郑州北师大七年级下期末考试数学试卷及答案
2017-2018学年郑州北师大七年级下期末考试数学试卷(有答案)

2017—2018学年郑州七年级下期期末考试数学试卷及参考答案注意:本试卷分试超和答题卡两部分,考试时同90分,满分100分,考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡时光飞逝,转题间乐乐七年级学习生活即将结束,在这一年中,乐乐收获满满,我们一起来分享一下吧!一、选择题(每小题3分,共30分)1乐乐看到妈妈手机上有好多图标,在下列图标中可看作轴对称图形的是()2.乐乐所在的四人小组做了下列运算,其中正确的是()A.(-3)-2=-9 B.(-2a3)2=4a6 C.a6÷a2=a3 D.2a2·3a3=6a63.乐乐很喜欢清代诗人靠枚的诗《苔》:“白日不到处,青春恰自来,苔花如米小,也学牡丹开。
“其实苔御植物属于孢子植物,不开花,袁枚看到的“苔花”,很可能是苔类的孢子体的苞某种苔藓的苞商的直径约为0.7毫米,则0.7毫米用科学记数法可表示为()A.0.7×10-4米B.7×10-3米C.7×10-4米D.7×10-5米4.如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=139°,∠C为()A.38°B.39°C.40°D.41°5.在一个不透明的布袋中,红色、那色,白色的小球共有50个,除颜色外其他完全相同乐乐通过多次摸球试验后发现,摸到红色球,黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20B.15C.10D.56.乐乐和科学小组的同学们在网上获取了声音在空气中传播的速度与空气温度之间关系的一些数据(如下表)下列说法中错误的是()A.在这个变化过程中,当温度为10℃时,声速是336m/sB温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s7.乐乐观察“抖空竹“时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是()A.32°B.28°C.26°D.23°8.如图,乐乐用边长为1的正方形做了一副七巧板,并将这副七巧板拼成一只小猫,则阴影都分的面积为()A. 14 B.12 C.25 D.239.乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为()A.50°B.65°C.65°或25°D.50°或40°10.如图是乐乐的五子棋棋盘的一部分(5×5的正方形网格) 以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.2个B.4个C.6个D.8个二、填空题(每小题3分,共1511.乐乐在作业上写到(a+b)2=a2+b2,同学英树认为不对,并且他利用下面的图形做出了直观的解释,根据这个图形的总面积可以得到正确的完全平方公式(a+b)2=12.乐乐同学有两根长度为4cm,7cm的木棒,母亲节时他想自已动手给妈妈钉一个角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是13.如图,△ABC的边BC长12cm,乐乐观察到当顶点A沿着BC边上的高AD所线向上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x(cm),那么△ABC的面积y(cm2)与x(cm)的关系式是14.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的 (球的体积计算公式为V=43πr 2)15.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外).重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差;重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是 三、解答题(本大题共7个小题,共55分)16.(6分)乐乐对化简求值题掌握良好,请你也来试试吧!先化简,再求值:[(ab+4)(ab-4)-5a 2b 2+16]÷(ab),其中a=10,b=- 1517.(6分)乐乐觉得轴对称图形很有意思.如图是4个完全相同的小正方形组成的L 形图,请你用三种方法分别在图中添画一个小正方形,使添画后的图形成为轴对称图形18.(8分)乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB 为转盘直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠(1)某顾客消费40元,是否可以获得转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?19.(8分)尺规作图是理论上接近完美的作图方式,乐乐很喜欢用尺规画出要求的图形.在下面的△ABC中,请你也按要求用尺规作出下列图形(不写作法,但要保留作图痕迹)并填空(1)作出∠BAC的平分线交BC边于点D;(2)作出AC边上的垂直平分线l交AD于点G;(3)连接GC,若∠B=55°,∠BCA=60°,则∠AGC的度数为20.(8分)如图是乐乐设计的暂力拼图玩具的一部分,现在乐乐遇到了两个问题,请你帮助解决:已知:如图,AB∥CD,(1)若∠APC=60°,∠A=40°,求∠C的度数请填空解:(1)过点P作直线PE∥AB(如图所示)因为AB∥CD(已知)所以EP∥CD(平行于同一条直线的两条直线平行)因为∠A=∠APE=40∠C=∠CPE()又因为∠APC=∠APE+∠CPE=∠A+ =60°(等量代换)所以∠C= °(等式性质)2)直接写出∠B、∠D与∠BFD之间的数量关系21.(9分)人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东四会逐渐被遗忘,教乐乐数学的马老师调查了自己班学生的学习遗忘规律,并根据调查数据描绘了一条曲线(如图所示),其中纵轴表示学习中的记忆保持量,横轴表示时间,观察图象并回答下列(1)观察图象,1h后,记忆保持量约为;8h后,记忆保持量约为(2)图中的A点表示的意义是什么?A点表示的意义是在以下哪个时间段内遗忘的速度最快?填序号①0-2h ②2-4h;③4-6h ④6-8h(3)马老师每节课结束时都会对本节课进行总结回顾,并要求学生每天晚上临睡前对当课堂上所记的课盒笔记进行复习,据调查这样一天后记忆量能保持98%如果学生一天不复习,结果又会怎样?由此,你能根据上述曲线规律制定出两条今年暑假的学习计划吗?22.(10分)乐乐和数学小组的同学们研究了如下问题,请你也来试一下吧点C是直线l1上一点,在同一平面内,乐乐他们把一个等直角三角板ABC任意放,其中直角顶点C与点C重合,过点A作直线l2⊥l1,垂足为点M,过点B作l3⊥l1, 垂足为点N(1)当直线l2,l3位于点C的异侧时,如图1,线段BN,AM与MN之间的数量关系(不必说明理由)2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN,AM与MN之间的数量系,并说明理由3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并直接写出线段BN,A MN之间的数量关系2017—2018学年下期期末考试七年级 数学 参考答案 (时间:90分钟,满分:100分) 一、选择题(每小题3分,共30分)1. A 2. B 3. C 4. D 5. B 6. C 7. D 8. A 9. C 10. B 二、填空题(每小题3分,共15分) 11.a 2+2ab+b 2 12. 0.4(52或) 13. y =6x 14.32 15. 6174三、解答题(本大题共7个小题,共55分)16.(6分) 解:)(]165)4)(4[(22ab b a ab ab ÷+--+ =)(]16516[(2222ab b a b a ÷+--…………………………(2分) =)()4(22ab b a ÷-=ab 4-…………………………………………………(4分) 当51,10-==b a 时,原式=)51(104-⨯⨯-=8……………………(6分)17.(6分) 解: 如图.……………………(6分)18.(8分)解:(1)根据规定消费50元(含50元)以上才能获得一次转盘的机会,而40元小于50元,故不能获得转盘的机会; ………………(2分) (2)某顾客正好消费66元,超过50元,可以获得转盘的的机会.若获得9折优惠,则概率;………………………(4分) 若获得8折优惠,则概率;………………………(6分)若获得7折优惠,则概率.………………………(8分)19.(8分)解:(1)图略(可以不下结论);……………………(3分)4136090)9(==折P 6136060)8(==折P 12136030)7(==折P(2)图略(可以不下结论);……………………(6分) (3)115°. ……………………(8分)20.(8分)解:(1)两直线平行,内错角相等;……………………(2分) ∠C ;…………………………………………………………(4分) 20;…………………………………………………………(6分)(2)∠B +∠D +∠BFD =360°. ………………………………(8分)21.(9分)解:(1)50%(50%3±%均算正确);30%(30%3±%均算正确);……(4分) (2)点A 表示2h 大约记忆量保持了40%;…………………………(6分) ①;…………………(7分)(3)如果一天不复习,记忆量只能保持不到30%(答案不唯一); 暑假的学习计划两条略(合理即可)………(9分)22. 解:(1)MN = AM +BN ;………………(2分)(2)MN = BN -AM ;………………………………(4分) 理由如下:如图2. 因为l 2⊥l 1,l 3⊥l 1.所以∠BNC =∠CMA =90°. 所以∠ACM +∠CAM =90°. 因为∠ACB =90°,所以∠ACM +∠BCN =90°. 所以∠CAM =∠BCN .在△CBN 和△ACM 中,{∠BNC =∠CMA∠CAM =∠BCN BC =AC所以△CBN ≌△ACM (AAS ). 所以BN =CM ,NC =AM .所以MN =CM ﹣CN =BN ﹣AM .…………………………(8分) (3)补全图形,如图3.………(9分)结论:MN =AM ﹣BN .………(10分)l 1。
郑州北师大七年级下期末考试数学试题(有答案)

2017—2018学年郑州七年级下期期末考试数学试卷及参考答案注意本试卷分试超和答题卡两部分,考试时同90分,满分100分,考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡时光飞逝,转题间乐乐七年级学习生活即将结束,在这一年中,乐乐收获满满,我们一起分享一下吧!一、选择题(每小题3分,共30分)1乐乐看到妈妈手机上有好多图标,在下列图标中可看作轴对称图形的是()2.乐乐所在的四人小组做了下列运算,其中正确的是()A.(-3)-2=-9 B.(-2a3)2=4a6 C.a6÷a2=a3 D.2a2·3a3=6a63.乐乐很喜欢清代诗人靠枚的诗《苔》“白日不到处,青春恰自,苔花如米小,也学牡丹开。
