:52.5k b =⎧⎨=⎩.∴当0.5 2.5x ≤≤时,小明距甲地的距离y 与x 之间的函数关系式为5 2.5y x =+.(5分)(3)150.5210+=(小时)当2x =时,52 2.512.5y =⨯+=(千米).1512.5 2.5-=(千米).答:当小红到达乙地时,小明距乙地2.5千米.(8分)22.解:(1)'A CD △,17x <<.(2分)(2)∵∠BAE +∠CAD =180°,∴∠'A DA =∠BAE .(3分)又∵AB =AC ,∴'A D=AB .(4分)∵AD =AE ,∴'A AD BAE≌△△,(6分)∴'2BE AA AF ==.(7分)(3)15MN ≤≤.(9分)23.解:(1)3.(1分)(2)4021642 4.tt h tt ⎧=⎨-⎩<≤,<≤(4分)(3)如图1,当02t <≤时,若∠QMB =90°,即∠CMQ =∠CBM ,∴43tan 38t CMQ ∠==,解得932t =.(6分)如图2,当24t <≤时,若∠QMB =90°,即∠CMQ =∠CBM ,(图1)(图2)∴1643tan 6(123)38t CMQ t -∠==--+,解得13741t =.(8分)(4)①34t =时,AN=3;②1t =时,435AN =.(10分)24.解:(1)把(1,2)代入21y x bx =-++得:211b =-++解得:2b =.∴抛物线所对应的函数解析式为221y x x =-++.(3分)(2)抛物线所对应的函数解析式为221y x x =-++,∴点A 坐标为(0,1).当y =0时,即22x x +解得:11x =-21x =+.综上,当1m ≤1m +≥时,图象G 与x 轴有交点.(6分)(3)点A 坐标为(0,1),顶点坐标为(1,2),P 点坐标为(m ,221m m -++).当0m <时,()221212h m m m m =--++=-,l m =-,若3h l =可得:223m m m -=-,解得:11m =-,20m =(舍).当01m ≤<时,()222112h m m m m =-++-=-+,l m =,若3h l =可得:223m m m -+=,解得:11m =-(舍),20m =(舍).当12m ≤<时,211h =-=,1l =,h l =,不符合题意.当2m ≥时,()2222121h m m m m =--++=-+,1l m =-,若3h l =可得:2213(1)m m m -+=-,解得:11m =(舍),24m =.综上,当h =3l 时,m 的值为1-或4.(10分)(4)67,3.(12分)评分说明:第(4)题每写对一个值得1分,两个正确的答案都出现的情况下,多解扣1分.。

2020年吉林省长春市名校调研中考数学一模试卷含答案

2020年吉林省长春市名校调研中考数学一模试卷含答案

中考数学一模试卷题号一二三四总分得分一、选择题(本大题共8小题,共24.0分)1.如图,数轴上两点A,B表示的数互为相反数,则点B表示的数为()A. -6B. 6C. 0D. 无法确定2.下列标志是轴对称图形的是( )A. B. C. D.3.下列计算正确的是( )A. a2•a3=a6B. 3a2-a2=2C. a6÷a2=a3D. (-2a)2=4a24.如图,下列条件不能判定AB∥CD的是( )A. ∠GDH+∠DHE=180°B. ∠FEB+∠GCE=180°C. ∠BAD=∠ADGD. ∠GCE=∠AEF5.如图,Rt△ABC中,∠C=90°,AB=10,BC=8,将△ABC折叠,使B点与AC的中点D重合,折痕为EF,则线段BF的长是( )A.B. 2C.D.6.用白铁皮做罐头盒.每张铁皮可制盒身16个,或制盒底48个,一个盒身与两个盒底配成一套罐头盒.现有15张白铁皮,设有x张用于制盒身,y张用于制盒底,能使盒身和盒底配套,依题意可列的方程组及该方程组的解正确的是( )A. B.C. D.7.小明希望测量出电线杆AB的高度,于是在阳光明媚的一天,他在电线杆旁的点D处立一标杆CD,使标杆的影子DE与电线杆的影子BE部分重叠(即点E、C、A 在一条直线上),量得ED=2米,DB=4米,CD=1.5米,则电线杆AB长为( )A. 2米B. 3米C. 4.5米D. 5米8.如图,A(1,y1)、B(-2,y2)是双曲线y=上的两点,且y1+y2=1.若点C的坐标为(0,-1),则△ABC的面积为( )A. 1B. 2C. 3D. 4二、填空题(本大题共6小题,共18.0分)9.科学家在实验室中检测出某种微生物的直径约为0.0000035米,将0.0000035用科学记数法表示是______.10.计算:×=______.11.分解因式:2x2-4x=______.12.若关于x的一元二次方程x2-2x+m-3=0有两个相等的实数根,则m的值是______.13.如图,在⊙O中,=,∠AOB=40°,点D在⊙O上,连结CD,AD,则∠ADC的度数是______.14.如图,已知MA=MB,那么数轴上点A所表示的数是______.三、计算题(本大题共2小题,共15.0分)15.先化简,再求值:(x-2y)2-(x+y)(3x-y)-5y2,其中x=-2,y=1.16.2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上一道靓丽的风景.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海底隧道,西人工岛上的A点和东人工岛上的B点间的距离约为5.6千米,点C是与西人工岛相连的大桥上的一点,A,B,C在一条直线上.如图,一艘观光船沿与大桥段垂直的方向航行,到达P点时观测两个人工岛,分别测得与观光船航向的夹角∠DPA=18°,∠DPB=53°,求此时观光船到大桥AC段的距离PD的长.(参考数据:sin18°≈0.31,cos18°≈0.95,tan18°≈0.33,sin53°≈0.80,cos53°≈0.60,tan53°≈1.33.)四、解答题(本大题共8小题,共63.0分)17.京剧脸谱是京剧艺术独特的表现形式.京剧表演中,经常用脸谱象征人物的性格,品质,甚至角色和命运.如红脸代表忠心耿直,黑脸代表强悍勇猛.现有三张不透明的卡片,其中两张卡片的正面图案为“红脸”,另外一张卡片的正面图案为“黑脸”,卡片除正面图案不同外,其余均相同,将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图或列表的方法,求抽出的两张卡片上的图案都是“红脸”的概率.(图案为“红脸”的两张卡片分别记为A1、A2,图案为“黑脸”的卡片记为B)18.学校广播站要招聘一名播音员,擅长诵读的小龙想去应聘,但是不知道是否符合应聘条件,于是在微信上向好朋友亮亮倾诉,如图是他们的部分对话内容.面对小龙的问题,亮亮也犯了难.聪明的你用所学方程知识帮小龙准确计算一下,他是否符合学校广播站应聘条件?19.