Studies of Boosted Decision Trees for MiniBooNE Particle Identification

合集下载

高中英语学术调研单选题50题

高中英语学术调研单选题50题

高中英语学术调研单选题50题1. In academic research, it is essential to be precise and ______ in data collection.A. accurateB. approximateC. roughD. casual答案:A。

本题考查形容词词义辨析。

“accurate”意为“精确的,准确的”,在学术研究中,数据收集需要精确准确,A 选项符合语境。

“approximate”表示“大约的,近似的”;“rough”指“粗糙的,粗略的”;“casual”意思是“随便的,偶然的”,这三个选项都不符合学术研究中对数据收集的要求。

2. The scholar spent years conducting ______ studies to prove his theory.A. extensiveB. intensiveC. expensiveD. expansive答案:B。

“intensive”有“集中的,深入的”之意,在学术研究中,进行深入的研究才能证明理论,B 选项符合。

“extensive”侧重于“广泛的”;“expensive”是“昂贵的”;“expansive”意为“广阔的,扩张的”,均不符合本题学术研究的语境。

3. The ______ of this academic paper was highly praised by the experts.A. formatB. contentC. styleD. structure答案:D。

本题考查名词词义。

“structure”表示“结构”,学术论文的结构受到高度赞扬,D 选项恰当。

“format”指“格式”;“content”是“内容”;“style”为“风格”,相比之下,结构更能被整体评价和赞扬。

4. To make the academic research more ______, a large sample size was needed.A. reliableB. unstableC. questionableD. doubtful答案:A。

广西省防城港市2025届高考英语三模试卷含解析

广西省防城港市2025届高考英语三模试卷含解析

广西省防城港市2025届高考英语三模试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

第一部分(共20小题,每小题1.5分,满分30分)1.Sometimes smiles around the world ___________ be false, hiding other feelings like anger, fear or worry.A.can B.wouldC.should D.must2.The fellow we spoke ________ no comment at first.A.to make B.to madeC.made D.to making3.The professor _____about how to protect the endangered animal in the conference at this time tomorrow. A.talked B.talks C.has been talking D.will be talking4.The U.S. official said North Korea --- and Iran --- should follow in the steps of Libya, which last December said it would work__________ to allow international weapons inspectors to do their work.A.unconditionally B.unwillingly C.unfortunately D.uncomfortably5.Police have found ________ appears to be the lost ancient statue.A.which B.where C.how D.what6.Some schools, including ours, will have to make ________ in agreement with the national soccer reform. A.amusements B.adjustmentsC.appointments D.achievements7.---Can you help me with my English homework? You're a genius.---__________, but I'll try to help you. What's your problem?A.Far from it B.Sounds goodC.By all means D.It's out of question8.if I had arrived yesterday without letting you know beforehand?A.Would you be surprised B.Were you surprisedC.Had you been surprised D.Would you have been surprised9.I _________ to help you to do homework but I couldn't spare any time. I ________ a composition last night and I'll finish it tomorrow.A.wanted;wrote B.had wanted;was writingC.had wanted;wrote D.wanted;have been writing10.Roger trained hard for the tournament for months, but unfortunately he had to _______ due to a knee injury.A.pull out B.work outC.try out D.give out11.He asked ______ for the computer.A.did I pay how muchB.I paid how muchC.how much did I payD.how much I paid12.Y esterday I took my car to the garage to have them ________ the air-conditioner.A.to check B.checking C.checked D.check13.-- Turn off the TV, Jack. _______ your homework now?-- Mum, just ten more minutes, please.A.Will you be doing B.Should you be doingC.Shouldn't you be doing D.Couldn’t you be d oing14.______ a book in front of your face, you’ll feel the air moving against your face.A.Waved B.WaveC.To wave D.Waving15.—Will Uncle Peterson come to my birthday party tomorrow?—Pity he ______ to Zimbabwe as a volunteer teacher.A.was sent B.has been sentC.had been sent D.would be sent16.If I can help , I don’t like working late into the night.A.so B.that C.them D.it17.---Hi, Betty, are you free at present? I have to ask you for a favor.----_____.With pleasure.A.Sorry, I am busy B.Go aheadC.Help yourself D.Ask, please18.A storm buried Illinois under several inches of snow on Tuesday,______at least 100 people dead in traffic accidents. A.to leave B.leaveC.left D.leaving19.According to the company’s rule, one’s payment is ______ the work done, not to the time spent doing it.A.in proportion to B.in addition toC.in contrast to D.in regard to20.The accident which left 15 people on board dead ________ if both the angry female passenger and the bus driver had kept calm.A.should have avoided B.should be avoidedC.could have avoided D.could have been avoided第二部分阅读理解(满分40分)阅读下列短文,从每题所给的A、B、C、D四个选项中,选出最佳选项。

人工智能深度学习技术练习(试卷编号2101)

人工智能深度学习技术练习(试卷编号2101)