“其实苔御植物属于孢子植物,不开花,袁枚看到的“苔花”,很可能是苔类的孢子体的苞某种苔藓的苞商的直径约为0.7毫米,则0.7毫米用科学记数法可表示为()A.0.7×10-4米B.7×10-3米C.7×10-4米D.7×10-5米4.如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=139°,∠C为()A.38°B.39°C.40°D.41°5.在一个不透明的布袋中,红色、那色,白色的小球共有50个,除颜色外其他完全相同乐乐通过多次摸球试验后发现,摸到红色球,黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20B.15C.10D.56.乐乐和科学小组的同学们在网上获取了声音在空气中传播的速度与空气温度之间关系的一些数据(如下表)下列说法中错误的是()A.在这个变化过程中,当温度为10℃时,声速是336m/sB 温度越高,声速越快C.当空气温度为20℃时,声音5s 可以传播1740mD.当温度每升高10℃,声速增加6m/s7.乐乐观察“抖空竹“时发现,可以将某一时刻的情形抽象成数学问题如图,已知AB ∥CD,∠BAE=92°,∠DCE=115°,则∠E 的度数是( )A.32°B.28°C.26°D.23°8.如图,乐乐用边长为1的正方形做了一副七巧板,并将这副七巧板拼成一只小猫,则阴影都分的面积为( )A. 14B. 12C. 25D. 239.乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为( )A.50°B.65°C.65°或25°D.50°或40°10.如图是乐乐的五子棋棋盘的一部分(5×5的正方形网格) 以点D,E 为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出( )A.2个B.4个C.6个D.8个二、填空题(每小题3分,共1511.乐乐在作业上写到(a+b)2=a 2+b 2,同学英树认为不对,并且他利用下面的图形做出了直观的解释,根据这个图形的总面积可以得到正确的完全平方公式(a+b)2=12.乐乐同学有两根长度为4cm,7cm 的木棒,母亲节时他想自已动手给妈妈钉一个角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是13.如图,△ABC 的边BC 长12cm,乐乐观察到当顶点A 沿着BC 边上的高AD 所线向上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x(cm),那么△ABC 的面积y(cm2)与x(cm)的关系式是14.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的 (球的体积计算公式为V=43πr 2)15.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外).重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差;重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是三、解答题(本大题共7个小题,共55分)16.(6分)乐乐对化简求值题掌握良好,请你也试试吧!先化简,再求值[(ab+4)(ab-4)-5a 2b 2+16]÷(ab),其中a=10,b=- 1517.(6分)乐乐觉得轴对称图形很有意思.如图是4个完全相同的小正方形组成的L 形图,请你用三种方法分别在图中添画一个小正方形,使添画后的图形成为轴对称图形18.(8分)乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB 为转盘直径,如图所示,并规定顾客消费50元(含50元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠(1)某顾客消费40元,是否可以获得转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?19.(8分)尺规作图是理论上接近完美的作图方式,乐乐很喜欢用尺规画出要求的图形.在下面的△ABC 中,请你也按要求用尺规作出下列图形(不写作法,但要保留作图痕迹)并填空(1)作出∠BAC 的平分线交BC 边于点D;(2)作出AC 边上的垂直平分线l 交AD 于点G ;(3)连接GC,若∠B=55°,∠BCA=60°,则∠AGC 的度数为20.(8分)如图是乐乐设计的暂力拼图玩具的一部分,现在乐乐遇到了两个问题,请你帮助解决已知如图,AB∥CD,(1)若∠APC=60°,∠A=40°,求∠C的度数请填空解(1)过点P作直线PE∥AB(如图所示)因为AB∥CD(已知)所以EP∥CD(平行于同一条直线的两条直线平行)因为∠A=∠APE=40∠C=∠CPE()又因为∠APC=∠APE+∠CPE=∠A+ =60°(等量代换)所以∠C= °(等式性质)2)直接写出∠B、∠D与∠BFD之间的数量关系21.(9分)人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东四会逐渐被遗忘,教乐乐数学的马老师调查了自己班学生的学习遗忘规律,并根据调查数据描绘了一条曲线(如图所示),其中纵轴表示学习中的记忆保持量,横轴表示时间,观察图象并回答下列(1)观察图象,1h后,记忆保持量约为; 8h后,记忆保持量约为(2)图中的A点表示的意义是什么?A点表示的意义是在以下哪个时间段内遗忘的速度最快?填序号①0-2h ②2-4h;③4-6h ④6-8h(3)马老师每节课结束时都会对本节课进行总结回顾,并要求学生每天晚上临睡前对当课堂上所记的课盒笔记进行复习,据调查这样一天后记忆量能保持98%如果学生一天不复习,结果又会怎样?由此,你能根据上述曲线规律制定出两条今年暑假的学习计划吗?22.(10分)乐乐和数学小组的同学们研究了如下问题,请你也试一下吧点C是直线l1上一点,在同一平面内,乐乐他们把一个等直角三角板ABC任意放,其中直角顶点C与点C 重合,过点A作直线l2⊥l1,垂足为点M,过点B作l3⊥l1, 垂足为点N(1)当直线l2,l3位于点C的异侧时,如图1,线段BN,AM与MN之间的数量关系 (不必说明理由)2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN,AM与MN之间的数量系,并说明理由3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并直接写出线段BN,A MN之间的数量关系2017—2018学年下期期末考试七年级 数学 参考答案(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1. A 2. B 3. C 4. D 5. B6. C 7. D 8. A 9. C 10. B二、填空题(每小题3分,共15分)11.a 2+2ab+b 2 12. 0.4(52或) 13. y =6x 14.32 15. 6174 三、解答题(本大题共7个小题,共55分) 16.(6分) 解:)(]165)4)(4[(22ab b a ab ab ÷+--+=)(]16516[(2222ab b a b a ÷+--…………………………(2分)=)()4(22ab b a ÷-=ab 4-…………………………………………………(4分) 当51,10-==b a 时,原式=)51(104-⨯⨯-=8……………………(6分)17.(6分) 解: 如图. ……………………(6分)18.(8分)解:(1)根据规定消费50元(含50元)以上才能获得一次转盘的机会,而40元小于50元,故不能获得转盘的机会; ………………(2分)(2)某顾客正好消费66元,超过50元,可以获得转盘的的机会.若获得9折优惠,则概率;………………………(4分) 若获得8折优惠,则概率;………………………(6分) 若获得7折优惠,则概率.………………………(8分)19.(8分)解:(1)图略(可以不下结论);……………………(3分)(2)图略(可以不下结论);……………………(6分)(3)115°. ……………………(8分)20.(8分)解:(1)两直线平行,内错角相等;……………………(2分)∠C ;…………………………………………………………(4分)20;…………………………………………………………(6分)(2)∠B +∠D +∠BFD =360°. ………………………………(8分)21.(9分)解:(1)50%(50%3±%均算正确);30%(30%3±%均算正确);……(4分)(2)点A 表示2h 大约记忆量保持了40%;…………………………(6分)①;…………………(7分)(3)如果一天不复习,记忆量只能保持不到30%(答案不唯一); 4136090)9(==折P 6136060)8(==折P 12136030)7(==折P暑假的学习计划两条略(合理即可)………(9分)22. 解:(1)MN = AM +BN ;………………(2分)(2)MN = BN -AM ;………………………………(4分) 理由如下:如图2.因为l 2⊥l 1,l 3⊥l 1.所以∠BNC =∠CMA =90°.所以∠ACM +∠CAM =90°.因为∠ACB =90°,所以∠ACM +∠BCN =90°.所以∠CAM =∠BCN .在△CBN 和△ACM 中,{∠BBB =∠BBB∠BBB =∠BBB BB =BB所以△CBN ≌△ACM (AAS ).所以BN =CM ,NC =AM .所以MN =CM ﹣CN =BN ﹣AM .…………………………(8分)(3)补全图形,如图3.………(9分)结论:MN =AM ﹣BN .………(10分)l 1。
七年级下册北师大版数学期末试卷【含答案】

七年级下册北师大版数学期末试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么这个三角形的第三边长可能是多少厘米?A. 3厘米B. 17厘米C. 23厘米D. 26厘米3. 下列哪个图形是轴对称图形?A. 正方形B. 长方形C. 三角形D. 梯形4. 一个等差数列的前三项分别是2,5,8,那么这个数列的第四项是多少?A. 7B. 10C. 11D. 125. 下列哪个图形是中心对称图形?A. 正方形B. 长方形C. 三角形D. 梯形二、判断题(每题1分,共5分)1. 两个质数的和一定是偶数。
()2. 一个三角形的内角和一定是180度。
()3. 任何两个等边三角形都是全等的。
()4. 一个等差数列的相邻两项之差是常数。
()5. 任何两个等腰三角形都是相似的。
()三、填空题(每题1分,共5分)1. 一个数的因数是______和______。
2. 一个等腰三角形的底角是______度,顶角是______度。
3. 一个正方形的对角线长是______厘米,它的面积是______平方厘米。
4. 一个等差数列的公差是______,它的第10项是______。
5. 一个平行四边形的对角线互相______。
四、简答题(每题2分,共10分)1. 简述等差数列的定义。
2. 简述等腰三角形的性质。
3. 简述轴对称图形的定义。
4. 简述中心对称图形的定义。
5. 简述勾股定理的定义。
五、应用题(每题2分,共10分)1. 一个等差数列的前三项分别是2,5,8,求这个数列的第10项。
2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。
3. 一个正方形的对角线长是10厘米,求这个正方形的面积。
4. 一个平行四边形的对角线互相垂直,其中一条对角线长是12厘米,另一条对角线长是16厘米,求这个平行四边形的面积。
北师大版七年级下册数学《期末考试卷》(带答案)

如图,已知∠B+∠BCD=180°,∠B=∠D.
求证:∠E=∠DFE.
证明:∵∠B+∠BCD=180°(已知),
∴AB∥CD(______________________).
∴∠B=_______(_____________________).
又∵∠B=∠D(已知),
∴∠DCE=∠D(_____________________).
A.AB=DEB.DF∥ACC. ∠E=∠ABCD.AB∥DE
10.如果小球在如图所示的地面上自由滚动,并随机停留在某块方砖上,那么它最终停留在黑色区域的概率是( )
A. B. C. D.
11.如图所示,△ABC是等边三角形,且BD=CE,∠1=15°,则∠2的度数为( )
A.15°B.30°C.45°D.60°
∴∠2=90°-34°=56°,
故选C.
【点睛】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.
7.Rt△ABC中,斜边BC=2,则AB2+AC2+BC2的值为( )
A.8B.4C.6D. 无法计算
【答案】A
【解析】
利用勾股定理,由Rt△ABC中,BC为斜边,可得AB2+AC2=BC2,代入数据可得AB2+AC2+BC2=2BC2=2×22=8.
6.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为( )
A.34°B.54°C.56°D.66°
【答案】C
【解析】
【分析】
先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°-34°=56°.