如图,AB是⊙O的切线,A为切点,AC是⊙O的弦,过O作OH⊥AC于点H.若OH=3,AB=8,BO=10.求:(1)⊙O的半径;(2)弦AC的长(结果保留根号).20.学习成为现代城市人的时尚,我市图书馆吸引了大批读者,有关部门统计了2018年第一季度到市图书馆的读者的职业分布情况,统计图如下:(1)在统计的这段时间内,共有______万人到市图书馆阅读,其中商人所占百分比是______.(2)将条形统计图补充完整.(3)若今年4月到市图书馆的读者共28000名,估计其中约有多少名职工.21.如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块放其中(圆柱形铁块的下底面完全落在水槽底面上)现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y甲(厘米),y乙(厘米)与注水时间x(分钟)之间的关系如图2所示,根据图象提供的信息,解答下列问题:(1)图2中折线ABC表示______槽中的深度与注水时间之间的关系,线段DE表示______槽中的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B的纵坐标表示的实际意义是______.(2)当0≤x≤4时,分别求出y甲和y乙与x之间的关系式;(3)注水多长时间时,甲、乙两个水槽中的水的深度相同?(4)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积;(5)若乙槽中铁块的体积为112立方米(壁厚不计),求甲槽底面积______(直接写出结果).22.如图,在菱形四边形ABCD中,∠ABC=60°,AB=4,对角线AC、BD交于点O,点P为直线BD上的动点(不与点B重合),连接AP,将线段AP绕点P逆时针旋转60°得到线段PE,连接CE、BE.(1)问题发现如图1,当点E在直线BD上时,线段BP与CE的数量关系为______;∠ECB=______°.(2)拓展探究如图2,当点P在线段BO延长线上时,(1)的结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)问题解决当∠BEC=30°时,请直接写出线段AP的长度.23.如图,在平面直角坐标系中,直线y=x+n与抛物线y=ax2+bx+3相交子点A(-5,-7)、B(5,c),点C、D在直线AB上,且点D在点C的右侧,过点C、D分别作CF、DE平行于y轴交抛物线于点F、E,以点C、D、E、F为顶点的多边形记作图形M,其面积为S,设点C的横坐标为m,点D的横坐标为m+2,当-5<m<5时,解答下列问题:(1)求直线与抛物线所对应的函数关系式;(2)求s与m的函数关系式;(3)当M为中心对称图形时,求m的值;(4)将M沿直线AB翻折,E、F两点的对应点为E′、F′,请直接写出C、D、E、F四个点中有且只有两个点同时落在第四象限时m的取值范围.24.如图,平面直角坐标系中,直线y=x+4分别交x轴、y轴于点A、C,直线BC与直线AC关于y轴对称,动点D从点A出发,沿AC以每秒2个单位长度的速度向终点C运动,当点D出发后,过点D作DE∥BC交折线A-O-C于点E,以DE为边作等边△DEF,设△DEF与△ACO重叠部分图形的面积为S,点D运动的时间为t 秒.(1)写出坐标:点A(______),点B(______),点C(______);(2)当点E在线段AO上时,求S与t之间的函数关系式;(3)求出以点B、E、F为顶点的三角形是直角三角形时t的值;(4)直接写出点F运动的路程长为______.答案和解析1.【答案】B【解析】【分析】根据数轴上点的位置,利用相反数定义确定出B表示的数即可.此题考查了数轴,以及相反数,熟练掌握相反数的性质是解本题的关键.【解答】解:∵数轴上两点A,B表示的数互为相反数,点A表示的数为-6,∴点B表示的数为6,故选:B.2.【答案】B【解析】解:A、不是轴对称图形,故本选项错误;B、是轴对称图形,故本选项正确;C、不是轴对称图形,故本选项错误;D、不是轴对称图形,故本选项错误.故选:B.根据轴对称图形的概念求解.本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.【答案】D【解析】解:A、a2•a3=a5,故此选项错误;B、3a2-a2=2a2,故此选项错误;C、a6÷a2=a4,故此选项错误;D、(-2a)2=4a2,正确.故选:D.直接利用合并同类项法则以及同底数幂的乘除运算法则、积的乘方运算法则分别判断得出答案.此题主要考查了合并同类项以及同底数幂的乘除运算、积的乘方运算,正确掌握相关运算法则是解题关键.4.【答案】A【解析】解:根据∠GDH+∠DHE=180°,不能得到AB∥CD,故A选项不能判定;根据∠FEB+∠GCE=180°,∠FEB=∠AEC,可得∠AEC+∠GCE=180°,进而得到AB∥CD,故B选项能判定;根据∠BAD=∠ADG,可得AB∥CD,故C选项能判定;根据∠GCE=∠AEF,可得AB∥CD,故D选项能判定;故选:A.根据同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,进行判断即可.本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.5.【答案】D【解析】解:∵Rt△ABC中,∠C=90°,AB=10,BC=8∴AC=6∵D是AC中点∴AD=CD=3∵折叠∴DF=BF∴设BF=x,则CF=8-x在Rt△DCF中,DF2=CD2+CF2∴x2=9+(8-x)2∴x=∴BF=故选:D.根据题意可得:CD=3,在Rt△DCF中,根据勾股定理可列方程,解方程可得BF的长.本题考查了翻折问题,勾股定理的运用,关键是通过勾股定理列出方程.6.【答案】C【解析】[分析]设用制盒身的铁皮为x张,用制盒底的铁皮为y张,根据铁皮共15张且制作的盒底的数量为盒身数量的2倍,即可得出关于x,y的二元一次方程组,解之即可得出x的值,再将其代入16x中即可求出结论.[详解]解:设用制盒身的铁皮为x张,用制盒底的铁皮为y张,根据题意得:,解得:,所以盒身的铁皮为9张,用制盒底的铁皮为6张.故选:C.[点评]本题考查了二元一次方程组的应用,找准等量关系,正确列出二元一次方程组是解题的关键.7.【答案】C【解析】解:∵CD∥AB,∴△ECD∽△EAB,∴ED:EB=CD:AB,∴2:6=1.5:AB,∴AB=4.5米.答:电线杆AB长为4.5米.故选:C.根据题意求出△ECD∽△EBA,利用相似三角形的对应边成比例即可解答.本题主要考查了把实际问题抽象到相似三角形中,利用相似三角形的相似比,列出方程,通过解方程即可求出电线杆的高.8.