人工智能深度学习技术练习(试卷编号2101)1.[单选题]同一组云资源需要被多个不同账户控制时,用户可以使用( )管理对云资源的访问权限。

A)策略控制B)安全组C)安全管理D)账户管理答案:A解析:同一组云资源需要被多个不同账户控制时,用户可以使用策略控制管理对云资源的访问权限。

2.[单选题]当使用predict()方法进行预测时,返回值是数值,表示样本( )A)属于的类别B)类别大小C)属于每一个类别的概率D)预测准确率答案:C解析:3.[单选题]如果您的训练数据的准确性接近1.000,但您的验证数据不是,那么这会有什么风险?A)那你过拟合了训练数据B)没风险,这是一个很好的结果C)你欠拟合了验证数据D)你过拟合了验证数据答案:A解析:4.[单选题]假设我们已经在ImageNet数据集(物体识别)上训练好了一个卷积神经网络。

然后给这张卷积神经网络输入一张全白的图片。

对于这个输入的输出结果为任何种类的物体的可能性都是一样的,对吗?( )A)对的B)不知道C)看情况D)不对答案:D解析:5.[单选题]Inception v2的亮点之一加入了BN层,减少了InternalCovariate Shift(内部neuron的数据分布发生变化),使每一层的输出都规范化到一个N(0, 1)的高斯,从而增加了模型的( ),可以以更D)鲁棒性答案:D解析:6.[单选题]一个向量空间加上拓扑学符合运算的(加法及标量乘法是连续映射)称为( )A)拓扑向量空间B)内积空间C)矢量空间D)希尔伯特空间答案:A解析:7.[单选题]A是3阶方阵,且A=-2,则2A=()。

A)4B)-4C)16D)-16答案:D解析:难易程度:难题型:8.[单选题]关于聚类算法,下列说法正确的是()。

A)Means算法适用于发现任意形状的簇B)层次聚类适用于大型数据集C)DBSCAN能在具有噪声的空间中发现任意形状的簇D)GMM是混合模型中计算速度最快的算法,且占用的计算资源较少答案:C解析:难易程度:中题型:9.[单选题]有多个卷积核的原因是:A)同时提取多个图像的特征B)提取某些图像多个特征C)图像有多个通道D)与多特征无关答案:B解析:10.[单选题]Keras中进行独热处理的代码是解析:11.[单选题]判断当前时间步信息是否存储入状态的门是:A)遗忘门B)输入门C)输出门D)更新门答案:B解析:12.[单选题]Session 是 Tensorflow 为了控制,和输出文件的执行的语句. 运行 session.run() 可以获得你要得知的运算结果,或者是你所要运算的部分通常要创建Session对象,对应的编程语句为:A)sess = tf.Session()B)sess.close()C)tf.add()D)tf.equal()答案:A解析:13.[单选题]在训练神经网络时,损失函数(loss)在最初的几个epochs时没有下降,可能的原因是?A)正则参数太高B)陷入局部最小值C)学习率太高D)以上都有可能答案:D解析:14.[单选题]下面对面向对象和面向过程描述正确的是:()。

qboost下载教程

qboost下载教程

qboost下载教程QBoost是一个强大的机器学习算法库,可用于分类和回归任务。

它基于梯度提升决策树(Gradient Boosted Decision Trees)的思想,能够处理高维数据和大规模数据集。

本教程将指导您如何下载和安装QBoost。

步骤1: 下载QBoost首先,您需要访问QBoost的官方网站(https://qboost.ai/)并找到下载链接。

根据您的操作系统选择适当的版本进行下载。

QBoost提供了针对不同操作系统(如Windows、Linux和macOS)的预编译版本。

步骤2: 安装QBoost下载完成后,您需要将QBoost安装到您的计算机上。

如果您选择的是预编译版本,只需双击运行安装程序,并按照提示完成安装即可。

步骤3: 配置环境变量安装完成后,您需要配置环境变量,以便系统能够正确地找到QBoost的安装路径。

打开命令提示符,输入以下命令来配置环境变量:```export PATH=$PATH:/path/to/qboost/bin```请将“/path/to/qboost”替换为您实际安装QBoost的路径。

步骤4: 验证安装为了验证QBoost是否成功安装,您可以打开命令提示符并输入以下命令:```qboost --version```如果安装成功,您将看到QBoost的版本信息。

步骤5: 开始使用QBoost安装和配置完成后,您可以开始使用QBoost进行机器学习任务了。

您可以编写Python脚本,并使用QBoost提供的API进行模型训练和预测。

QBoost还提供了丰富的文档和示例代码,可以帮助您快速上手。

总结:本教程介绍了如何下载和安装QBoost,并配置环境变量。

通过遵循上述步骤,您可以轻松地开始使用QBoost进行机器学习任务。

希望这个教程对您有所帮助,祝您在使用QBoost时取得成功!。

2022年考研考博-考博英语-中国财政科学研究院考试全真模拟易错、难点剖析B卷(带答案)第64期

2022年考研考博-考博英语-中国财政科学研究院考试全真模拟易错、难点剖析B卷(带答案)第64期

2022年考研考博-考博英语-中国财政科学研究院考试全真模拟易错、难点剖析B卷(带答案)一.综合题(共15题)1.单选题After some time the second stage of the space shuttle, having used up its fuel, just like the booster, separates and______.问题1选项A.runs awayB.charges forC.falls offD.merges into【答案】C【解析】考查词组辨析。