【详解】如图,
∵a∥b,
∴∠1=∠3=34°,
2019-2020学年郑州北师大七年级下期末考试数学试卷(有答案)(已审阅)

郑州七年级下期期末考试数学试卷及参考答案注意:本试卷分试超和答题卡两部分,考试时同90分,满分100分,考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡时光飞逝,转题间乐乐七年级学习生活即将结束,在这一年中,乐乐收获满满,我们一起来分享一下吧!一、选择题(每小题3分,共30分)1乐乐看到妈妈手机上有好多图标,在下列图标中可看作轴对称图形的是()2.乐乐所在的四人小组做了下列运算,其中正确的是()A.(-3)-2=-9 B.(-2a3)2=4a6 C.a6÷a2=a3 D.2a2·3a3=6a63.乐乐很喜欢清代诗人靠枚的诗《苔》:“白日不到处,青春恰自来,苔花如米小,也学牡丹开。
“其实苔御植物属于孢子植物,不开花,袁枚看到的“苔花”,很可能是苔类的孢子体的苞某种苔藓的苞商的直径约为0.7毫米,则0.7毫米用科学记数法可表示为()A.0.7×10-4米B.7×10-3米C.7×10-4米D.7×10-5米4.如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=139°,∠C为()A.38°B.39°C.40°D.41°5.在一个不透明的布袋中,红色、那色,白色的小球共有50个,除颜色外其他完全相同乐乐通过多次摸球试验后发现,摸到红色球,黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20B.15C.10D.56.乐乐和科学小组的同学们在网上获取了声音在空气中传播的速度与空气温度之间关系的一些数据(如下表)下列说法中错误的是()A.在这个变化过程中,当温度为10℃时,声速是336m/sB温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s7.乐乐观察“抖空竹“时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是()A.32°B.28°C.26°D.23°8.如图,乐乐用边长为1的正方形做了一副七巧板,并将这副七巧板拼成一只小猫,则阴影都分的面积为()A. 14 B.12 C.25 D.239.乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为()A.50°B.65°C.65°或25°D.50°或40°10.如图是乐乐的五子棋棋盘的一部分(5×5的正方形网格) 以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.2个B.4个C.6个D.8个二、填空题(每小题3分,共1511.乐乐在作业上写到(a+b)2=a2+b2,同学英树认为不对,并且他利用下面的图形做出了直观的解释,根据这个图形的总面积可以得到正确的完全平方公式(a+b)2=12.乐乐同学有两根长度为4cm,7cm的木棒,母亲节时他想自已动手给妈妈钉一个角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是13.如图,△ABC的边BC长12cm,乐乐观察到当顶点A沿着BC边上的高AD所线向上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x(cm),那么△ABC的面积y(cm2)与x(cm)的关系式是14.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的(球的体积计算公式为V=43πr2)15.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外).重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差;重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是三、解答题(本大题共7个小题,共55分)16.(6分)乐乐对化简求值题掌握良好,请你也来试试吧!先化简,再求值:[(ab+4)(ab-4)-5a2b2+16]÷(ab),其中a=10,b=- 1 517.(6分)乐乐觉得轴对称图形很有意思.如图是4个完全相同的小正方形组成的L形图,请你用三种方法分别在图中添画一个小正方形,使添画后的图形成为轴对称图形18.(8分)乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB为转盘直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠(1)某顾客消费40元,是否可以获得转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?19.(8分)尺规作图是理论上接近完美的作图方式,乐乐很喜欢用尺规画出要求的图形.在下面的△ABC中,请你也按要求用尺规作出下列图形(不写作法,但要保留作图痕迹)并填空(1)作出∠BAC的平分线交BC边于点D;(2)作出AC边上的垂直平分线l交AD于点G;(3)连接GC,若∠B=55°,∠BCA=60°,则∠AGC的度数为20.(8分)如图是乐乐设计的暂力拼图玩具的一部分,现在乐乐遇到了两个问题,请你帮助解决:已知:如图,AB∥CD,(1)若∠APC=60°,∠A=40°,求∠C的度数请填空解:(1)过点P作直线PE∥AB(如图所示)因为AB∥CD(已知)所以EP∥CD(平行于同一条直线的两条直线平行)因为∠A=∠APE=40∠C=∠CPE()又因为∠APC=∠APE+∠CPE=∠A+ =60°(等量代换)所以∠C= °(等式性质)2)直接写出∠B、∠D与∠BFD之间的数量关系21.(9分)人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东四会逐渐被遗忘,教乐乐数学的马老师调查了自己班学生的学习遗忘规律,并根据调查数据描绘了一条曲线(如图所示),其中纵轴表示学习中的记忆保持量,横轴表示时间,观察图象并回答下列(1)观察图象,1h后,记忆保持量约为;8h后,记忆保持量约为(2)图中的A点表示的意义是什么?A点表示的意义是在以下哪个时间段内遗忘的速度最快?填序号①0-2h ②2-4h;③4-6h ④6-8h(3)马老师每节课结束时都会对本节课进行总结回顾,并要求学生每天晚上临睡前对当课堂上所记的课盒笔记进行复习,据调查这样一天后记忆量能保持98%如果学生一天不复习,结果又会怎样?由此,你能根据上述曲线规律制定出两条今年暑假的学习计划吗?22.(10分)乐乐和数学小组的同学们研究了如下问题,请你也来试一下吧点C是直线l1上一点,在同一平面内,乐乐他们把一个等直角三角板ABC任意放,其中直角顶点C与点C重合,过点A作直线l2⊥l1,垂足为点M,过点B作l3⊥l1, 垂足为点N(1)当直线l2,l3位于点C的异侧时,如图1,线段BN,AM与MN之间的数量关系(不必说明理由)2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN,AM与MN之间的数量系,并说明理由3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并直接写出线段BN,A MN之间的数量关系七年级 数学 参考答案(时间:90分钟,满分:100分) 一、选择题(每小题3分,共30分)1. A 2. B 3. C 4. D 5. B 6. C 7. D 8. A 9. C 10. B 二、填空题(每小题3分,共15分) 11.a 2+2ab+b212. 0.4(52或) 13. y =6x 14.32 15. 6174三、解答题(本大题共7个小题,共55分) 16.(6分) 解:)(]165)4)(4[(22ab b a ab ab ÷+--+ =)(]16516[(2222ab b a b a ÷+--…………………………(2分) =)()4(22ab b a ÷-=ab 4-…………………………………………………(4分)当51,10-==b a 时,原式=)51(104-⨯⨯-=8……………………(6分)17.(6分) 解: 如图.……………………(6分)18.(8分)解:(1)根据规定消费50元(含50元)以上才能获得一次转盘的机会,而40元小于50元,故不能获得转盘的机会; ………………(2分) (2)某顾客正好消费66元,超过50元,可以获得转盘的的机会.若获得9折优惠,则概率;………………………(4分) 若获得8折优惠,则概率;………………………(6分) 若获得7折优惠,则概率.………………………(8分)19.(8分)解:(1)图略(可以不下结论);……………………(3分) (2)图略(可以不下结论);……………………(6分) (3)115°. ……………………(8分)20.(8分)解:(1)两直线平行,内错角相等;……………………(2分) ∠C ;…………………………………………………………(4分) 20;…………………………………………………………(6分) (2)∠B +∠D +∠BFD =360°. ………………………………(8分)21.(9分)解:(1)50%(50%3±%均算正确);30%(30%3±%均算正确);……(4分) (2)点A 表示2h 大约记忆量保持了40%;…………………………(6分) ①;…………………(7分)(3)如果一天不复习,记忆量只能保持不到30%(答案不唯一); 暑假的学习计划两条略(合理即可)………(9分)22. 解:(1)MN = AM +BN ;………………(2分) (2)MN = BN -AM ;………………………………(4分) 理由如下:如图2.4136090)9(==折P 6136060)8(==折P 12136030)7(==折P//// 因为l 2⊥l 1,l 3⊥l 1.所以∠BNC =∠CMA =90°.所以∠ACM +∠CAM =90°.因为∠ACB =90°,所以∠ACM +∠BCN =90°.所以∠CAM =∠BCN .在△CBN 和△ACM 中, ∠ ∠∠ ∠所以△CBN ≌△ACM (AAS ).所以BN =CM ,NC =AM .所以MN =CM ﹣CN =BN ﹣AM .…………………………(8分)(3)补全图形,如图3.………(9分)结论:MN =AM ﹣BN .………(10分)l 1。
北师大版七年级下册数学《期末考试试题》(带答案解析)

2020年北师大版数学七年级下册期末测试学校 _________ 班级 ____________一、选择题(每小题3分,共30分)1•下列世界博览会会徽图案中是轴对称图形的是(2•下列计算正确的是()551032A. a + a = aB. a • a = a4.下面每组数分别是三根小木棒的长度,它们能摆成三角形的是()意翻开一张是汉字“信”的概率是 ()7•下列说法:①在同一平面内过一点有且只有一条直线和已知直线垂直;行于同一条直线的两条直线也互相平行;④同位角相等•其中正确的个数有(8.通过计算几何图形的面积可表示代数恒等式,图中可表示的代数恒等式是(1 = Z 2,那么下列结论正确的是()| ----- p3•如图所示,已知/A. AB //BC B. AB // CD C. / C=ZD D. / 3=Z4A. 5 1, 3B. 2, 4, 2C. 3, 3, 7D. 2, 3, 45如图①所示,有6张写有汉字的卡片,它们的背面都相同, 现将它们背面朝上洗匀后如图 2摆放,从中任1A.- 26.利用基本作图,作出唯一三角形的是(□ □ U□ □ □ 阳2B. 13C.A.已知三边B .C.已知两角及其夹边D. 已知两边及其夹角 已知两边及其中一边1D.-6对角B. 2个C. 3个D. 4个姓名 _________成绩 ________76C. a 十 a = 3、2八 6D. ( — a ) = —②垂线段最短;③在同一平面内平C. DBro二、填空题(每小题3分,共15分)11.0.000 000 087 用科学记数法可表示为 _____ . 12.如图,已知 AB// CD, / 1 = 120 °,则/ C =13.一棵树高h (m )与生长时间n (年)之间满足一定的关系,请你根据下表中的数写出h (m )与n (年)之间的关A. (a b)(a b) a 2b 2B. (a b)2 a 22ab b 2 2C. 2a(a b) 2a 2abD. (a b)22a 2abb 29•如图,等腰△ABC 中, AB=AC=8 , BC=5 , AB 的垂直平分线DE 交AB 于点 D ,交 AC 于点 E ,贝U ABECB. 14C. 15D. 1610.如图,火车匀速通过隧道(隧道长等于火车长)时,火车进入隧道的时间x 与火车在隧道内的长度 y 之的周长为()间的关系用图像描述大致是(系式:h= _____ .h(m)2.63.2 3.84.45.014.在一个不透明的箱子里装有红色、蓝色、黄色的球共 20个,除颜色外,形状、大小、质地等完全相同,小明通过多次摸球实验后发现摸到红色、黄色球的频率分别稳定在 10%和15%,则箱子里蓝色球的个数很可能是15.如图,△ ABE^A ABC 分别沿着 AB, AC 边翻折 180 ° 形成的•若/ BAC = 145。