【答案】C【解析】解:(1)∵A(1,y1)、B(-2,y2)是双曲线y=上的两点,∴y1=k,y2=-,∵y1+y2=1∴k-=1∴k=2∴双曲线的解析式:y=∵A(1,y1)、B(-2,y2)是双曲线y=上两点,∴点A(1,2),点B(-2,-1)∵点C(0,-1)∴BC∥x轴∴S△ABC=×2×3=3,故选:C.将点A,点B代入解析式,再根据y1+y2=1,可求双曲线y=的解析式,将点A,点B代入解析式,可求点A,点B坐标,则可得BC∥x轴,根据三角形面积公式可求△ABC的面积.本题考查了反比例函数的性质,用待定系数法求解析式,熟练掌握图象上点的坐标满足图象的解析式是本题的关键.9.【答案】3.5×10-6【解析】解:将0.0000035用科学记数法表示是3.5×10-6.故答案为:3.5×10-6.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10.【答案】【解析】解:原式==.故答案为:.直接利用二次根式的乘法运算法则计算得出答案.此题主要考查了二次根式的乘法,正确掌握运算法则是解题关键.11.【答案】2x(x-2)【解析】解:2x2-4x=2x(x-2).故答案为:2x(x-2).首先找出多项式的公因式,然后提取公因式法因式分解即可.此题主要考查了提取公因式法因式分解,根据题意找出公因式是解决问题的关键.12.【答案】4【解析】解:∵关于x的一元二次方程x2-2x+m-3=0有两个相等的实数根,∴△=(-2)2-4×1×(m-3)=0,即4-m=0,解得m=4.故答案是:4.由于关于x的一元二次方程x2-2x+m-3=0有两个相等的实数根,可知其判别式为0,据此列出关于m的方程,解答即可.本题主要考查了根的判别式的知识,解答本题的关键是掌握一元二次方程有两个相等的实数根,则可得△=0,此题难度不大.13.【答案】20°【解析】解:连接OC.∵=,∴∠AOB=∠AOC=40°,∴∠ADC=∠AOC=20°,故答案为20°根据等弧所对的圆周角相等,求出∠AOC即可解决问题.本题考查圆周角定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会添加常用辅助线,灵活运用所学知识解决问题.14.【答案】1-【解析】解:根据题意,由勾股定理得:MB==,∴MA=MB=,∴A到原点的距离是-1,∵A在原点左侧,∴点A所表示的数是1-.故答案为:1-.首先在直角三角形中,利用勾股定理可以求出线段MB的长度,得出MA的长度,求出点A与原点的距离,即可得出数轴上点A所表示的数.此题主要考查了实数与数轴之间的对应关系、勾股定理;熟练掌握勾股定理,并能进行推理计算是解决问题的关键.15.【答案】解:原式=x2-4xy+4y2-(3x2-xy+3xy-y2)-5y2=x2-4xy+4y2-3x2+xy-3xy+y2-5y2=-2x2-6xy,当x=-2,y=1时,原式=-2×(-2)2-6×(-2)×1=4.【解析】原式利用完全平方公式,多项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.16.【答案】解:在Rt△DPA中,∵tan∠DPA=,∴AD=PD•tan∠DPA,在Rt△DPB中,∵tan∠DPB=,∴BD=PD•tan∠DPB,∴AB=BD-AD=PD•(tan∠DPB-tan∠DPA),∵AB=5.6,∠DPB=53°,∠DPA=18°,即5.6=(tan53°-tan18°)•PD,∴PD==5.6,则此时观光船到大桥AC段的距离PD的长为5.6千米.【解析】在直角三角形DPA中,利用锐角三角函数定义表示出AD,在直角三角形DPB 中,利用锐角三角函数定义表示出BD,由DB-AD表示出AB,进而求出所求即可.此题考查了解直角三角形的应用,熟练掌握锐角三角函数定义是解本题的关键.17.【答案】解:画树状图为:由树状图可知,所有可能出现的结果共有9种,其中两次抽取的卡片上都是“红脸”的结果有4种,所以P(两张都是“红脸”)=,答:抽出的两张卡片上的图案都是“红脸”的概率是.【解析】根据题意画出树状图,求出所有的情况数和两次抽取的卡片上都是“红脸”的情况数,再根据概率公式计算即可.此题主要考查了概率的求法.用到的知识点为数状图和概率,概率=所求情况数与总情况数之比,关键是根据题意画出树状图.18.【答案】解:设小龙每分钟读x个字,小龙奶奶每分钟读(x-50)个字,根据题意,得:=,解得:x=260,经检验,x=260是所列方程的解,并且符合实际问题的意义.∵学校广播站招聘条件是每分钟250-270字,∴小龙符合学校广播站应聘条件.【解析】设小龙每分钟读x个字,小龙奶奶每分钟读(x-50)个字,根据奶奶读了1050个字和小龙读1300个字的时间相同,列出关系式即可得出答案.本题考查了分式方程的应用,解答本题的关键是读懂题意,找出等量关系,列方程求解.19.【答案】解:(1)∵AB是⊙O的切线,∴OA⊥AB,∴∠OAB=90°,OA===6,即圆的半径为6;(2)∵OH⊥AC,∴CH=AH,∴AC=2AH,∵AH===3,则:AC=6.【解析】(1)在Rt△OAB中,利用勾股定理,即可求解;(2)在Rt△OAH中,利用勾股定理求AH的长度,即可求解.本题利用了切线的性质和勾股定理解决问题,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【答案】(1)16,12.5% ;(2)职工的人数为16-(4+2+4)=6(万人),补全条形图如下:(3)估计其中职工人数为28000×=10500(人).【解析】解:(1)这段时间,到图书馆阅读的总人数为4÷25%=16(万人),其中商人所占百分比为×100%=12.5%,故答案为:16,12.5%;(2)职工的人数为16-(4+2+4)=6(万人),补全条形图如下:(3)估计其中职工人数为28000×=10500(人).(1)用学生数除以其所占的百分比即可得到总人数,然后用商人数除以总人数即可得到商人所占的百分比;(2)根据各职业人数之和等于总人数可得职工的人数,据此可补全图形;(3)用总人数乘以职工占总人数的百分比即可得到职工人数.本题考查了条形统计图、扇形统计图及用样本估计总体的知识,解题的关键是从两种统计图中整理出进一步解题的有关信息.21.【答案】(1)乙,甲,乙槽中圆柱形铁块的高度是14厘米 60(cm2);(2)设线段AB、DE的解析式分别为:y甲=k1x+b1,y乙=k2x+b2,∵AB经过点(0,2)和(4,14),DE经过(0,12)和(6,0)∴,解得,,解得:,∴当0≤x≤4时,y乙和y甲与x之间的解析式分别为y乙=3x+2和y甲=-2x+12,(3)当y甲=y乙时,即3x+2=-2x+12,解得x=2,∴当2分钟时两个水槽水面一样高;(4)由图象知:当水槽中没有没过铁块时4分钟水面上升了12cm,即1分钟上升3cm ,当水面没过铁块时,2分钟上升了5cm,即1分钟上升2.5cm,设铁块的底面积为acm2,则乙水槽中不放铁块的体积分别为:2.5×36cm3,放了铁块的体积为3×(36-a)cm3,∴1×3×(36-a)=1×2.5×36,解得a=6,∴铁块的体积为:6×14=84(cm3).