A选项runs away“逃跑;失控”;B选项charges for“索价”;C选项falls off“跌落;下降;离开”;D选项merges into“并入;结合”。

句意:过了一段时间,航天飞机的第二级燃料耗尽,像助推器一样分离并______。

根据语境,这里指燃料分离和脱落,C选项falls off“跌落;离开”符合题意。

因此C选项正确。

2.单选题Teachers complain that children _______ these tests without being able to write a decent essay, solve a multi-step math problem or construct a framework.问题1选项A.look throughB.carry throughC.sail throughD.put through【答案】C【解析】考查词组辨析。

A选项look through“浏览;仔细查看”;B选项carry through“(常指不顾困难)完成”;C选项sail thro ugh“轻易完成;顺利通过”;D选项put through“给……接通电话;使……遭受”。

句意:老师们抱怨说,孩子们没有写出一篇像样的文章、解决一个多步骤的数学问题或构建一个框架,在这种情况下_______这些测试。

认知计算概论

认知计算概论

认知计算概论前段时间的“⼈机⼤战”——⾕歌的Alpha Go战胜⼈类棋⼿的新闻甚嚣尘上,不禁有⼈会想起1997年IBM⾃主研发的深蓝战胜卡斯帕罗夫的事件。

“⼈⼯智能”这个词再次被推上风⼝浪尖,⽽“认知计算”却鲜有⼈听说,同样是⼈类模拟机器思索,让机器具有⾃主思考能⼒,都是具有跨时代意义和⾥程碑式的存在。

认知计算更加强调机器或⼈造⼤脑如何能够主动学习、推理、感知这个世界,并与⼈类、环境进⾏交互的反应。

它会根据环境的变化做出动态的反应,所以认知更加强调它的动态性、⾃适应性、鲁棒性、交互性。

计算机在体系架构上的发展历史主要体现在两个⽅⾯:计算能⼒的增强计算规模的增⼤随着计算机计算能⼒的⼤幅增强,具备了处理海量数据的能⼒;另⼀⽅⾯,⽇常⽣活中所产⽣的数据规模⽇益扩⼤,所拥有的数据源驱动了深层次分析的需求;同时⼤数据、云计算技术的不断完善,都促进了对数据进⾏深度挖掘,提取数据的特征,利⽤特征让机器具有⾃主学习与思考的能⼒。

按照计算⽅式的不同,可以分为三个计算时代:1990s~1940s 打卡阶段(The Tabulating Era)机械式1950s~现在编程阶段(The Programming Era)⾃主输⼊2011~将来认知计算阶段(The Cognitive Era)⾃动思考“⼤脑”项⽬:Think & Learn2006 IBM Watson 利⽤⾃然语⾔分析,让机器⾃动推理事件与回答问题;涵盖医疗、数据分析、“危险游戏”等。

2011 Google ⾕歌⼤脑通过神经⽹络,能够让更多的⽤户拥有完美的、没有错误的使⽤体验;⾕歌⽆⼈驾驶汽车、⾕歌眼镜等。

2012 Baidu 百度⼤脑融合深度学习算法、数据建模、⼤规模GPU并⾏化平台等技术,构造起深度神经⽹络。

⼀、认知计算的概念:1. ⼈⼯智能与认知计算的区别:⼈⼯,以⼈为主导;认知,机器对事物与外界的理解,交互的能⼒编程能⼒;学习与推理的能⼒确定性结果;概率性结果⼈并未参与;⼈、机器、环境之间的交互图灵测试或仿造⼈测量;实际应⽤中的测试2. 认知计算所涉及的技术领域:神经科学:机器模拟⼈脑神经元的思考过程;超计算:超级快速计算和处理能⼒;纳⽶技术:芯⽚、系统等底层架构设计。