:2020-2021学年七年级数学下学期期末测试卷01(北师大版,河南专用)(解析版)
北师大版七年级数学下册期末模拟测试卷01一、选择题1.下列倡导节约的图案中,是轴对称图形的是()A.B.C.D.【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选:C.2.下列计算正确的是()A.a8÷a2=a4B.a3•a4=a7C.(2a2)3=6a6D.()﹣2=【分析】分别根据同底数幂的乘除法法则,幂的乘方与积的乘方运算法则以及负整数指数幂的运算法则逐一判断即可.【解答】解:A.a8÷a2=a6,故本选项不合题意;B.a3.a4=a7,正确;C.(2a2)3=8a6,故本选项不合题意;D,,故本选项不合题意.故选:B.3.在测量一个小口圆形容器的壁厚时,小明用“X型转动钳”按如图方法进行测量,其中OA=OD,OB=OC,测得AB=a,EF=b,圆形容器的壁厚是()A.a B.b C.b﹣a D.(b﹣a)【分析】连接AB,只要证明△AOB≌△DOC,可得AB=CD,即可解决问题.【解答】解:连接AB.在△AOB和△DOC中,,∴△AOB≌△DOC,∴AB=CD=a,∵EF=b,∴圆形容器的壁厚是(b﹣a),故选:D.4.如图,点E在BC的延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4C.∠B=∠DCE D.∠D+∠DAB=180°【分析】根据平行线的判定定理同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行分别进行分析.【解答】解:∵∠1=∠2,∴AB∥CD,故A能判定AB∥CD;∵∠3=∠4,∴AD∥BC,故B不能判定;∵∠B=∠DCE,∴AB∥CD,故C能判定;∵∠D+∠DAB=180°,∴AB∥CD,故D能判定;故选:B.5.如图,把一块含有45°角的直角三角尺的两个顶点放在直尺的对边上,如果∠1=30°,那么∠2的度数是()A.30°B.25°C.20°D.15°【分析】利用平行线的性质求出∠3即可解决问题.【解答】解:如图,由题意∠1=∠3=30°,∠2+∠3=45°∴∠2=15°,故选:D.6.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零【分析】必然事件就是一定发生的事件,即发生的概率是1的事件.【解答】解:∵A,B,C选项为不确定事件,即随机事件,故不符合题意.∴一定发生的事件只有D,掷一枚骰子,向上一面的数字一定大于零,是必然事件,符合题意.故选:D.7.下列说法正确的是()A.同位角相等B.相等的角是对顶角C.内错角相等,两直线平行D.互补的两个角一定有一个锐角【分析】根据两平行线被第三条直线相截,同位角相等;对顶角的性质:对顶角相等;同旁内角互补,两直线平行;如果两个角的和等于180°(平角),就说这两个角互为补角进行分析即可.【解答】解:A、两直线平行,同位角相等,原命题错误;B、相等的角是对顶角,说法错误;C、内错角相等,两直线平行,说法正确;D、互补的两个角一定有一个锐角,说法错误;故选:C.8.如图,已知点A、D、C、F在同一条直线上,AB∥DE,BC∥EF,那么添加下列一个条件后,仍无法判定△ABC≌△DEF的是()A.AB=DE B.BC=EF C.∠B=∠E D.AD=CF【分析】分别判断选项所添加的条件,根据三角形的判定定理:SSS、SAS、AAS进行判断即可.【解答】解:A、添加AB=DE可用AAS进行判定,故本选项错误;B、添加BC=EF可用AAS进行判定,故本选项错误;C、添加∠B=∠E不能判定△ABC≌△DEF,故本选项正确;D、添加AD=CF,得出AC=DF,然后可用ASA进行判定,故本选项错误;故选:C.9.(a﹣b)2加上如下哪一个后得(a+b)2()A.0 B.4ab C.3ab D.2ab【分析】完全平方公式是(a+b)2=a2+2ab+b2,(a﹣b)2=a2﹣2ab+b2,根据以上公式得出即可.【解答】解:(a﹣b)2+4ab=(a+b)2,故选:B.10.小江同学热爱体育锻炼,每周六上午他都先从家跑步到离家较远的田园广场,在那里与同学打一段时间的羽毛球后再慢步回家.下面能反映小华同学离家的距离y与所用时间x 之间函数图象的是()A.B.C.D.【分析】本题需先根据已知条件,确定出每一步的函数图形,再把图象结合起来即可求出结果.【解答】解:图象应分三个阶段,第一阶段:跑步到离家较远的田园广场,在这个阶段,离家的距离随时间的增大而增大;第二阶段:打了一会儿羽毛球,这一阶段离家的距离不随时间的变化而改变;第三阶段:慢步回家,这一阶段,离家的距离随时间的增大而减小,并且这段的速度小于第一阶段的速度.故选:D.二、填空题11.已知a+b=4,a﹣b=3,则a2﹣b2=.【分析】根据a2﹣b2=(a+b)(a﹣b),然后代入求解.【解答】解:a2﹣b2=(a+b)(a﹣b)=4×3=12.故答案是:12.12.如图,直线a∥b,三角板的直角顶点A落在直线a上,两边分别交直线b于B、C两点.若∠1=42°,则∠2的度数是.【分析】先根据两角互余的性质求出∠3的度数,再由平行线的性质即可得出结论.【解答】解:∵∠BAC=90°,∠1=42°,∴∠3=90°﹣∠1=90°﹣42°=48°.∵直线a∥b,∴∠2=∠3=48°.故答案为:48°.13.若x=4m+1,y=64m﹣3,用x的代数式表示y,则y=.【分析】首先根据x=4m+1,可得:4m=x﹣1,然后根据64m=43m=(4m)3,用x的代数式表示y即可.【解答】解:∵x=4m+1,∴4m=x﹣1,∴64m=43m=(4m)3=(x﹣1)3,∴y=64m﹣3=(x﹣1)3﹣3.故答案为:(x﹣1)3﹣3.14.如图,工人师傅砌门时,常用木条EF固定长方形门框ABCD,使其不变形,这样做的根据是.【分析】根据三角形的稳定性,可直接填空.【解答】解:加上EF后,原图形中具有△AEF了,故这种做法根据的是三角形的稳定性.故答案为:三角形的稳定性.15.老师在黑板上书写了一个正确的演算过程,随后用手掌捂住了一个多项式,形式如下:×,所捂多项式是.【分析】直接利用整式的除法运算法则计算得出答案.【解答】解:由题意可得,所捂多项式是:(3x2y﹣xy2+xy)÷(﹣xy)=3x2y÷(﹣xy)﹣xy2÷(﹣xy)+xy÷(﹣xy)=﹣6x+2y﹣1.故答案为:﹣6x+2y﹣1.16.如图,已知∠1=∠2,AC=AD,增加下列条件:①AB=AE;②BC=DE;③∠C=∠D;④∠B=∠E,其中能使△ABC≌△AED的条件是.(填写序号)【分析】∠1=∠2,∠BAC=∠EAD,AC=AD,根据三角形全等的判定方法,可加一角或已知角的另一边.【解答】解:已知∠1=∠2,AC=AD,由∠1=∠2可知∠BAC=∠EAD,加①AB=AE,就可以用SAS判定△ABC≌△AED;加③∠C=∠D,就可以用ASA判定△ABC≌△AED;加④∠B=∠E,就可以用AAS判定△ABC≌△AED;加②BC=ED只是具备SSA,不能判定三角形全等.其中能使△ABC≌△AED的条件有:①③④;故答案为①③④.17.若自然数n使得三个数的竖式加法运算“n+(n+1)+(n+2)”产生进位现象,则称n 为“连加进位数”.例如,10不是“连加进位数”,因为10+11+12=33不产生进位现象;14是“连加进位数”,因为14+15+16=45产生进位现象.如果从10,11,12,……,19这10个自然数中任取一个数,那么取到“连加进位数”的概率是.【分析】分析“连加进位数特点”可以判断:13、14、15、16、17、18、19是连加进位数,利用概率公式求解即可.【解答】解:根据连加进位数的意义可以判断:13、14、15、16、17、18、19是连加进位数,因为共有10个数,所以:取到“连加进位数”的概率是.故答案为:.18.已知:如图,在长方形ABCD中,AB=4,AD=6.延长BC到点E,使CE=2,连接DE,动点P从点B出发,以每秒2个单位的速度沿BC﹣CD﹣DA向终点A运动,设点P的运动时间为t秒,当t的值为秒时,△ABP和△DCE全等.【分析】由条件可知BP=2t,当点P在线段BC上时可知BP=CE,当点P在线段DA上时,则有AD=CE,分别可得到关于t的方程,可求得t的值.【解答】解:设点P的运动时间为t秒,则BP=2t,当点P在线段BC上时,∵四边形ABCD为长方形,∴AB=CD,∠B=∠DCE=90°,此时有△ABP≌△DCE,∴BP=CE,即2t=2,解得t=1;当点P在线段AD上时,∵AB=4,AD=6,∴BC=6,CD=4,∴AP=BC+CD+DA=6+4+6=16,∴AP=16﹣2t,此时有△ABP≌△CDE,∴AP=CE,即16﹣2t=2,解得t=7;综上可知当t为1秒或7秒时,△ABP和△CDE全等.故答案为:1或7.三.解答题19.化简:(1)(2x2)3﹣x2•x4;(2)(x+2)(x﹣3)+x.【分析】(1)原式利用幂的乘方与积的乘方运算法则,以及同底数幂的乘法法则计算即可求出值;(2)原式利用多项式乘多项式法则计算,合并即可得到结果.【解答】解:(1)原式=8x6﹣x6=7x6;(2)原式=x2+2x﹣3x﹣6+x=x2﹣6.20.先化简,再求值:[(x+y)2+(x+y)•(x﹣y)]÷2x,其中x=1,y=﹣1.【分析】先根据平方差公式和完全平方公式进行计算,再合并同类项,算除法,最后代入求出即可.【解答】解:原式=[x2+2xy+y2+x2﹣y2]÷2x=(2x2+2xy)÷2x=x+y,当x=1,y=﹣1时,原式=0.21.如图,在边长为1的小正方形组成的网格中,点A,B,C均在小正方形的顶点上.(1)在图中画出与△ABC关于直线l成轴对称的△A′B′C′;(2)求△ABC的面积.【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)利用分割法求出三角形的面积即可.【解答】解:(1)如图,△A′B′C′即为所求.(2)△ABC的面积=2×4﹣×1×2﹣×1×3﹣×1×4=22.一只不透明的箱子里装有5个红球、4个白球和3个黄球,它们除颜色外均相同,(1)从箱子中任意摸出一个球,请填出以下概率:P(摸到红球)=,P(摸到白球)=,P(摸到黄球)=.(2)请直接回答再往箱子中放入白球多少个,可以使摸到白球的概率达到?【分析】(1)分别用各颜色球的个数除以球的总个数即可得;(2)让白球的个数占球的总个数的一半即可得.【解答】解:(1)P(摸到红球)=,P(摸到白球)==,P(摸到黄球)==,故答案为:,(2)再往箱子中放入白球4个,可以使摸到白球的概率达到.23.已知:点A、E、D、C在同一条直线上,AE=CD,EF∥BD,EF=BD.求证:AB∥CF.【分析】首先利用SAS证明△ABD≌△CEF,根据全等三角形对应角相等,可得∠A=∠C,再根据“内错角相等,两直线平行”,即可证出AB∥CF.