(5)60(cm2).【解析】解:(1)乙;甲;乙槽中圆柱形铁块的高度是14厘米;故答案为:乙,甲,乙槽中圆柱形铁块的高度是14厘米;(2)见答案;(3)见答案;(4)见答案;(5)∵铁块的体积为112cm3,∴铁块的底面积为112÷14=8(cm2),可设甲槽的底面积为m,乙槽的底面积为n,则根据前4分钟和后2分钟甲槽中流出的水的体积和乙槽中流入的水的体积分别相等列二元一次方程组,∵“匀速注水”,没过铁块前和没过铁块后注水速度未变,则总水体积不变∴,解得:m=60(cm2),故甲槽底面积为60(cm2).故答案为:60(cm2).【分析】(1)根据题目中甲槽向乙槽注水可以得到折线ABC是乙槽中水的深度与注水时间之间的关系,点B表示的实际意义是乙槽内液面恰好与圆柱形铁块顶端相平;(2)根据题意分别求出两个水槽中y与x的函数关系式即可;(3)令y相等即可得到水位相等的时间;(4)用水槽的体积减去水槽中水的体积即可得到铁块的体积;(5)根据题意列方程组即可得到结论.本题考查的是用一次函数解决实际问题,此类题是近年中考中的热点问题.注意利用一次函数求最值时,关键是应用一次函数的性质;即由函数y随x的变化,结合自变量的取值范围确定最值.22.【答案】(1)问题发现BP=CE,90;(2)拓展探究结论仍然成立,如图,连接AE,由(1)可知:△AEP,△ABC都是等边三角形,∴AE=AP,AB=AC,∠EAP=∠BAC=60°,∴∠EAC=∠BAP,且AE=AP,AB=AC,∴△AEC≌△APB(SAS).∴EC=BP,∠ABP=∠ACE=30°,∴∠ECB=∠ACE+∠ACB=90°.∴结论仍然成立;(3)问题解决如图,当点E在AC左侧时,∵∠BEC=30°,∠ECB=90°,∴∠EBC=60°,且∠ABC=60°,∴BE与AB重合,∵AB=BC=4,∠BEC=30°,∠ECB=90°,∴BE=2BC=8,∴AE=BE-AB=4,∴△APE是等边三角形,∴AP=AE=4(此时点P与点D重合),如图,若点E在AC右侧时,∵∠BEC=30°,∠ECB=90°,∴∠EBC=60°,∵∠DBC=30°,∴∠DBE=∠DBC+∠EBC=90°,∵BC=AB=4,∠EBC=90°,∠BEC=30°,∴BE=2BC=8,CE=BC=4,∵BP=CE,∴BP=4,在Rt△BEP中,EP==4,∵△APE是等边三角形,∴AP=PE=4,综上所述:AP的长为4或4.【解析】解:(1)问题发现如图,连接AE,∵四边形ABCD是菱形,∠ABC=60°,∴AC⊥BD,∠ABD=∠ABC=30°,AO=CO,∴BD垂直平分AC,∴AE=CE,∵旋转∴AP=EP,∠APD=60°,∴△AEP是等边三角形∴AP=AE,∠EAP=60°∵∠APD=∠ABD+∠PAB∴∠PAB=60°-30°=30°∴AP=PB∴AP=PB=AE=EC∵AB=BC,∠ABC=60°∴∠ACB=60°∵△AEP是等边三角形,AC⊥BD,∴∠EAO=30°,∵AE=EC∴∠ECO=∠EAO=30°,∵∠ECB=∠ECO+∠ACB∴∠ECB=90°故答案为:BP=EC,90°(2)见答案;(3)见答案.【分析】(1)问题发现连接AE,根据菱形的性质可得AC⊥BD,∠ABD=∠ABC=30°,AO=CO,根据线段垂直平分线的性质可得AE=EC,由旋转的性质可得△AEP是等边三角形,可得AP=AE,∠EAP=60°,根据三角形的外角的性质和等腰三角形的判定,可证AP=PB=AE=EC,由菱形的性质可得∠ACB=60°,根据等边三角形的性质和等腰三角形的性质可得∠ACE=30°,即可得∠ECB=90°;(2)拓展探究由等边三角形的性质可得AE=AP,AB=AC,∠EAP=∠BAC=60°,可得∠EAC=∠BAP,根据“SAS”可证△AEC≌△APB,可得EC=BP,∠ABP=∠ACE=30°,即可得∠ECB=90°;(3)问题解决分点E在AC左侧,点E在AC右侧两种情况讨论,根据直角三角形的性质和等边三角形的性质以及勾股定理可求点P的坐标.本题是四边形综合题,考查了菱形的性质,全等三角形的判定和性质,直角三角形的性质,等边三角形的性质,勾股定理等知识,灵活运用相关的性质定理、综合运用知识是解题的关键,注意分情况讨论思想的应用.23.【答案】解:(1)∵直线y=x+n经过点A(-5,-7),B(5,c),∴-7=-5+n,∴n=-2.∴c=5-2=3,∴直线解析式为y=x-2.把A(-5,-7),B(5,3)代入y=ax2+bx+3得到解得,∴抛物线解析式为y=-x2+x+3.(2)①当-5<m≤3时,∵点C横坐标为m,∴C(m,m-2),D(m+2,m),F(m,-m2+m+3),E[m+2,-(m+2)2+(m+2)+3],∴FC=-m2+m+3-(m-2)=-m2+5,ED=-(m+2)2+5,∴S=×2×[-m2+5-(m+2)2+5]=-m2-m+.②当3<m<5时,S=S=×2×[-m2+5+(m+2)2-5]=m+(3)①当-5<m≤3时,当M为平行四边形时,M为中心对称图形,∴CF=DE,∴-m2+5=-(m+2)2+5,解得m=-1.②当3<m<5时,可得-m2+5=(m+2)2-5,解得m=-1+2或-1-2(舍弃),综上所述,m=-1或-1+2.(4)如图1中,当点F′落在y轴上时,因为C(m,m-2),则F(m,-m2+m+3),∵CF=CF′,∴-m=-m2+m+3-(m-2),解得:m=或(舍弃),如图2中,当点D在y轴上时,m+2=0,m=-2,如图3中,当点D在x轴上时,m+2=2,m=0,如图4中,当点C在x轴上时,m=2,综上所述,当C、D、E′、F′四个点中有且只有两个点同时落在第四象限时m的取值范围为<m≤-2,或0<m<2.【解析】(1)由直线y=x+n经过点A(-5,-7),B(5,c),求出n,c,把A(-5,-7),B(5,3)代入y=ax2+bx+3解方程组即可.(2)分两种情形讨论:求出FC、ED,根据梯形的面积公式计算即可.(3)分两种情形讨论:当M为平行四边形时,M为中心对称图形,由CF=DE,列出方程计算即可.(4)分别求出当点F′落在y轴上时(如图1中),m的值;当点D在y轴上时(如图2中),m的值;当点D在x轴上时(如图3中),m的值;当点C在x轴上时(如图4中),m的值,由此即可解决问题.本题考查二次函数的综合题、翻折变换、一次函数.梯形的面积公式等知识,解题的关键是灵活应用待定系数法确定函数解析式,学会分类讨论,学会可以特殊位置考虑问题,找到问题的突破口,属于中考压轴题.24.