基于XGBoost算法的电商用户重复购买行为预测

㊀收稿日期:2022-09-07基金项目:中央高校基本科研业务费专项资金资助项目(19JNQM25)ꎻ广州市哲学社会科学发展 十四五 规划课题(2021GZYB18)ꎻ深圳市哲学社会科学规划课题(SZ2022B014)作者简介:景秀丽(1979-)ꎬ女ꎬ辽宁营口人ꎬ博士ꎬ硕士生导师ꎬ副教授ꎬ研究方向:大数据ꎬ文本处理ꎬ电子商务等.㊀㊀辽宁大学学报㊀㊀㊀自然科学版第50卷㊀第2期㊀2023年JOURNALOFLIAONINGUNIVERSITYNaturalSciencesEditionVol.50㊀No.2㊀2023基于XGBoost算法的电商用户重复购买行为预测景秀丽1ꎬ史明曦2(1.暨南大学深圳旅游学院ꎬ广东深圳518052ꎻ2.圣路易斯华盛顿大学奥林商学院ꎬ美国密苏里州圣路易斯63130)摘㊀要:机器学习算法广泛应用于电商用户行为数据分析及商业预测.其中ꎬXGBoost算法作为一种常用的有监督机器学习算法ꎬ能够实现电商用户行为特征最优选择与行为模型构建㊁评估消费价值㊁预测重复购买行为概率㊁提高商业决策的精准性与可行性.本研究采用阿里云天池大数据竞赛 天猫复购预测 所提供的 双十一 电商购物节关联数据集中约42万电商平台用户产生的5500万条行为数据ꎬ基于促销活动情境完成特征构造ꎬ实现有监督分类学习.本研究实现了XGBoost算法的参数优化与数据特征值处理过程优化ꎬ完成了促销活动后6个月内电商用户重复购买行为的预测模型演算.结果表明:优化后的XGBoost算法能够比较精准地预测电商用户重复购买行为㊁评估在线用户潜在购买价值㊁实现精准营销以及真正促进促销活动的长期投资回报率提高.关键词:XGBoost算法ꎻ集成学习ꎻ特征工程ꎻ重购预测ꎻ精准营销中图分类号:TP391㊀㊀㊀文献标志码:A㊀㊀㊀文章编号:1000-5846(2023)02-0134-12RepurchasePredictionofE ̄CommerceUserBasedonXGBoostJINGXiu ̄li1ꎬSHIMing ̄xi2(1.ShenzhenTourismCollegeꎬJinanUniversityꎬShenzhen518053ꎬChinaꎻ2.OlinBusinessSchoolꎬWashingtonUniversityinSt.LouisꎬSt.Louis63130ꎬU.S.A)Abstract:㊀MachinelearningiswidelyusedinE ̄commerceuserbehavioranalysisandE ̄commerceplatformbusinessforecasts.XGBoostisacommonlyusedsupervisedensemblelearningalgorithm.Itcanbeusedtoconstructpreciseusersᶄbehaviormodelsꎬthusevaluatingcustomervalueꎬandpredictingtheirrepurchaseprobabilityꎬaswellasimprovingbusinessdecisionsᶄprecisionandfeasibility.Thisresearchadoptstheuserrepurchasedatasetrelatedtothe DoubleEleven shoppingeventofferedbyAlibabaTianchiꎬwhichcollectsupto55millionbehavioraldatageneratedby420thousandusersꎬconstructsfeaturesbasedonthepromotionbackgroundandconductssupervisedlearning.ThisresearchoptimizestheXGBoostparametertuningandfeature㊀㊀processingꎬandconstructsarepurchaseforecastmodelforspecificuser ̄sellerpairsonasix ̄monthperiodafterthepromotion.TheresultindicatesthattheoptimizedalgorithmXGBoostcanpreciselypredictE ̄commerceuserrepurchasebehaviorandbeusedinevaluatingusersᶄpotentialinrepurchaseꎬimprovingE ̄commerceplatformsᶄprecisionmarketingandtrulyimprovingthelong ̄termROI(ReturnonInvestment)ofpromotionevents.Keywords:㊀XGBoostꎻensemblelearningꎻfeatureengineeringꎻrepurchasepredictionꎻprecisionmarketing0㊀引言我国电子商务行业的发展历经二十多年ꎬ在线零售市场不断创新和扩展ꎬ推动了新经济业态的成长与进步.Statista全球统计数据库的«2021年电子商务报告»显示ꎬ中国是目前世界最大和渗透率最高的电子商务市场.