【解答】证明:∵AE=CD,∴AE+ED=CD+ED,即:AD=CE,∵EF∥BD,∴∠BDA=∠CEF,在△ABD和△CEF中,,∴△ABD≌△CEF(SAS),∴∠A=∠C,∴AB∥CF.24.如图,在△ABC中,AB=AC,∠BAC=90°,AE是过点A的一条直线,且B、C在AE的两侧,BD⊥AE于D,CE⊥AE于E.(1)求证:△ABD≌△CAE;(2)若DE=3,CE=2,求BD.【分析】(1)利用AAS判定△ABD≌△CAE;(2)因为BD=AE,AD=CE,AE=AD+DE=CE+DE,所以BD=DE+CE.【解答】(1)证明:∵BD⊥AE于D,CE⊥AE于E,∠BAC=90°,∴∠BDA=∠AEC=90°,∠DBA+∠BAD=90°,∠BAD+∠EAC=90°,∴∠DBA=∠EAC,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS);(2)解:由(1)知,△ABD≌△CAE,则BD=AE,AD=CE.∵DE=3,CE=2∴AE=AD+DE=CE+DE=5.∴BD=AE=5.25.有研究表明,声音在空气中的传播速度与空气的温度有关,当空气的温度变化,声音的传播速度也将随着变化.声音在空气中传播速度与空气温度关系一些数据(如下表格)温度/℃…﹣20 ﹣10 0 10 20 30 …声速/m/s…318 324 330 336 342 348 …(1)指出在这个变化过程中的自变量和因变量;(2)当声音在空气中传播速度为342m/s时,此时空气的温度是多少?(3)该数据表明:空气的温度每升高10℃,声音的传播速度将增大(或减少)多少?(4)用y表示声音在空气中的传播速度,x表示空气温度,根据(3)中你发现的规律,直接写出y与x之间的关系式.【分析】(1)利用自变量和因变量的定义进而得出答案;(2)利用表格中数据得出答案即可;(3)利用表格中数据得出;空气的温度每升高10℃,声音的传播速度将增大6℃;(4)利用表格中数据得出y与x的函数关系式即可.【解答】解:(1)自变量是温度,因变量是声速;(2)由图表中数据可得出,当声音在空气中传播速度为342m/s时,此时空气的温度是20℃;(3)利用表格中数据得出;空气的温度每升高10℃,声音的传播速度将增大6m/s;(4)由图表中数据可得出:y=0.6x+330.26.如图,在长方形ACDF中,AC=DF,点B在CD上,点E在DF上.BC=DE=a,AC=BD =b,AB=BE=c,且AB⊥BE.(1)在探究长方形ACDF的面积S时,我们可以用两种不同的方法:一种是找到长和宽,然后利用长方形的面积公式,就可得到S;另一种是将长方形ACDF看成是由△ABC,△BDE,△AEF,△ABE组成的,分别求出它们的面积,再相加也可以得到S.请根据以上材料,填空:方法一:S=.方法二,S=S△ABC+S△BDE+S AEF+S△ABE=ab+b2﹣a2+c2.(2)由于(1)中的两种方法表示的都是长方形ACDP的面积,因此它们应该相等,请利用以上的结论求a,b,c之间的等量关系(需要化简).(3)请直接运用(2)中的结论,求当c=10,a=6,S的值.【分析】(1)根据长方形的面积公式可求解;(2)根据长方形的面积=4个三角形的面积和列式化简即可求解;(3)将a,c的值代入计算可求解b的值,进而可求解S值.【解答】解:(1)S=b(a+b)=ab+b2.故答案为S=ab+b2;(2)由题意得:,∴2ab+2b2=2ab+b2﹣a2+c2,∴a2+b2=c2;(3)∵a2+b2=c2,且c=10,a=6,∴62+b2=102,∴b=8,∴S=ab+b2=6×8+64=112.答:S的值为112.27.现给出一个结论:“直角三角形斜边上的中线等于斜边的一半”.该结论是正确的,用图形语言可表示为:如图1,在Rt△ABC中,∠C=90°,若点D为AB中点,则CD=AB.请结合上述结论解决如下问题:已知,点P是射线BA上一动点(不与A,B合)分别过点A,B向直线CP作垂线,垂足分别为E,F,其中Q为AB边的中点.(1)如图2,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系是.(2)如图3,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明.(3)如图4,当点P在线段BA的延长线上时,此时(2)中的结论是否成立?请画出图形并写出主要证明思路.【分析】(1)根据AAS推出△AEQ≌△BFQ即可得出答案;(2)延长EQ交BF于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可;(3)延长EQ交FB于D,求出△AEQ≌△BDQ,根据全等三角形的性质得出EQ=QD,根据直角三角形斜边上中点性质得出即可【解答】解:(1)如图1,当点P与点Q重合时,AE与BF的位置关系是AE∥BF,QE与QF的数量关系是QE=QF,理由:∵Q为AB的中点,∴AQ=BQ,∵AE⊥CQ,BF⊥CQ,∴AE∥BF,∠AEQ=∠BFQ=90°,在△AEQ和△BFQ中,,∴△AEQ≌△BFQ(AAS),∴QE=QF,故答案为:AE∥BF,QE=QF.(2)结论:QE=QF,理由:如图2,延长EQ交BF于D,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中,,∴△AEQ≌△BDQ(AAS),∴EQ=DQ,∵∠BFE=90°,∴QE=QF.(3)当点P在线段BA(或AB)的延长线上时,此时(2)中的结论成立,理由:延长EQ交FB于D,如图3,∵由(1)知:AE∥BF,∴∠AEQ=∠BDQ,在△AEQ和△BDQ中,,∴△AEQ≌△BDQ(AAS),∴EQ=DQ,∵∠BFE=90°,∴QE=QF.。
【最新】北师大版七年级下册数学《期末考试试卷》及答案解析
北师大版七年级下学期期末测试数学试卷学校________班级________姓名________成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列计算正确的是()A.3a2-4a2=a2B.a2 a3=a6C.a10÷a5=a2D.(a2)3=a62.如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠53.下面作三角形最长边上的高正确的是()A. B.C. D.4.某种蔬菜的价格随季节变化如下表,根据表中信息,下列结论错误的是()月份x价格y(元/千克)1234567891011125.005.505.004.802.001.501.000.901.503.002.503.50A.x是自变量,y是因变量B.2月份这种蔬菜价格最高,为5.50元/千克9 D.110 C.110 B.1.C.28月份这种蔬菜价格一直在下降D.812月份这种蔬菜价格一直在上升5.如图,在Rt∆ABC中,ED是AC的垂直平分线,分别交BC,AC于E,D,已知∠BAE=10o,则∠C 为()A30o B.40o C.50o D.60o6.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是()A. B. C. D.7.下列说法正确的是()A.367人中至少有2人生日相同B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖8.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”概率为()A.389.如图,已知D为∆ABC边AB的中点,E在AC上,将∆ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65o,则∠BDF等于()A.65oB.50oC.60oD.57.5o10.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙,若图甲和图乙中阴影部分的面积分别为3和16,则正方形A,B的面积之和为()A.13B.11C.19D.21二、填空题(本大题共6个小题,每题3分,共18分,将答案填在答题纸上)11.计算:(x+1)(x-1)=12.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.13.如图,用两根拉线固定竖直电线杆的示意图,其中拉线的长AB=AC,若∠ABD=50o,则∠CAD=__________.14.在地球某地,温度T(℃)与高度d(m)的关系可以近似用T=10-d50来表示,根据这个关系式,当高度d的值是400时,T的值为_________.15.如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是_____.16.如图,在第1个∆ABA中,∠B=20o,AB=A B,在A B上取一点C,延长AA到A,使得A A=AC;111112121在A2C上取一点D,延长A A2到A3,使得A2A3=A2D;……按此作法进行下去,第n个三角形的以A n为顶点的内角的度数为___.三、解答题:本大题共9个小题,共72分.解答应写出文字说明、证明过程或演算步骤.17.先化简,再求值:(a+b)2+b(a﹣b)﹣4ab,其中a=2,b=﹣12.18.如图,已知∠1=∠2,∠3=100o,∠B=80o,判断CD与EF之间位置关系,并说明理由.的19.如图所示,BC=DE,BE=DC,试说明(1)BC//D E;(2)∠A=∠ADE20.一个不透明的袋中装有红、黄、白三种颜色的球共100个,它们除颜色外都相同,其中黄球的个数是白球3个数的2倍少5个,已知从袋中摸出一个球是红球的概率是.10(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走10个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.21.如图,已知∆ABC中,AB=AC,点D,E分别在AB,AC上,且BD=CE,如何说明BE=CD呢?解:因为AB=AC()所以∠ABC=∠ACB()又因为BD=CE()BC=CB()所以∆BCD≌∆CBE()所以BE=CD()22.小明某天上午9时骑自行车离开家,15时回家,他离家的距离与时间的变化情况如图所示.(1)10时时他离家km,他到达离家最远的地方时是时,此时离家km;(2)他可能在哪段时间内休息,并吃午餐?(3)他在出行途中,哪段时间内骑车速度最快,速度是多少?23.如图,已知AB=AC,∠A=40o,AB的垂直平分线MN交AC于点D,(1)求∠DBC的度数;(2)若∆DBC的周长为14cm,BC=5cm,求AB的长.24.阅读理解先阅读下面的内容,再解决问题例题:若m2+2mn+2n2-6n+9=0,求m和n的值.解:∵m2+2mn+2n2-6n+9=0∴m2+2mn+n2+n2-6n+9=0∴(m+n)2+(n-3)2=0∴m+n=0,n-3=0∴m=-3,n=3问题:(1)x2+2y2-2x y+4y+4=0,求x y的值.(2)已知a,b,c是∆ABC的三边长,满足a2+b2=12a+8b-52,求c的范围.25.如图1,点P是线段AB上动点(点P与A,B不重合),分别以AP,PB为边向线段AB的同一侧作正∆APC和正∆PBD.的(1)请你判断AD与BC有怎样的数量关系?请说明理由;(2)连接AD,BC,相交于点Q,设∠AQC=α,那么α的大小是否会随点P的移动而变化?请说明理由;(3)如图2,若点P固定,将∆PBD绕点P按顺时针方向旋转(旋转角小于180o),此时α的大小是否发生变化?(只需直接写出你的猜想,不必证明).答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.下列计算正确的是()A.3a2-4a2=a2B.a2 a3=a6C.a10÷a5=a2D.