【答案】(1)-4,0 ; 4,0; 0,4;(2)Rt△ACO中,tan∠CAO===,∴∠CAO=60°,∵AC=BC,∴∠ABC=∠CAO=60°,∵DE∥BC,∴∠AED=∠ABC=60°,∴△ADE是等边三角形,∴AD=AE=2t,当点F在OC上时,如图1,∵∠AED=∠DEF=60°,∴∠OEF=30°,∵∠EOF=90°,∵EF=DE=AD=2t,∴OE=EF=t,∵AO=AE+OE=2t+t=4,t=,①当0<t≤时,点E在线段OA上,△DEF与△ACO重叠部分图形是△DEF,如图2,S=•(2t)2=;(5分)②当<t≤2时,如图3,△DEF与△ACO重叠部分图形是四边形DEGH,∵AE=2t,OE=4-2t,Rt△EOG中,∠EGO=30°,∴OG=OE=(4-2t),∴GH=OH-OG=t-=3t-4,Rt△FHG中,∠HGF=30°,∴FH==3t-4,∴S=S△DEF-S△GHF,=-,=-t-8;(7分)(3)①如图4,当0<t≤2时,∠EFB=90°,∠FBE=30°,∴BE=2EF=2AD,则8-2t=4t,t=;(9分)②如图5,当2<t<4时,E在y轴上,∠FEB=90°,∠FBE=30°,∵∠ABC=60°,∴∠EBO=30°,∵OB=4,∴OE=,BE=,∴EF=,BF=,∵BF=AD,∴2t=,t=,(11分)综上,t的值是秒或秒;(4) 4+4 .【解析】解:(1)x=0时,y=4,∴C(0,4),当y=0时,x+4=0,x=-4,∴A(-4,0),∵直线BC与直线AC关于y轴对称,∴B(4,0),故答案为:-4,0;4,0;0,4;(3分)(2)Rt△ACO中,tan∠CAO===,∴∠CAO=60°,∵AC=BC,∴∠ABC=∠CAO=60°,∵DE∥BC,∴∠AED=∠ABC=60°,∴△ADE是等边三角形,∴AD=AE=2t,当点F在OC上时,如图1,∵∠AED=∠DEF=60°,∴∠OEF=30°,∵∠EOF=90°,∵EF=DE=AD=2t,∴OE=EF=t,∵AO=AE+OE=2t+t=4,t=,①当0<t≤时,点E在线段OA上,△DEF与△ACO 重叠部分图形是△DEF,如图2,S=•(2t)2=;(5分)②当<t≤2时,如图3,△DEF与△ACO重叠部分图形是四边形DEGH,∵AE=2t,OE=4-2t,Rt△EOG中,∠EGO=30°,∴OG=OE=(4-2t),∴GH=OH-OG=t-=3t-4,Rt△FHG中,∠HGF=30°,∴FH==3t-4,∴S=S△DEF-S△GHF,=-,=-t-8;(7分)(3)①如图4,当0<t≤2时,∠EFB=90°,∠FBE=30°,∴BE=2EF=2AD,则8-2t=4t,t=;(9分)②如图5,当2<t<4时,E在y轴上,∠FEB=90°,∠FBE=30°,∵∠ABC=60°,∴∠EBO=30°,∵OB=4,∴OE=,BE=,∴EF=,BF=,∵BF=AD,∴2t=,t=,(11分)综上,t的值是秒或秒;(4)动点D从点A出发,DE∥BC,点E在线段OA上时,如图6,点F的运动路径为等边△ACB中BC边上的高线AF,此时AF==4,当点E在线段OC上时,设BC的中点为P,如图7,点F的运动路径为PC的长,∵PC=BC=4,∴点F运动的路程长为:4+4,故答案为:4+4.(13分)(1)分别令x=0和y=0代入直线y=x+4中,可得A和C的坐标,根据对称性可得B的坐标;(2)根据三角函数特殊值求∠CAO=60°,得△ADE是等边三角形,表示AD=AE=2t,计算当点F在OC上时,如图1,根据AO=AE+OE=2t+t=4,列方程可得t的值,①当0<t≤时,点E在线段OA上,△DEF与△ACO重叠部分图形是等边△DEF,如图2,②当<t≤2时,如图3,△DEF与△ACO重叠部分图形是四边形DEGH,根据面积差可得结论;(3)①如图4,当0<t≤2时,∠EFB=90°,根据BE=2EF=2AD列式可得结论;②如图5,当2<t<4时,E在y轴上,根据BF=AD=2t,得t的值;(4)①点E在线段OA上时,如图6,点F的运动路径为等边△ACB中BC边上的高线AF ,②当点E在线段OC上时,设BC的中点为P,如图7,点F的运动路径为PC的长,相加可得结论.此题是一次函数的综合题,主要考查了:一次函数与x轴、y轴交点的求法、三角函数的定义、勾股定理及几何动点问题,此类题常运用方程的思想解决问题,解(2)和(3)的关键是:分两种情况进行讨论.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017年吉林省名校调研(省命题)中考数学一模试卷一、选择题(本题共6个小题,每小题2分,共12分)1.﹣5的绝对值是()A.﹣ B.5 C.﹣5 D.±52.据国家统计局公布,2015年我国国内生产总值约676700亿元,676700亿元用科学记数法表示为()A.6.767×103亿元B.6.767×104亿元C.6.767×105亿元D.6.767×106亿元3.如图所示的几何体的俯视图是()A.B.C.D.4.如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转()A.8°B.10° C.12° D.18°5.一元二次方程x2﹣4x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根6.如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于()A.28° B.33° C.34° D.56°二、填空题(本大题共8小题,每小题3分,共24分)7.的平方根是.8.若点A(x,9)在第二象限,则x的取值范围是.9.不等式组的解集为.10.如图,直线AB、CD相交于点O,OM⊥AB于点O,若∠MOD=43°,则∠COB= 度.11.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是元.12.已知将二次函数y=x2+bx+c的图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣4x﹣5,则b= ,c= .13.如图,AB为半圆O的直径,点C在AB的延长线上,CD与半圆O相切于点D,且AB=2CD=4,则图中阴影部分的面积为.14.在平面直角坐标系中,抛物线y=ax2+bx+c(a,b,c是常数,a>0)的部分图象如图所示,直线x=1是它的对称轴.若一元二次方程ax2+bx+c=0的一个根x1的取值范围是2<x1<3,则它的另一个根x2的取值范围是.三、解答题(本大题共4小题,每小题5分,共20分)15.计算:﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].16.先化简,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.17.如图,按要求涂阴影:(1)将图形①平移到图形②;(2)将图形②沿图中虚线翻折到图形③;(3)将图形③绕其右下方的顶点旋转180°得到图形④.18.已知有两种木材共300根,甲种木材的总重量比乙种木材的总重量轻1000千克,如果每根甲种木材重46千克,每根乙种木材重28千克,则甲、乙两种木材各有多少根?