国内各大在线零售平台发展迅速ꎬ在激烈竞争中为了吸引用户源和争夺市场份额ꎬ积极探索促销活动形式与种类ꎬ例如天猫淘宝的 双十一购物狂欢节 ㊁京东的 618 购物节等.多样化高频率的购物节给平台引流了大量新用户(促销活动中出现首次购买行为的用户)和短期高成交额.陈可旺[1]分析促销作为一种短期刺激性工具ꎬ虽然能够有效激发用户对特定商品服务进行立即购买的欲望ꎬ但是电商平台更需要锁定长期持续的有效收益.Rosenberg等[2]提出企业重视客户留存并且开发一个新客户所需的成本是维护一个老客户所需成本的6倍.陈龙[3]研究表明电商平台及商家有必要确定哪些用户有可能转化为重复购买者ꎬ并对这些潜在忠诚用户进行精准营销ꎬ降低促销成本ꎬ提高投资回报率.蔡一凡[4]做了用户聚类和特征选择的在线购买行为研究.张李义等[5]聚焦新消费者重复购买意向的预测研究.当前对用户重复购买行为预测方法主要有两类方法ꎬ一是以Pareto/NBD(Negativebinomialdistribution)㊁MBG(Modifiedbetageometric)/NBD为代表的概率模型ꎬ二是以决策树㊁逻辑回归㊁SVM(Supporvectormachine)为代表的机器学习模型[6].基于海量数据的机器学习算法为电商平台精准地把握消费者偏好需求㊁预测消费者行为㊁评估客户价值提供了有效分析方法ꎬ采用数据挖掘技术能够运用多维变量进行预测ꎬ结果更加客观真实[7].电商平台用户数据对象涵盖用户信息㊁商品信息㊁商家信息ꎬ用户在网站上浏览商品时产生的一系列在线行为数据(如登录㊁点击㊁收藏㊁购买㊁评论㊁咨询客服等)ꎬ并且实时在网站日志中进行同步ꎬ构成了海量丰富的大数据集.通过对大数据集进行分析ꎬ电商平台可以提取出用户的需求㊁偏好㊁购买能力等价值信息ꎬ完成重复购买行为预测模型设计[8].消费者重复购买的预测问题转化为消费者是否将重复购买的分类问题ꎬ运用机器学习中的分类算法进行有监督训练.例如Rahim等[9]基于RFM(Recencyꎬfrequencyꎬmonetaryvalue)模型研究客户重复购买行为ꎬ运用SVM算法和决策树算法对客户进行分类ꎬ准确率超过了97%.相比单种算法构建的预测模型ꎬ集成学习方法通过串行或并行的方式将多个弱监督模型进行组合ꎬ可以进一步提高模型预测的准确性ꎬ代表算法有随机森林算法和GBDT(Gradient ̄boosteddecisiontrees)算法等ꎻ或运用多模型融合策略ꎬ将不同类型算法训练出的模型以Stacking㊁Voting㊁Blending㊁Ranking等方法进行531㊀第2期㊀㊀㊀㊀㊀㊀景秀丽ꎬ等:基于XGBoost算法的电商用户重复购买行为预测㊀㊀融合ꎬ提高模型的准确率和泛化能力[10].胡晓丽等[11]基于集成学习对用户重购行为进行预测ꎬ引入 分段下采样 的方法解决类别不平衡问题ꎬ并用Stacking融合了RandomForest㊁XGBoost㊁LightGBM构建预测模型ꎬ结果表明ꎬStacking方法能够带来0.4%至2%的AUC(Areaunderthereceiveroperatingcharacteristiccurve)提升.吕泽宇等[12]使用了LightGBM和XGBoost两种方法构建模型ꎬ并用Hyperopt进行参数搜索ꎬ证明该方法只需少量特征即可达到较好的预测效果.基于先进的机器学习算法ꎬ引入特征工程设计ꎬ也是数据挖掘的关键技术之一.机器学习算法用于解决多个领域多个方向问题ꎬ学习效果如何很大程度上依赖于特征工程中提取的特征是否真正贴合业务需要ꎬ这一过程需要结合许多研究领域的专家知识.文献研究发现ꎬ针对电商购物节后消费者重复购买行为预测研究不多ꎬ通过提取特征值ꎬ结合促销活动变量对消费者行为产生的特殊影响ꎬ可构建更精准的重复购买预测模型.此外ꎬ运用天猫大数据平台提供的公开数据集ꎬ针对促销前和促销中的用户短期行为等数据维度提取更加详细的特征值ꎬ运用XGBoost集成学习算法构建电商购物节后新用户重复购买行为预测模型ꎬ提高预测能力.1㊀算法背景决策树算法在机器学习中常用于预测和分类ꎬ是一种有监督的机器学习方法.