(a2)3=a6【答案】D【解析】【分析】根据合并同类项的法则、同底数的乘法和除法法则、幂的乘方运算性质进行计算判断即可【详解】解:A、3a2-4a2=-a2,所以本选项错误;B、a2 a3=a5,所以本选项错误;C、a10÷a5=a5,所以本选项错误;D、(a2)3=a6,本选项正确.故选D.【点睛】本题考查了合并同类项的法则、同底数的乘法和除法法则、幂的乘方运算性质等知识,属于基础题型,熟练掌握上述法则与性质是解题的关键.2.如图,直线a,b被直线c所截,那么∠1的同位角是()A.∠2B.∠3C.∠4D.∠5【答案】C【解析】分析:根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可.详解:由同位角的定义可知,∠1的同位角是∠4.故选C..点睛:本题考查了同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.3.下面作三角形最长边上的高正确的是()A.B.C.D.【答案】C【解析】【分析】先找出图形中的最长边和它所对的顶点,过这个顶点向最长边作垂线段,即得答案 【详解】解:∵三角形为钝角三角形,∴最长边上的高是过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.故选 C.【点睛】本题考查三角形高的定义和垂线的定义,无论三角形是什么形状的三角形,其最长边上的高一定在三角形内部,即过最长边所对的角的顶点,作对边的垂线,垂足在最长边上.4.某种蔬菜的价格随季节变化如下表,根据表中信息,下列结论错误的是()月份 x 价格 y(元/千克)1 2 3 4 5 6 7 8 9 10 11 125.00 5.50 5.00 4.80 2.00 1.50 1.00 0.90 1.50 3.00 2.50 3.50A. x 是自变量, y 是因变量B. 2 月份这种蔬菜价格最高,为 5.50 元/千克C. 2 8 月份这种蔬菜价格一直在下降D.8-12月份这种蔬菜价格一直在上升【答案】D【解析】【分析】根据表格提供数据信息逐一进行判断即可.【详解】解:A、由题意,蔬菜的价格随季节变化而变化,所以月份x是自变量,蔬菜价格y是因变量,所的以A正确;B、观察表格可知,2月份时蔬菜价格为5.50元/千克,是各月份的最高价格,所以B正确;C、2-8月份这种蔬菜由5.50元/千克一直下降到0.90元/千克,所以C正确;D、8-12月份这种蔬菜价格分别是:0.90、1.50、3.00、2.50、3.50(元/千克),不是一直在上升,所以本选项错误.故选D.【点睛】本题考查的是用表格表示变量之间的关系,读懂题意,弄清表格数据所提供的数据信息是解题的关键.5.如图,在Rt∆ABC中,ED是AC的垂直平分线,分别交BC,AC于E,D,已知∠BAE=10o,则∠C 为()A.30oB.40oC.50oD.60o【答案】B【解析】【分析】先根据线段垂直平分线的性质和等腰三角形的性质得到∠EAC=∠C,然后根据直角三角形两锐角互余的性质即可求得结果.【详解】解:∵ED是AC的垂直平分线,..∴EA =EC ,∴∠EAC =∠C ,设∠C =x ,则∠BAC =x +10,∵∠BAC +∠C =90°,∴x +x +10=90°,解得 x =40°,即∠C =40°.故选 B.【点睛】本题考查了线段垂直平分线的性质、等腰三角形的性质和直角三角形的性质,属于基础题型,熟知线段垂直平分线的性质和等腰三角形的性质是解此题的关键 6.如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60 秒后将容器内注满.容器内水面的高度 h (cm )与注水时间 t (s )之间的函数关系图象大致是()A. B. C. D.【答案】D【解析】【分析】根据图像分析不同时间段的水面上升速度,进而可得出答案.【详解】已知一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60 秒后将容器内注满.因为长方体是均匀的,所以初期的图像应是直线,当水越过长方体后,注水需填充的体积变大,因此此时的图像也是直线,但斜率小于初期,综上所述答案选 D.【点睛】能够根据条件分析不同时间段的图像是什么形状是解答本题的关键 7.下列说法正确的是( )A. 367 人中至少有 2 人生日相同9 D.110 C.110 B.1B.任意掷一枚均匀的骰子,掷出的点数是偶数的概率是1 3C.天气预报说明天的降水概率为90%,则明天一定会下雨D.某种彩票中奖的概率是1%,则买100张彩票一定有1张中奖【答案】A【解析】分析:利用概率的意义和必然事件的概念的概念进行分析.详解:A、367人中至少有2人生日相同,正确;B、任意掷一枚均匀的骰子,掷出的点数是偶数的概率是12,错误;C、天气预报说明天的降水概率为90%,则明天不一定会下雨,错误;D、某种彩票中奖的概率是1%,则买100张彩票不一定有1张中奖,错误;故选:A.点睛:此题主要考查了概率的意义,解决的关键是理解概率的意义以及必然事件的概念.8.在“绿水青山就是金山银山”这句话中任选一个汉字,这个字是“绿”的概率为()A.38【答案】B【解析】分析:直接利用概率公式求解.详解:这句话中任选一个汉字,这个字是“绿”的概率=1 10.故选:B.点睛:本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数除以所有可能出现的结果数.9.如图,已知D为∆ABC边AB的中点,E在AC上,将∆ABC沿着DE折叠,使A点落在BC上的F处,若∠B=65o,则∠BDF等于()A.65oB.50oC.60oD.57.5o【答案】B【解析】【分析】先根据折叠的性质和等腰三角形的性质得到∠DFB=∠B,再根据三角形的内角和即可求得结果.【详解】解:由折叠的性质知:DF=DA,∵D为边AB的中点,∴DB=DA,∴DF=DB,∴∠DFB=∠B=65°,∴∠BDF=180°-∠B-∠BFD=180°-65°-65°=50°.故选B.【点睛】本题考查了折叠的性质、等腰三角形的性质和三角形的内角和等知识,由折叠的性质和等腰三角形的性质得出∠DFB=∠B是解答的关键.10.有两个正方形A,B,现将B放在A的内部得图甲,将A,B并列放置后构造新的正方形得图乙,若图甲和图乙中阴影部分的面积分别为3和16,则正方形A,B的面积之和为()A.13【答案】C【解析】【分析】B.11C.19D.21设正方形A的边长为a,正方形B的边长为b,根据图形列出a、b的关系式求解即得.【详解】解:设正方形A的边长为a,正方形B的边长为b,由图甲得:(a-b)2=3,即a2+b2-2ab=3,由图乙得:(a+b)2-a2-b2=16,整理得2ab=16,所以a2+b2=19.即正方形A、B面积之和为19.故选C.的【点睛】本题主要考查了完全平方公式在几何图形中的应用和整体代入的数学思想,根据图形得出数量关系是解题的关键.二、填空题(本大题共6个小题,每题3分,共18分,将答案填在答题纸上)11.计算:(x+1)(x-1)=【答案】x2-1【解析】原式=x2-12=x2-1.12.如图,DA⊥CE于点A,CD∥AB,∠1=30°,则∠D=_____.【答案】60°【解析】【分析】先根据垂直的定义,得出∠BAD=60°,再根据平行线的性质,即可得出∠D的度数.【详解】∵DA⊥CE,∴∠DAE=90°,∵∠1=30°,∴∠BAD=60°,又∵AB∥CD,∴∠D=∠BAD=60°,.【详解】解:把 d = 400 代入 T = 10 - ,得 T = 10 - 故答案为:60°.【点睛】本题主要考查了平行线的性质以及垂线的定义,解题时注意:两直线平行,内错角相等.13.如图,用两根拉线固定竖直电线杆的示意图,其中拉线的长 AB = AC ,若 ∠ABD = 50o ,则∠CAD = __________.【答案】 40o【解析】【分析】根据等腰三角形的性质和直角三角形两锐角互余的性质即可求解 【详解】解:∵ AB = AC ,∴∠ABD =∠ACD =50°,由题意得:AD ⊥BC ,∴∠CAD =90°-∠ACD =40°.故答案为 40o .【点睛】本题考查了等腰三角形的性质和直角三角形的性质,属于基础题型,弄清题意,熟练掌握等腰三角形的性质是解题的关键.14.在地球某地,温度T (℃)与高度 d ( m )的关系可以近似用T = 10 -当高度 d 的值是 400 时, T 的值为_________.【答案】2【解析】【分析】d 50来表示,根据这个关系式,把 d = 400 代入 T = 10 - d 50计算即得结果.故答案为 2.d 40050 50= 10 - 8 = 2 .16.如图,在第1个∆ABA中,∠B=20o,AB=A B,在A B上取一点C,延长AA到A,使得A A=AC;1【点睛】本题考查了代数式求值,难度不大,属于基础题型.15.如图,在△ABC中,AC=10,BC=6,AB的垂直平分线交AB于点D,交AC于点E,则△BCE的周长是_____.【答案】16【解析】【分析】由线段垂直平分线上的点到线段两端点的距离相等可求出AE=BE,进而求出△BCE的周长.【详解】∵DE是AB的垂直平分线,∴AE=BE,∵AC=10cm,BC=6cm,∴△BCE的周长=BC+BE+CE=BC+AE+CE=BC+AC=10+6=16cm.故答案为:16【点睛】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,求出△BCE的周长等于AC与BC的和是解题的关键.11112121在A2C上取一点D,延长A A2到A3,使得A2A3=A2D;……按此作法进行下去,第n个三角形的以A n为顶点的内角的度数为___.【答案】80o2n-1∴∠BA 1A = = = 80o , ∴∠CA 2A 1= = = 40o ; 40o 80o 20o 80o=20°,∠EA 4A 3= 2 【解析】【分析】先根据等腰三角形的性质求出∠ BA 1A 的度数,再根据三角形外角的性质及等腰三角形的性质分别求出∠CA 2A 1,∠DA 3A 2 及∠EA 4A 3 的度数;找出规律即可得出第 n 个三角形的以 A n 为顶点的内角的度数.【详解】解:∵在△ABA 1 中,∠B =20°,AB =A 1B ,180o - ? B 180o 20o 2 2∵A 1A 2=A 1C ,∠BA 1A 是 △A 1A 2C 的外角,BA A 80o 1 2 2同理可得,∠DA 3A 2=……= = 2 2 2 23 =10°,∴第 n 个三角形的以 A n 为顶点的内角的度数为80o 2n -1.故答案为: 80o 2n -1.【点睛】本题考查的是等腰三角形的性质及三角形外角的性质,根据题意得出∠CA 2A 1,∠DA 3A 2 及∠EA 4A 3的度数,找出规律是解答此题的关键.三、解答题:本大题共 9 个小题,共 72 分. 解答应写出文字说明、证明过程或演算步骤.17.先化简,再求值:(a+b )2+b (a ﹣b )﹣4ab ,其中 a=2,b=﹣1 2.【答案】5.【解析】分析:首先计算完全平方,计算单项式乘以多项式,然后再合并同类项,化简后,再代入 a 、b 的值,进而可得答案.详解:原式=a 2+2ab+b 2+ab-b 2-4ab=a 2-ab ,当 a=2,b=- 1 2时,原式=4+1=5..( 点睛:此题主要考查了整式的混合运算--化简求值,关键是先按运算顺序把整式化简,再把对应字母的值代入求整式的值.18.如图,已知 ∠1 = ∠2 , ∠3 = 100o , ∠B = 80o ,判断 CD 与 EF 之间的位置关系,并说明理由.【答案】 EF / /CD ,见解析.【解析】【分析】由 ∠1 = ∠2 可得 AB / /CD ,由∠3、∠B 的关系可判断 AB 与 EF 的关系,进一步即可解答.【详解】解: EF / /CD ,理由如下:因为 ∠1 = ∠2 ,所以 AB / /CD ,又因为 ∠3 = 100o , ∠B = 80o , 所以 ∠3 + ∠B = 180o , 所以 AB / / E F ,所以 EF / /CD .【点睛】本题考查了平行线的判定和平行公理的推论,熟练掌握平行线的判定方法是解题的关键 19.如图所示, BC = DE , BE = DC ,试说明(1) BC / / D E ;(2) ∠A = ∠ADE【答案】 1)见解析;(2)见解析.⎨ D C = BE ⎪ B D = DB ( 【解析】【分析】(1)连接 BD ,先根据 SSS 证明 ∆BCD ≌ ∆DEB ,再根据全等三角形的性质得∠CBD = ∠EDB ,进一步即得结论;(2)由(1),根据平行线的性质即得结论.【详解】解:(1)连接 BD ,在 ∆BCD 和 ∆DEB 中⎧ B C = DE ⎪⎩所以 ∆BCD ≌ ∆DEB ( SSS ),所以 ∠CBD = ∠EDB ,所以 BC / / D E .(2)由(1)知: AC / / D E ,所以 ∠A = ∠ADE .【点睛】本题考查了全等三角形的判定和性质以及平行线的性质,熟练掌握全等三角形的判定和性质是解题的关键.20.一个不透明的袋中装有红、黄、白三种颜色的球共 100 个,它们除颜色外都相同,其中黄球的个数是白球个数的 2 倍少 5 个,已知从袋中摸出一个球是红球的概率是 3 10.(1)求袋中红球的个数;(2)求从袋中摸出一个球是白球的概率;(3)取走 10 个球(其中没有红球)后,求从剩余的球中摸出一个球是红球的概率.【答案】 1)30 个(2)1/4(3)1/3【解析】3 解:(1)根据题意得:100× =30,10答:袋中红球有 30 个.(2)设白球有 x 个,则黄球有(2x -5)个,根据题意得 x +2x -5=100-30,解得 x=25。