四、解答题(每小题7分,共28分)19.把大小完全相同的6个乒乓球分成两组,每组3个,每组乒乓球上面分别标有数字1,2,3,将这两组乒乓球分别放入两个盒子中搅匀,再从每个盒子中各随机取出1个乒乓球,请用画树状图(或列表)的方法,求取出的2个乒乓球上面数字之和为偶数的概率.20.已知:如图,在△ABC中,D,E分别是AB,AC上一点,且∠AED=∠B.若AE=5,AB=9,CB=6,求ED的长.21.某市开展一项自行车旅游活动,线路需经A、B、C、D四地,如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向,C地在A地北偏东75°方向.且BC=CD=20km,问沿上述线路从A地到D地的路程大约是多少?(最后结果保留整数,参考数据:sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,)22.某学校九年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置一、二、三等奖各进步奖共四个奖项,赛后将九年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)九年级(1)班共有名学生;(2)将条形图补充完整:在扇形统计图中,“二等奖”对应的扇形的圆心角度数是;(3)如果该九年级共有1250名学生,请估计荣获一、二、三等奖的学生共有多少名.四、解答题(每小题8分,共16分23.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2017年我市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年我市能否完成计划目标?24.如图,平面直角坐标系中,矩形OABC的一边OA在x轴上,B点的坐标为(4,3).双曲线y=(x>0)过BC的中点P,交AB于点Q.(1)求双曲线的函数表达式及点Q的坐标;(2)判断线段AC与线段PQ之间的关系,并说明理由.四、解答题(每小题10分,共20分25.如图,在Rt△ABC中,∠B=90°,直线EF分别交两直角边AB、BC与E、F两点,且EF ∥AC,P是斜边AC的中点,连接PE,PF,且AB=,BC=.(1)当E、F均为两直角边的中点时,求证:四边形EPFB是矩形,并求出此时EF的长;(2)设EF的长度为x(x>0),当∠EPF=∠A时,用含x的代数式表示EP的长;(3)设△PEF的面积为S,则当EF为多少时,S有最大值,并求出该最大值.26.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B,抛物线y=﹣(x﹣m)2+n的顶点P在直线y=﹣x+4上,与y轴交于点C(点P、C不与点B重合),以BC为边作矩形BCDE,且CD=2,点P、D在y轴的同侧.(1)n= (用含m的代数式表示),点C的纵坐标是(用含m的代数式表示);(2)当点P在矩形BCDE的边DE上,且在第一象限时,求抛物线对应的函数解析式;(3)直接写出矩形BCDE有两个顶点落在抛物线上时m的值.2017年吉林省名校调研(省命题)中考数学一模试卷参考答案与试题解析一、选择题(本题共6个小题,每小题2分,共12分)1.﹣5的绝对值是()A.﹣ B.5 C.﹣5 D.±5【考点】绝对值.【分析】绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【解答】解:根据负数的绝对值是它的相反数,得|﹣5|=5.故选B.2.据国家统计局公布,2015年我国国内生产总值约676700亿元,676700亿元用科学记数法表示为()A.6.767×103亿元B.6.767×104亿元C.6.767×105亿元D.6.767×106亿元【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将676700亿用科学记数法表示为:676700亿=6.767×105亿.故选:C.3.如图所示的几何体的俯视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.【解答】解:从上往下看,该几何体的俯视图与选项D所示视图一致.故选D.4.如图,∠A=70°,O是AB上一点,直线OD与AB所夹的∠BOD=82°,要使OD∥AC,直线OD绕点O按逆时针方向至少旋转()A.8°B.10° C.12° D.18°【考点】旋转的性质;平行线的性质.【分析】根据平行线的性质,求得∠BOD′的度数,即可确定旋转的角度,即∠DOD′的大小.【解答】解:∵AC∥OD′,∴∠BOD′=∠A=70°,∴∠DOD′=∠BOD﹣∠BOD′=82°﹣70°=12°,故选C.5.一元二次方程x2﹣4x+2=0的根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.只有一个实数根D.没有实数根【考点】根的判别式.【分析】把a=1,b=﹣4,c=2代入判别式△=b2﹣4ac进行计算,然后根据计算结果判断方程根的情况.【解答】解:∵a=1,b=﹣4,c=2代,∴△=b2﹣4ac=(﹣4)2﹣4×1×2=8>0,∴方程有两个不相等的实数根.故选:B.6.如图,△ABC的边AC与⊙O相交于C,D两点,且经过圆心O,边AB与⊙O相切,切点为B.如果∠A=34°,那么∠C等于()A.28° B.33° C.34° D.56°【考点】切线的性质.【分析】连结OB,如图,根据切线的性质得∠ABO=90°,则利用互余可计算出∠AOB=90°﹣∠A=56°,再利用三角形外角性质得∠C+∠OBC=56°,加上∠C=∠OBC,于是有∠C=×56°=28°.【解答】解:连结OB,如图,∵AB与⊙O相切,∴OB⊥AB,∴∠ABO=90°,∴∠AOB=90°﹣∠A=90°﹣34°=56°,∵∠AOB=∠C+∠OBC,∴∠C+∠OBC=56°,而OB=OC,∴∠C=∠OBC,∴∠C=×56°=28°.故选A.二、填空题(本大题共8小题,每小题3分,共24分)7.的平方根是±.【考点】平方根.【分析】根据平方根的定义即可求解.【解答】解:∵(±)2=,∴的平方根是:±.故答案是:±.8.若点A(x,9)在第二象限,则x的取值范围是x<0 .【考点】点的坐标.【分析】根据第二象限内点的坐标特征解答即可.【解答】解:∵点A(x,9)在第二象限,∴x的取值范围是x<0.故答案为:x<0.9.不等式组的解集为x≥3 .【考点】解一元一次不等式组.【分析】先求出两个不等式的解集,然后求其公共部分.【解答】解:由①得,x≥2,由②得,x≥3,故不等式组的解集为x≥3.故答案为x≥3.10.如图,直线AB、CD相交于点O,OM⊥AB于点O,若∠MOD=43°,则∠COB= 133 度.