在数据复杂的情况下ꎬ使用单一决策树进行预测有时无法取得较好的效果.Kearns等[13]认为可通过集成学习将弱学习算法提升为强学习算法.集成算法主要有Bagging和Boosting两类.其中Boosting提升算法由Schapire[14]通过构造多项式级算法ꎬ率先提出验证Kearns弱学习算法提升的思路ꎬ其各个相互依赖的分类器串行ꎬ根据预测能力的不同ꎬ预测函数的权重也不同.陈凯等[15]研究表明ꎬ在训练的过程中增加对分类错误样本的学习权重ꎬ在迭代中能够不断调整和持续提高准确度ꎬ将各个基学习器进行加权集成输出最终结果.XGBoost算法全称eXtremeGradientBoostꎬ由Chen等[16]在经典Boosting算法GBDT的基础上改进提出ꎬ在计算速度上表现优秀.XGBoost的核心思想是采用向前分布算法ꎬ每轮迭代产生的弱分类器都在上一轮迭代的残差基础上继续训练ꎬ通过不断减小残差来实现回归和分类ꎬ并将CART(Classficationandregressiontree)分类回归树作为基学习器.XGBoost算法的目标函数由损失函数和复杂度函数相加而成ꎬ模型误差小ꎬ更加简单ꎬ可防止过拟合ꎬ使用梯度提升法可使目标函数最小化.其目标函数在经过泰勒二次展开后可以简化为Obj=-12ðTj=1Gj2Hj+λ+γT(1)式中:T为叶子节点数ꎻγ为学习率限制叶子节点个数ꎻλ为正则化参数限制叶子节点分数ꎻGj为一阶导数ꎻHj为二阶导数.在每棵树选择特征进行分裂时ꎬXGBoost使用的是贪心法ꎬ遍历特征计算每个节点的分裂收益ꎬ选择增益最大的特征进行分裂:Gain=12GL2HL+λ+GR2HR+λ-(GL+GR)2HL+HR+λ[]-γ(2)即用分割后的目标函数值减去分割前的目标函数值ꎬ当增益大于γ阈值时ꎬ树才分裂ꎬ这样目标函数在优化的同时也实现了预剪枝.当数据量极大时贪心算法十分耗费内存ꎬ对此XGBoost算法还提出了一种近似搜索方法ꎬ在难以精确搜索情况下运用全局近似或者局部近似选取候选分裂点ꎬ再从中选择最佳分裂点ꎬ结果同样具有准确性.通过调用Python开发环境的XGBoost工具包进行重复631㊀㊀㊀辽宁大学学报㊀㊀自然科学版2023年㊀㊀㊀㊀购买行为的预测.2㊀数据采集与分析2.1㊀数据集数据集来源于阿里云天池大数据平台 天猫复购预测大赛 的公开数据集.该数据集包含了424170名匿名用户的基本信息以及他们在 双十一购物狂欢节 前6个月以及 双十一购物狂欢节 当天的交互行为记录和购物记录ꎬ同时标记了这些用户在购物节后6个月是否有重复购买行为.数据集一共包括 用户信息表 用户行为日志表 用户-商家消费行为表 3张数据表ꎬ提供了 用户编号 用户年龄范围 用户性别 商品编号 商品类别编号 商品品牌编号 商家编号 行为时间 行为类型 9个属性.数据初筛发现ꎬ数据集的样本用户皆有过一次以上的购买记录ꎬ且 双十一购物狂欢节 期间都有首次进行消费的商家.用户信息表和用户行为表包含了所有样本用户的相关数据.为满足模型训练及测试的需求ꎬ天池大数据平台提供的数据集将样本用户分为数量相当的两部分ꎬ并分别归入电商用户行为模型的训练集和测试集之中.其中训练集中的label字段已经完成对用户的标签化ꎬ即标明用户在 双十一购物狂欢节 后是否会重复购买ꎬ用于有监督学习对模型进行分类训练ꎻ而测试集中的prob字段表示预测用户是否在促销活动后重复购买ꎬ在模型训练后对无标签对象进行预测.2.2㊀数据清洗2.2.1㊀缺失值处理原数据集用户信息表中的age_range(用户年龄范围)字段有92914条缺失值㊁gender(用户性别)字段有10426条缺失值ꎬ缺失值在属性中占比较大ꎬ使用均值替换法在已有数据中寻找缺失数据的最可能值.购买同一产品的用户群体往往具有相似的年龄和性别.对应数据处理流程包括:首先ꎬ在用户信息表中获取缺失年龄或性别属性用户对应的user_id(用户编号)ꎬ通过这些user_id在用户行为日志表中寻找属性值缺失用户购买过的所有商品的item_id(商品编号)ꎻ其次ꎬ在用户行为表中寻找购买过这些商品的其他用户的编号ꎬ通过用户信息表得到这些用户的年龄范围或性别属性ꎬ以此计算商品用户群的平均年龄范围或性别属性ꎻ最后ꎬ以所有已购商品的平均用户年龄和性别的平均值填补该用户缺失的年龄或性别属性.