2018-2019学年郑州北师大七年级下期末考试数学试卷(有答案)
2018-2019学年郑州七年级下期期末考试数学试卷及参考答案注意:本试卷分试超和答题卡两部分,考试时同90分,满分100分,考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡时光飞逝,转题间乐乐七年级学习生活即将结束,在这一年中,乐乐收获满满,我们一起来分享一下吧!一、选择题(每小题3分,共30分)1乐乐看到妈妈手机上有好多图标,在下列图标中可看作轴对称图形的是()2.乐乐所在的四人小组做了下列运算,其中正确的是()A.(-3)-2=-9 B.(-2a3)2=4a6 C.a6÷a2=a3 D.2a2·3a3=6a63.乐乐很喜欢清代诗人靠枚的诗《苔》:“白日不到处,青春恰自来,苔花如米小,也学牡丹开。
“其实苔御植物属于孢子植物,不开花,袁枚看到的“苔花”,很可能是苔类的孢子体的苞某种苔藓的苞商的直径约为0.7毫米,则0.7毫米用科学记数法可表示为()A.0.7×10-4米B.7×10-3米C.7×10-4米D.7×10-5米4.如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=139°,∠C为()A.38°B.39°C.40°D.41°5.在一个不透明的布袋中,红色、那色,白色的小球共有50个,除颜色外其他完全相同乐乐通过多次摸球试验后发现,摸到红色球,黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20B.15C.10D.56.乐乐和科学小组的同学们在网上获取了声音在空气中传播的速度与空气温度之间关系的一些数据(如下表)下列说法中错误的是()A.在这个变化过程中,当温度为10℃时,声速是336m/sB温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s7.乐乐观察“抖空竹“时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是()A.32°B.28°C.26°D.23°8.如图,乐乐用边长为1的正方形做了一副七巧板,并将这副七巧板拼成一只小猫,则阴影都分的面积为()A. 14B.12C.25D.239.乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为()A.50°B.65°C.65°或25°D.50°或40°10.如图是乐乐的五子棋棋盘的一部分(5×5的正方形网格) 以点D,E为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC全等,这样的格点三角形最多可以画出()A.2个B.4个C.6个D.8个二、填空题(每小题3分,共1511.乐乐在作业上写到(a+b)2=a2+b2,同学英树认为不对,并且他利用下面的图形做出了直观的解释,根据这个图形的总面积可以得到正确的完全平方公式(a+b)2= 12.乐乐同学有两根长度为4cm,7cm的木棒,母亲节时他想自已动手给妈妈钉一个角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是13.如图,△ABC的边BC长12cm,乐乐观察到当顶点A沿着BC边上的高AD所线向上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x(cm),那么△ABC的面积y(cm2)与x(cm)的关系式是14.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的 (球的体积计算公式为V=4 3πr2)15.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外).重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差;重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是三、解答题(本大题共7个小题,共55分)16.(6分)乐乐对化简求值题掌握良好,请你也来试试吧!先化简,再求值:[(ab+4)(ab-4)-5a2b2+16]÷(ab),其中a=10,b=- 1 517.(6分)乐乐觉得轴对称图形很有意思.如图是4个完全相同的小正方形组成的L形图,请你用三种方法分别在图中添画一个小正方形,使添画后的图形成为轴对称图形18.(8分)乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB为转盘直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠(1)某顾客消费40元,是否可以获得转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?19.(8分)尺规作图是理论上接近完美的作图方式,乐乐很喜欢用尺规画出要求的图形.在下面的△ABC中,请你也按要求用尺规作出下列图形(不写作法,但要保留作图痕迹)并填空(1)作出∠BAC的平分线交BC边于点D;(2)作出AC边上的垂直平分线l交AD于点G;(3)连接GC,若∠B=55°,∠BCA=60°,则∠AGC的度数为20.(8分)如图是乐乐设计的暂力拼图玩具的一部分,现在乐乐遇到了两个问题,请你帮助解决:已知:如图,AB∥CD,(1)若∠APC=60°,∠A=40°,求∠C的度数请填空解:(1)过点P作直线PE∥AB(如图所示)因为AB∥CD(已知)所以EP∥CD(平行于同一条直线的两条直线平行)因为∠A=∠APE=40∠C=∠CPE()又因为∠APC=∠APE+∠CPE=∠A+ =60°(等量代换)所以∠C= °(等式性质)2)直接写出∠B、∠D与∠BFD之间的数量关系21.(9分)人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东四会逐渐被遗忘,教乐乐数学的马老师调查了自己班学生的学习遗忘规律,并根据调查数据描绘了一条曲线(如图所示),其中纵轴表示学习中的记忆保持量,横轴表示时间,观察图象并回答下列(1)观察图象,1h后,记忆保持量约为; 8h后,记忆保持量约为(2)图中的A点表示的意义是什么?A点表示的意义是在以下哪个时间段内遗忘的速度最快?填序号①0-2h ②2-4h;③4-6h ④6-8h(3)马老师每节课结束时都会对本节课进行总结回顾,并要求学生每天晚上临睡前对当课堂上所记的课盒笔记进行复习,据调查这样一天后记忆量能保持98%如果学生一天不复习,结果又会怎样?由此,你能根据上述曲线规律制定出两条今年暑假的学习计划吗?22.(10分)乐乐和数学小组的同学们研究了如下问题,请你也来试一下吧点C是直线l1上一点,在同一平面内,乐乐他们把一个等直角三角板ABC任意放,其中直角顶点C与点C重合,过点A作直线l2⊥l1,垂足为点M,过点B作l3⊥l1, 垂足为点N(1)当直线l2,l3位于点C的异侧时,如图1,线段BN,AM与MN之间的数量关系 (不必说明理由)2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN,AM与MN之间的数量系,并说明理由3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并直接写出线段BN,A MN之间的数量关系七年级 数学 参考答案(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1. A 2. B 3. C 4. D 5. B6. C 7. D 8. A 9. C 10. B二、填空题(每小题3分,共15分)11.a 2+2ab+b 2 12. 0.4(52或) 13. y =6x 14.32 15. 6174 三、解答题(本大题共7个小题,共55分)16.(6分) 解:)(]165)4)(4[(22ab b a ab ab ÷+--+=)(]16516[(2222ab b a b a ÷+--…………………………(2分)=)()4(22ab b a ÷-=ab 4-…………………………………………………(4分) 当51,10-==b a 时,原式=)51(104-⨯⨯-=8……………………(6分)17.(6分) 解: 如图.……………………(6分)18.(8分)解:(1)根据规定消费50元(含50元)以上才能获得一次转盘的机会,而40元小于50元,故不能获得转盘的机会; ………………(2分)(2)某顾客正好消费66元,超过50元,可以获得转盘的的机会.若获得9折优惠,则概率;………………………(4分) 若获得8折优惠,则概率;………………………(6分) 若获得7折优惠,则概率.………………………(8分)19.(8分)解:(1)图略(可以不下结论);……………………(3分)(2)图略(可以不下结论);……………………(6分)(3)115°. ……………………(8分)20.(8分)解:(1)两直线平行,内错角相等;……………………(2分) ∠C ;…………………………………………………………(4分)20;…………………………………………………………(6分)(2)∠B +∠D +∠BFD =360°. ………………………………(8分)21.(9分)解:(1)50%(50%3±%均算正确);30%(30%3±%均算正确);……(4分)(2)点A 表示2h 大约记忆量保持了40%;…………………………(6分)4136090)9(==折P 6136060)8(==折P 12136030)7(==折P.... ①;…………………(7分)(3)如果一天不复习,记忆量只能保持不到30%(答案不唯一);暑假的学习计划两条略(合理即可)………(9分)22.解:(1)MN= AM+BN;………………(2分)(2)MN= BN-AM;………………………………(4分)理由如下:如图2.因为l2⊥l1,l3⊥l1.所以∠BNC=∠CMA=90°.所以∠ACM+∠CAM=90°.因为∠ACB=90°,所以∠ACM+∠BCN=90°.所以∠CAM=∠BCN.在△CBN和△ACM中,∠∠∠∠所以△CBN≌△ACM(AAS).所以BN=CM,NC=AM.所以MN=CM﹣CN=BN﹣AM.…………………………(8分)(3)补全图形,如图3.....………(9分)结论:MN =AM ﹣BN .………(10分)l 1。
2022年北师大版七年级下册第二学期数学期末考试试题(含答案)
七年级下学期数学期末考试试题(满分:150分时间:120分钟)一.单选题。