【考点】垂线;对顶角、邻补角.【分析】根据垂直定义可得∠AOM的度数,然后再根据角的和差关系可得∠AOD,再利用对顶角相等可得答案.【解答】解:∵OM⊥AB,∴∠AOM=90°,∵∠MOD=43°,∴∠AOD=90°+43°=133°,∴∠COB=133°,故答案为:133.11.一件衣服先按成本提高50%标价,再以8折(标价的80%)出售,结果获利28元,那么这件衣服的成本是140 元.【考点】一元一次方程的应用.【分析】设这件夹克的成本是x元,则标价就为1.5x元,售价就为1.5x×0.8元,由利润=售价﹣进价建立方程求出其解即可.【解答】解:设这件衣服的成本是x元,根据题意得:x(1+50%)×80%﹣x=28,解得:x=140.答:这件衣服的成本是140元;故答案为:140.12.已知将二次函数y=x2+bx+c的图象向右平移2个单位再向下平移3个单位,所得图象的解析式为y=x2﹣4x﹣5,则b= 0 ,c= ﹣6 .【考点】二次函数图象与几何变换.【分析】将平移后的函数解析式整理成顶点式形式,然后写出顶点坐标,再根据向右平移横坐标加,向下平移纵坐标减求出原函数图象顶点坐标,然后写出顶点式解析式,展开并整理求解即可.【解答】解:∵y=x2﹣4x﹣5=(x﹣2)2﹣9,∴平移后函数图象顶点坐标为(2,﹣9),∵二次函数y=x2+bx+c的图象向右平移2个单位再向下平移3个单位得到新函数图象,∴原函数图象顶点坐标为(0,﹣6),∴原函数解析式为y=x2﹣6,∴b=0,c=﹣6.故答案为:0;﹣6.13.如图,AB为半圆O的直径,点C在AB的延长线上,CD与半圆O相切于点D,且AB=2CD=4,则图中阴影部分的面积为.【考点】切线的性质;扇形面积的计算.【分析】根据已知条件证得三角形ODC是等腰直角三角形,得到∠DOB=45°,然后根据扇形的面积公式计算即可.【解答】解:∵AB为半圆O的直径,∴AB=2OD,∵AB=2CD=4,∴OD=CD=2,∵CD与半圆O相切于点D,∴∠ODC=90°,∴∠DOB=45°,∴阴影部分的面积==,故答案为:.14.在平面直角坐标系中,抛物线y=ax2+bx+c(a,b,c是常数,a>0)的部分图象如图所示,直线x=1是它的对称轴.若一元二次方程ax2+bx+c=0的一个根x1的取值范围是2<x1<3,则它的另一个根x2的取值范围是﹣1<x2<0 .【考点】图象法求一元二次方程的近似根;抛物线与x轴的交点.【分析】利用对称轴及二次函数的图象性质,可以把图象与x轴另一个交点的取值范围确定.【解答】解:由图象可知x=2时,y<0;x=3时,y>0;由于直线x=1是它的对称轴,则由二次函数图象的对称性可知:x=0时,y<0;x=﹣1时,y >0;所以另一个根x2的取值范围为﹣1<x2<0.故答案为:﹣1<x2<0.三、解答题(本大题共4小题,每小题5分,共20分)15.计算:﹣14﹣(1﹣0.5)××[2﹣(﹣3)2].【考点】有理数的混合运算.【分析】先算乘方和括号里面的,再算乘法,由此顺序计算即可.【解答】解:原式=﹣1﹣0.5××(2﹣9)=﹣1﹣(﹣)=.16.先化简,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x=,y=﹣1.【考点】整式的加减—化简求值.【分析】先去小括号,再去中括号,合并同类项,最后代入求出即可.【解答】解:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2)=2x2﹣[﹣x2+2xy﹣2y2]﹣(2x2﹣2xy+4y2)=2x2+x2﹣2xy+2y2﹣2x2+2xy﹣4y2=x2﹣2y2,当x=,y=﹣1时,原式=﹣.17.如图,按要求涂阴影:(1)将图形①平移到图形②;(2)将图形②沿图中虚线翻折到图形③;(3)将图形③绕其右下方的顶点旋转180°得到图形④.【考点】利用旋转设计图案;利用轴对称设计图案;利用平移设计图案.【分析】(1)利用平移的性质直接得出平移后的图形;(2)利用轴对称图形的性质直接得出翻折后的图形;(3)利用中心对称图形的性质直接得出旋转后的图形.【解答】解:(1)如图②所示:(2)如图③所示:(3)如图④所示:18.已知有两种木材共300根,甲种木材的总重量比乙种木材的总重量轻1000千克,如果每根甲种木材重46千克,每根乙种木材重28千克,则甲、乙两种木材各有多少根?【考点】二元一次方程组的应用.【分析】设甲种木材有x根,乙种木材有y根,根据两种木材共300根,甲种木材的总重量比乙种木材的总重量轻1000千克,列方程组求解.【解答】解:设甲种木材有x根,乙种木材有y根,根据题意得,,解得:.答:甲种木材有100根,乙种木材有200根.四、解答题(每小题7分,共28分)19.把大小完全相同的6个乒乓球分成两组,每组3个,每组乒乓球上面分别标有数字1,2,3,将这两组乒乓球分别放入两个盒子中搅匀,再从每个盒子中各随机取出1个乒乓球,请用画树状图(或列表)的方法,求取出的2个乒乓球上面数字之和为偶数的概率.【考点】列表法与树状图法.【分析】先画树状图展示所有9种等可能的结果数,再找出取出的2个乒乓球上面数字之和为偶数的结果数,然后根据概率公式求解.【解答】解:画树状图为:共有9种等可能的结果数,其中取出的2个乒乓球上面数字之和为偶数的结果数为5,所以取出的2个乒乓球上面数字之和为偶数的概率=.20.已知:如图,在△ABC中,D,E分别是AB,AC上一点,且∠AED=∠B.若AE=5,AB=9,CB=6,求ED的长.【考点】相似三角形的判定与性质.【分析】首先判定三角形ABC与三角形AED相似,然后利用相似三角形的性质得到比例式即可求得ED的长.【解答】解:∵∠AED=∠B,∠A=∠A,∴△AED∽△ABC,∴,∵AE=5,AB=9,CB=6,∴,解得:DE=.21.某市开展一项自行车旅游活动,线路需经A、B、C、D四地,如图,其中A、B、C三地在同一直线上,D地在A地北偏东30°方向,在C地北偏西45°方向,C地在A地北偏东75°方向.且BC=CD=20km,问沿上述线路从A地到D地的路程大约是多少?(最后结果保留整数,参考数据:sin15°≈0.25,cos15°≈0.97,tan15°≈0.27,)【考点】解直角三角形的应用﹣方向角问题.【分析】求出∠DCA的度数,再判断出BC=CD,据此即可判断出△BCD是等边三角形.过点B 作BE⊥AD,垂足为E,求出∠DAC的度数,利用三角函数求出AB的长,从而得到AB+BC+CD 的长.【解答】解:由题意可知∠DCA=180°﹣75°﹣45°=60°,∵BC=CD,∴△BCD是等边三角形.过点B作BE⊥AD,垂足为E,如图所示:由题意可知∠DAC=75°﹣30°=45°,∵△BCD是等边三角形,∴∠DBC=60° BD=BC=CD=20km,∴∠ADB=∠DBC﹣∠DAC=15°,∴BE=sin15°BD≈0.25×20≈5m,∴AB==≈7m,∴AB+BC+CD≈7+20+20≈47m.