用户行为日志表中的brand_id(商品品牌编号)字段有91015个缺失值ꎬ但由于同一商家售卖同一类别的同一商品ꎬ其品牌应当是相同的ꎬ其中大部分的缺失值可以通过与item_id(商品编号)ꎬcat_id(商品类别编号)ꎬseller_id(商家编号)进行匹配找回.2.2.2㊀数据转换在特征构造过程中需要按照时间进行数据提取ꎬ而原字段 time_stamp 时间戳以mmdd标识ꎬ如5月11日记为 0511 的string类型数据ꎬ来记录用户在线行为发生时间ꎬ无法进行数学运算ꎬ因此在数据集成时对 time_stamp 时间戳进行转换并添加一个int类型的新字段 day ꎬ用来表示用户在线行为发生时间在从5月11日至11月11日这185d的时间周期内所处的位置ꎬ如将 0511 转化为 1 ꎬ将 1111 转化为 185 ꎬ这样就不必考虑每月天数之间的差异并可以按时间进行数据提取.3㊀特征工程特征工程即对原始数据进行一系列处理的工程ꎬ最大限度地提炼出特征ꎬ作为输入供模型和算731㊀第2期㊀㊀㊀㊀㊀㊀景秀丽ꎬ等:基于XGBoost算法的电商用户重复购买行为预测㊀㊀法使用.特征工程是对数据进行理解㊁表示和展示的过程ꎬ其在实际过程中要求尽可能地去除原始数据里的噪声ꎬ提炼出更加高效的特征以供预测模型调用解决问题.高质量特征对于提高模型的性能和精准度有很大意义.特征工程需要结合多学科知识ꎬ首先对电商用户重复购买行为的影响因素模型进行分析.用户自身属性方面ꎬ徐鹏鹏[17]构建结构方程模型研究用户重复购买电商品牌的影响因素ꎬ认为客户的个人特征㊁质量关注㊁感知价值㊁网购依赖及购物满意度会造成影响.商品属性方面ꎬ李海霞[18]根据环境心理学理论和社会交换理论ꎬ认为客户面对与商家在口碑㊁技术㊁人员㊁产品等服务接触时产生的刺激ꎬ会对社会关系及经济关系进行是否满意和信任的考量ꎬ从而决定是否重复购买.在用户与商家间的交互关系上ꎬ经典的RFM模型通过客户最近一次的消费时间㊁消费频度和消费金额对客户价值进行衡量.针对电商行业特点ꎬ李敏等[19]在RFM模型的基础上加入客户对商品满意度和关注度的考量ꎬ构建RFMSA(Recencyꎬfrequencyꎬmonetaryꎬstatisfactionꎬattention)模型对用户忠诚度进行分类.薛红松等[20]验证了电商客户重购行为和商家商品销量和排名符合幂律分布ꎬ重购行为倾向于在一定时期内集中发生ꎬ且随着购买次数增加ꎬ重购周期将缩短ꎬ状态趋向稳定.由此可见ꎬ当前针对电商用户重复购买行为影响因素的研究ꎬ很多学者尚未将商家推广促销和电商平台购物节活动等纳入具体分析.促销刺激可以加速新用户与商家产生交互关系ꎬ也增加了对新用户价值判断的难度.对新老客户重复购买意愿的不同特点ꎬ卢美丽等[21]考虑了购买强化效应ꎬ并验证受此影响顾客购买次数可呈幂律分布或广延指数分布ꎬ即可将客户分为易受促销影响的提升区顾客和已形成购物惯性的稳定区顾客.结合上述研究以及数据集提供的有限信息ꎬ本研究将在特征提取时构建4大类特征ꎬ即用户特征㊁商家特征㊁关系特征㊁促销特征.原数据集的可用特征维度较低ꎬ因此在提取原特征之外还需要通过对原属性进行分割和结合ꎬ构造出新的特征.商家特征考虑商家热度㊁口碑㊁产品对重复购买的影响ꎻ用户特征考虑其人口特征㊁网购依赖度㊁网购信任度㊁稳定忠诚度ꎻ交互特征考虑用户对商家的交互时间㊁交互频次ꎻ促销特征考虑商家的促销力度以及用户的价格敏感度.如图1所示.图1㊀特征工程设计3.1㊀用户特征用户特征是对用户个人属性和购物偏好的描述ꎬ包括人口特征㊁网购依赖度㊁网购信任度㊁稳定度ꎬ会对其是否重复购买造成影响.多数研究者会从原始数据集的用户信息表中提取用户人口特征数据ꎬ参照此方法ꎬ本研究基于所用数据集中的用户信息表提取用户年龄和性别数据ꎬ探究其对消费831㊀㊀㊀辽宁大学学报㊀㊀自然科学版2023年㊀㊀㊀㊀者的购买行为和购买偏好的影响作用ꎬ即将上述两类数据属性作为原特征进行提取[14].网购依赖度则体现用户是否为电商平台的重度使用者ꎬ主要考虑其活跃度和使用深度.用户行为日志表中记录了用户在促销活动前和促销活动中的6个月内在平台内点击㊁加入购物车㊁购买收藏的行为.用户各类行为频次越高ꎬ登录天数越多ꎬ说明其对平台越忠实ꎬ具有更高的维护价值.因此可以从行为日志表统计出用户的点击总次数㊁加入购物车总次数㊁购买总次数㊁收藏总次数㊁登录总天数㊁购买总天数作为特征.另一方面ꎬ相较于只在平台购买小部分类别产品的用户ꎬ部分用户对平台使用程度更深ꎬ运用平台满足其大部分购物需求ꎬ有更高的重复购买可能性.可以据此统计用户购买类别总数㊁购买品牌总数㊁购买不同商品总数这几个特征.网购信任度代表用户对电商产品可靠性的认知以及对性价比的敏感度.一些用户属于冲动型消费者ꎬ在电商平台上查询到喜欢的商品之后无需多做了解就能提交订单ꎻ一些用户属于理智型消费者ꎬ在选购商品时习惯货比三家ꎬ争取最大可能以更优惠的价格买到性价比高的商品.通过用户行为日志表可以计算用户购买行为和非购买行为所有操作的比例ꎬ即购买行为占比和非购买行为占比ꎬ以及非购买行为的购买转化率ꎬ计算公式为用户操作行为占比=用户某种操作行为总次数用户所有操作行为总次数(3)非购买行为转化率=购买行为次数各种非购买行为总次数(4)用户稳定度说明用户转移购买的难易程度.