(共10小题,每小题4分,共40分)4.把20本书随意放入两个抽屉(每个抽屉内都放),第一个抽屉放入a本,第二个抽屉放入b 本,则下列判断错误的是()A.20是变量B.a是变量C.b是变量D.20是常量5.如图,长方形ABCD沿线段EF折叠到EB’C’F’的位置,若∠EFC’=100°,则∠DFC’的度数是()A.20°B.30°C.40°D.50°(第5题图)(第6题图)(第8题图)6.如图,在△ABC中,AC=6,中线AD=10,则边AB的长可能是()A.30B.22C.14D.67.等腰三角形的周长是15cm,其中一边长为4cm,则该等腰三角形的底边长为()A.7cmB.4cmC.4cm或7cmD.5.5cm或4cmA.1:3B.2:3C.5:1D.1:5A.20分钟B.24分钟C.26分钟D.28分钟(第9题图)(第10题图)二.填空题。
(共6小题,每小题4分,共24分)11.如果(x2-a)x+x的展开式中只含有x3这一项,则a的值为.12.如图,AB∥EG,CD∥EF,BC∥DE,若x=50°,y=30°,则z的度数为.(第12题图)(第14题图)(第15题图)13.若x2+(m-2)x+16是一个完全平方式,则m的值是.14.把一转盘分成两个半圆,再把其中一个半圆等份三等份,并标上数字如图所示,任意转动转盘,当转盘停止时,指针落在奇数区域的概率是.15.小明从家门口骑车去图书馆,先走平路到达A,再走上坡路到达B,最后走下坡到达图书馆,所用的时间与路程的关系如图所示,回家时,如果他沿原路返回,且走平路,上坡路和下坡路的速度分别保持和去上班时一致,他从图书馆到家需要的时间是分钟. 16.如图,在△ABC中,BD,BE分别是△ABC的高线和角平分线,点F在CA的延长线上,FH⊥BE交BD于点G,交BC于点H,DE=DG,下列结论:①∠DBE=∠F;②∠BEF=1(∠BAF+∠2C);③∠F=1(∠BAC+∠C);④2DE+2BGEF,其中正确的是(只填序号).2三.解答题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
七年级下期期末考试数学试卷及参考答案注意:本试卷分试超和答题卡两部分,考试时同90分,满分100分,考生应首先阅读答题卡上的文字信息,然后在答题卡上作答,在试题卷上作答无效,交卷时只交答题卡时光飞逝,转题间乐乐七年级学习生活即将结束,在这一年中,乐乐收获满满,我们一起来分享一下吧!一、选择题(每小题3分,共30分)1乐乐看到妈妈手机上有好多图标,在下列图标中可看作轴对称图形的是()2.乐乐所在的四人小组做了下列运算,其中正确的是()A.(-3)-2=-9 B.(-2a3)2=4a6 C.a6÷a2=a3 D.2a2·3a3=6a63.乐乐很喜欢清代诗人靠枚的诗《苔》:“白日不到处,青春恰自来,苔花如米小,也学牡丹开。
“其实苔御植物属于孢子植物,不开花,袁枚看到的“苔花”,很可能是苔类的孢子体的苞某种苔藓的苞商的直径约为0.7毫米,则0.7毫米用科学记数法可表示为()A.0.7×10-4米B.7×10-3米C.7×10-4米D.7×10-5米4.如图,乐乐将△ABC沿DE,EF分别翻折,顶点A,B均落在点O处,且EA与EB重合于线段EO,若∠DOF=139°,∠C为()A.38°B.39°C.40°D.41°5.在一个不透明的布袋中,红色、那色,白色的小球共有50个,除颜色外其他完全相同乐乐通过多次摸球试验后发现,摸到红色球,黑色球的频率分别稳定在27%和43%,则口袋中白色球的个数很可能是()A.20B.15C.10D.56.乐乐和科学小组的同学们在网上获取了声音在空气中传播的速度与空气温度之间关系的一些数据(如下表)下列说法中错误的是()A.在这个变化过程中,当温度为10℃时,声速是336m/sB温度越高,声速越快C.当空气温度为20℃时,声音5s可以传播1740mD.当温度每升高10℃,声速增加6m/s7.乐乐观察“抖空竹“时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠BAE=92°,∠DCE=115°,则∠E的度数是()A.32°B.28°C.26°D.23°8.如图,乐乐用边长为1的正方形做了一副七巧板,并将这副七巧板拼成一只小猫,则阴影都分的面积为( )A. 14B. 12C. 25D. 239.乐乐发现等腰三角形一腰上的高与另一腰的夹角为40°,则这个等腰三角形底角的度数为( )A.50°B.65°C.65°或25°D.50°或40°10.如图是乐乐的五子棋棋盘的一部分(5×5的正方形网格) 以点D,E 为两个顶点作位置不同的格点三角形,使所作的格点三角形与△ABC 全等,这样的格点三角形最多可以画出( )A.2个B.4个C.6个D.8个二、填空题(每小题3分,共1511.乐乐在作业上写到(a+b)2=a 2+b 2,同学英树认为不对,并且他利用下面的图形做出了直观的解释,根据这个图形的总面积可以得到正确的完全平方公式(a+b)2=12.乐乐同学有两根长度为4cm,7cm 的木棒,母亲节时他想自已动手给妈妈钉一个角形相框,桌上有五根木棒,从中任选一根,使三根木棒首尾顺次相连,则能钉成三角形相框的概率是13.如图,△ABC 的边BC 长12cm,乐乐观察到当顶点A 沿着BC 边上的高AD 所线向上运动时,三角形的面积发生变化.在这个变化过程中,如果三角形的高为x(cm),那么△ABC 的面积y(cm2)与x(cm)的关系式是14.乐乐发现三个大小相同的球可以恰好放在一个圆柱形盒子里(底和盖的厚度均忽略不计),如图所示,则三个球的体积之和占整个盒子容积的 (球的体积计算公式为V=43πr 2)15.在研究“数字黑洞”这节课中,乐乐任意写下了一个四位数(四数字完全相同的除外).重新排列各位数字,使其组成一个最大的数和一个最小的数,然后用最大的数减去最小的数,得到差;重复这个过程,……,乐乐发现最后将变成一个固定的数,则这个固定的数是三、解答题(本大题共7个小题,共55分)16.(6分)乐乐对化简求值题掌握良好,请你也来试试吧!先化简,再求值:[(ab+4)(ab-4)-5a 2b 2+16]÷(ab),其中a=10,b=- 1517.(6分)乐乐觉得轴对称图形很有意思.如图是4个完全相同的小正方形组成的L 形图,请你用三种方法分别在图中添画一个小正方形,使添画后的图形成为轴对称图形18.(8分)乐乐家附近的商场为了吸引顾客,设立了一个可以自由转动的转盘,AB 为转盘直径,如图所示,并规定:顾客消费50元(含50元)以上,就能获得一次转盘的机会,如果转盘停止后,指针正好对准9折、8折、7折区域,顾客就可以获得相应的优惠(1)某顾客消费40元,是否可以获得转盘的机会?(2)某顾客正好消费66元,他转一次转盘,获得三种打折优惠的概率分别是多少?19.(8分)尺规作图是理论上接近完美的作图方式,乐乐很喜欢用尺规画出要求的图形.在下面的△ABC中,请你也按要求用尺规作出下列图形(不写作法,但要保留作图痕迹)并填空(1)作出∠BAC的平分线交BC边于点D;(2)作出AC边上的垂直平分线l交AD于点G;(3)连接GC,若∠B=55°,∠BCA=60°,则∠AGC的度数为20.(8分)如图是乐乐设计的暂力拼图玩具的一部分,现在乐乐遇到了两个问题,请你帮助解决:已知:如图,AB∥CD,(1)若∠APC=60°,∠A=40°,求∠C的度数请填空解:(1)过点P作直线PE∥AB(如图所示)因为AB∥CD(已知)所以EP∥CD(平行于同一条直线的两条直线平行)因为∠A=∠APE=40∠C=∠CPE()又因为∠APC=∠APE+∠CPE=∠A+ =60°(等量代换)所以∠C= °(等式性质)2)直接写出∠B、∠D与∠BFD之间的数量关系21.(9分)人的大脑所能记忆的内容是有限的,随着时间的推移,记忆的东四会逐渐被遗忘,教乐乐数学的马老师调查了自己班学生的学习遗忘规律,并根据调查数据描绘了一条曲线(如图所示),其中纵轴表示学习中的记忆保持量,横轴表示时间,观察图象并回答下列(1)观察图象,1h后,记忆保持量约为; 8h后,记忆保持量约为(2)图中的A点表示的意义是什么?A点表示的意义是在以下哪个时间段内遗忘的速度最快?填序号①0-2h ②2-4h;③4-6h ④6-8h(3)马老师每节课结束时都会对本节课进行总结回顾,并要求学生每天晚上临睡前对当课堂上所记的课盒笔记进行复习,据调查这样一天后记忆量能保持98%如果学生一天不复习,结果又会怎样?由此,你能根据上述曲线规律制定出两条今年暑假的学习计划吗?22.(10分)乐乐和数学小组的同学们研究了如下问题,请你也来试一下吧点C是直线l1上一点,在同一平面内,乐乐他们把一个等直角三角板ABC任意放,其中直角顶点C与点C重合,过点A作直线l2⊥l1,垂足为点M,过点B作l3⊥l1, 垂足为点N(1)当直线l2,l3位于点C的异侧时,如图1,线段BN,AM与MN之间的数量关系 (不必说明理由)2)当直线l2,l3位于点C的右侧时,如图2,判断线段BN,AM与MN之间的数量系,并说明理由3)当直线l2,l3位于点C的左侧时,如图3,请你补全图形,并直接写出线段BN,A MN之间的数量关系2017—2018学年下期期末考试七年级 数学 参考答案(时间:90分钟,满分:100分)一、选择题(每小题3分,共30分)1. A 2. B 3. C 4. D 5. B6. C 7. D 8. A 9. C 10. B二、填空题(每小题3分,共15分)11.a 2+2ab+b 2 12. 0.4(52或) 13. y =6x 14.32 15. 6174 三、解答题(本大题共7个小题,共55分) 16.(6分) 解:)(]165)4)(4[(22ab b a ab ab ÷+--+=)(]16516[(2222ab b a b a ÷+--…………………………(2分)=)()4(22ab b a ÷-=ab 4-…………………………………………………(4分) 当51,10-==b a 时,原式=)51(104-⨯⨯-=8……………………(6分)17.(6分) 解: 如图.……………………(6分)18.(8分)解:(1)根据规定消费50元(含50元)以上才能获得一次转盘的机会,而40元小于50元,故不能获得转盘的机会; ………………(2分)(2)某顾客正好消费66元,超过50元,可以获得转盘的的机会.若获得9折优惠,则概率;………………………(4分) 4136090)9(==折P若获得8折优惠,则概率;………………………(6分) 若获得7折优惠,则概率.………………………(8分)19.(8分)解:(1)图略(可以不下结论);……………………(3分)(2)图略(可以不下结论);……………………(6分)(3)115°. ……………………(8分)20.(8分)解:(1)两直线平行,内错角相等;……………………(2分) ∠C ;…………………………………………………………(4分)20;…………………………………………………………(6分)(2)∠B +∠D +∠BFD =360°. ………………………………(8分)21.(9分)解:(1)50%(50%3±%均算正确);30%(30%3±%均算正确);……(4分)(2)点A 表示2h 大约记忆量保持了40%;…………………………(6分)①;…………………(7分)(3)如果一天不复习,记忆量只能保持不到30%(答案不唯一);暑假的学习计划两条略(合理即可)………(9分)22. 解:(1)MN = AM +BN ;………………(2分)(2)MN = BN -AM ;………………………………(4分)理由如下:如图2.因为l 2⊥l 1,l 3⊥l 1.所以∠BNC =∠CMA =90°.所以∠ACM +∠CAM =90°.因为∠ACB =90°,所以∠ACM +∠BCN =90°.所以∠CAM =∠BCN .在△CBN 和△ACM 中, ∠ ∠∠ ∠所以△CBN ≌△ACM (AAS ).所以BN =CM ,NC =AM .所以MN =CM ﹣CN =BN ﹣AM .…………………………(8分)(3)补全图形,如图3.………(9分)结论:MN =AM ﹣BN .………(10分)6136060)8(==折P 12136030)7(==折Pl 1。