答:从A地跑到D地的路程约为47m.22.某学校九年级学生举行朗诵比赛,全年级学生都参加,学校对表现优异的学生进行表彰,设置一、二、三等奖各进步奖共四个奖项,赛后将九年级(1)班的获奖情况绘制成如图所示的两幅不完整的统计图,请根据图中的信息,解答下列问题:(1)九年级(1)班共有50 名学生;(2)将条形图补充完整:在扇形统计图中,“二等奖”对应的扇形的圆心角度数是57.6°;(3)如果该九年级共有1250名学生,请估计荣获一、二、三等奖的学生共有多少名.【考点】条形统计图;用样本估计总体;扇形统计图.【分析】(1)根据“不得奖”人数及其百分比可得总人数;(2)总人数乘以一等奖所占百分比可得其人数,补全图形,根据各项目百分比之和等于1求得二等奖所占百分比,再乘以360°即可得;(3)用总人数乘以荣获一、二、三等奖的学生占总人数的百分比即可.【解答】解:(1)九年级(1)班共有=50(人),故答案为:50;(2)获一等奖人数为:50×10%=5(人),补全图形如下:∵获“二等奖”人数所长百分比为1﹣50%﹣10%﹣20%﹣4%=16%,“二等奖”对应的扇形的圆心角度数是360°×16%=57.6°,故答案为:57.6°;(3)1250×(10%+16%+20%)=575(名),答:估计荣获一、二、三等奖的学生共有575名.四、解答题(每小题8分,共16分23.为了巩固全国文明城市建设成果,突出城市品质的提升,近年来,我市积极落实节能减排政策,推行绿色建筑,据统计,我市2014年的绿色建筑面积约为950万平方米,2016年达到了1862万平方米.若2015年、2016年的绿色建筑面积按相同的增长率逐年递增,请解答下列问题:(1)求这两年我市推行绿色建筑面积的年平均增长率;(2)2017年我市计划推行绿色建筑面积达到2400万平方米.如果2017年仍保持相同的年平均增长率,请你预测2017年我市能否完成计划目标?【考点】一元二次方程的应用.【分析】(1)根据题意可以列出相应的方程从而可以求得这两年我市推行绿色建筑面积的年平均增长率;(2)根据(1)中的增长率可以求得实际到2017年绿色建筑的面积,然后与计划的作比较,即可解答本题.【解答】解:(1)设这两年我市推行绿色建筑面积的年平均增长率为x,950(1+x)2=1862,解得,x1=0.4,x2=﹣2.4(舍去),即这两年我市推行绿色建筑面积的年平均增长率为40%;(2)由题意可得,1862(1+40%)=2606.8,∵2606.8>2400,∴2017年我市能完成计划目标,即如果2017年仍保持相同的年平均增长率,2017年我市能完成计划目标.24.如图,平面直角坐标系中,矩形OABC的一边OA在x轴上,B点的坐标为(4,3).双曲线y=(x>0)过BC的中点P,交AB于点Q.(1)求双曲线的函数表达式及点Q的坐标;(2)判断线段AC与线段PQ之间的关系,并说明理由.【考点】待定系数法求反比例函数解析式;矩形的性质.【分析】(1)求反比例函数,找出该曲线上一点的坐标即可;(2)找出线段比值是否相等可得PQ∥AC.【解答】解:(1)∵P为边BC的中点,则P(2,3),k=6,函数表达式为y=.由图可知点Q的横坐标为4,把x=4代入y=,解得y=,则Q(4,);(2)∵Q(4,),P(2,3);∴BP=2,BC=4,BQ=,BA=3;则==;由平行线分线段成比例定理可得PQ∥AC,且AC=2PQ.四、解答题(每小题10分,共20分25.如图,在Rt△ABC中,∠B=90°,直线EF分别交两直角边AB、BC与E、F两点,且EF ∥AC,P是斜边AC的中点,连接PE,PF,且AB=,BC=.(1)当E、F均为两直角边的中点时,求证:四边形EPFB是矩形,并求出此时EF的长;(2)设EF的长度为x(x>0),当∠EPF=∠A时,用含x的代数式表示EP的长;(3)设△PEF的面积为S,则当EF为多少时,S有最大值,并求出该最大值.【考点】四边形综合题.【分析】(1)先求出四边形EPFB是平行四边形,再由∠B=90°得出四边形EPFB是矩形,利用勾股定理求出EF.(2)证明△APE∽△PEF,得出对应边成比例,即可得出结果.(3)作FH⊥AC交AC于点H,设EF=x,得出BF,CF及FH的值,再利用三角形面积求出EF 及最大值,利用中位线定理即可求出EP的值.【解答】解:(1)如图1,∵E是AB的中点,P是AC的中点,∴EP∥BC,且EP=BC,∵F是BC的中点,∴EP∥BF,且EP=BF,四边形EPFB是平行四边形,∵∠B=90°,∴四边形EPFB是矩形,(2)∵AB=,BC=.∴BE=,BF=,∴EF==1.(2)∵EF∥AC,∴∠APE=∠PEF,∵∠EPF=∠A,∴△APE∽△PEF.∴,∵AP=1,EF=x,∴EP2=x,∴EP=.(3)如图2,作FH⊥AC交AC于点H,∵EF∥AC,∴△BEF∽△BAC,设EF=x,则BF=x,CF=﹣x,∴FH=CF=﹣x,∴S=EF•FH=﹣x2+x=﹣(x﹣1)2+,∴当x=1,即EF=1时,S有最大值为.26.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B,抛物线y=﹣(x﹣m)2+n的顶点P在直线y=﹣x+4上,与y轴交于点C(点P、C不与点B重合),以BC为边作矩形BCDE,且CD=2,点P、D在y轴的同侧.(1)n= ﹣m+4 (用含m的代数式表示),点C的纵坐标是﹣m2﹣m+4 (用含m的代数式表示);(2)当点P在矩形BCDE的边DE上,且在第一象限时,求抛物线对应的函数解析式;(3)直接写出矩形BCDE有两个顶点落在抛物线上时m的值.【考点】二次函数综合题.【分析】(1)由顶点P(m,n)在y=﹣x+4上得n=﹣m+4,求得当x=0时y=﹣m2+n即可知点C纵坐标;(2)由矩形的性质结合CD=2知即DE与AB的交点P的坐标为(2,2),即可得答案;(3)①点C、D在抛物线上时,由CD=2可知对称轴为x=±1,即m=±1;②点C、E在抛物线上时,由B(0,4)和CD=2得E(﹣2,4),则4=﹣(﹣2﹣m)2+(﹣m+4),解之可得答案.【解答】解:(1)∵y=﹣(x﹣m)2+n=﹣x2+mx﹣m2+n,∴顶点P(m,n),∵P在直线y=﹣x+4上,∴n=﹣m+4,当x=0时,y=﹣m2+n=﹣m2﹣m+4,即点C的纵坐标为﹣m2﹣m+4,故答案为:﹣m+4,﹣m2﹣m+4;(2)∵四边形ABCD是矩形,∴DE∥y轴,∵CD=2,∴当x=2时,y=2,即DE与AB的交点坐标为(2,2),∴当点P在矩形BCDE的边DE上时,抛物线的顶点P的坐标为(2,2),∴抛物线对应的函数解析式为y=﹣(x﹣2)2+2;(3)如图①②,点C、D在抛物线上时,由CD=2可知对称轴为x=±1,即m=±1;如图③④,点C、E在抛物线上时,由B(0,4)和CD=2得E(﹣2,4),则4=﹣(﹣2﹣m)2+(﹣m+4),解得:m1=,m2=,综上所述,m=1或﹣1或或.。

相关文档
最新文档