电商平台产品质量相对难以直接判断ꎬ一些高稳定度用户在积攒购物经验ꎬ找到自己满意的商家后ꎬ会倾向于在该商家进行持续的购买以节省搜寻试错成本ꎬ有更高的重复购买可能性.此处重复购买者指的是在某商家购买天数超过两天的用户ꎬ可以对用户购买商家总数㊁用户重复购买次数㊁用户重复购买商家总数㊁重复购买率进行统计计算ꎬ公式如下:用户重复购买率=所有重复购买过的商家所有购买过的商家(5)3.2㊀商家特征商家特征描述的是商家的形象和吸引力ꎬ商家的热度㊁口碑以及产品特征会对重复购买决策造成影响.商家热度反映商家的客户及潜在客户数量ꎬ商家的热度越高说明其吸引顾客完成订单的能力越强.可以构建出商家被点击总次数㊁被加入购物车总次数㊁被购买总次数㊁被收藏总次数等特征.商家口碑及其客户满意度是用户决定是否重复购买的关键因素.如果有更多用户在查看㊁加购㊁收藏商家商品ꎬ进行多重信息搜集和产品比较后ꎬ最终能够完成转化进行购买ꎬ说明商家在信誉㊁价格等方面能够让顾客信任ꎬ有较好的口碑ꎬ这也将增加再次购买的可能性.据此构造商家的点击购买转化率㊁加购购买转化率㊁收藏购买转化率.此外购买者总数和重复购买者总数也是商家口碑的一个重要考量因素ꎬ重复购买率越大ꎬ说明其客户满意度越高.可构建的特征有商家购买者总数㊁重复购买者总数㊁重复购买率.重复购买率的计算公式是重复购买率=重复购买者总数购买者总数(6)商家产品类型和特点也会影响用户在店内重复购买的意向ꎬ商家的产品种类越丰富ꎬ越能吸引931㊀第2期㊀㊀㊀㊀㊀㊀景秀丽ꎬ等:基于XGBoost算法的电商用户重复购买行为预测㊀㊀用户进行搜索.因此统计出商家种类总数㊁品牌总数㊁商品总数的特征ꎬ将商家对用户吸引力进一步量化.3.3㊀交互特征交互特征描述的是每条记录中指定用户和商家之间存在的关系ꎬ关系越强ꎬ再次购买的可能性越大.关系强度可以通过最近一次交互行为的时间㊁交互频次体现.最近一次行为发生的时间越相近ꎬ说明用户近期对商家越关注ꎬ因此要计算用户最近一次与商家发生交互行为距离 双十一狂欢购物节 促销活动的天数.而用户对商品进行点击㊁加入购物车㊁收藏等操作的频次越高ꎬ说明用户对商品和商家越关注ꎬ可以构造出特定用户在特定商户中的点击总次数㊁点击总天数㊁加购商家总次数㊁收藏商家总次数等相关特征.用户单次在商家内部购买的商品数量会影响消费者与商家之间的关系深度ꎬ用户对商家内的多种不同商品有购买意向会影响未来重购行为的发生概率.从用户行为日志表中可以构造出用户在商家的购买总件数㊁购买不同商品数㊁购买品牌数㊁购买类别数等特征.3.4㊀促销特征促销帮助商家吸引了更多新用户ꎬ所以有必要针对促销构建特征帮助判断新客户重复购买的可能性ꎬ主要观察商家的促销力度及用户的价格敏感度.当商家活动力度大时ꎬ可能会导致短期购买量大涨ꎬ但在活动后一段时间内客户由于反差过大而不愿再次购买.可以通过比较商家近期关注度与长期关注度进行观察ꎬ构造商家促销月被点击次数㊁被加购次数㊁被购买次数㊁被收藏次数ꎬ促销月被点击占比㊁被加购占比㊁被购买占比㊁被收藏占比特征.当用户价格敏感度高时ꎬ在促销的驱动下可能会在短期内活跃度提高ꎬ产生更多交互记录ꎬ而促销结束后可能受价格影响不选择重复购买.对此可以在用户行为日志表中构造一些趋势特征来对用户的促销敏感度进行衡量ꎬ如促销月用户点击㊁加入购物车㊁购买㊁收藏行为的次数ꎬ以及这4种行为的次数在所有对应行为次数中的占比ꎬ即用户促销月点击占比㊁加购占比㊁购买占比㊁收藏占比.最终一共提取了3类55个特征.促销月某行为占比=促销月(商家受到或用户进行)某行为次数(商家受到或用户进行)某行为总次数(7)通过对数据集直接分析ꎬ构造出来的特征往往在取值范围上存在着较大的落差.如果某一特征的量级过大㊁方差过大ꎬ很有可能导致该特征在模型训练时发挥主导作用ꎬ从而使得其他特征失效.为了避免这一情况发生ꎬ在模型训练之前对特征值进行均值归一化处理ꎬ使所有特征值呈服从均值为0㊁标准差为1的标准正态分布.运用Python中sklearn包的StandardScaler完成这一操作.4㊀模型构建训练与预测4.1㊀模型构建4.1.1㊀样本划分与比例调整通过Python程序中的XGBoost包和sklearn包对预测模型进行构建与训练.运用XGBoost算法进行有监督训练.阿里云天池大数据平台 天猫复购预测大赛 数据集提供了带有用户分类标签的训练表一共包含260864条数据ꎬ数据量较为充足ꎬ可以按照标准形式将样本划分为训练集和测试集ꎬ比例为7ʒ3.样本数据中的正样本ꎬ即重复购买用户样本为15952条ꎬ负样本ꎬ即非重复购买用户样041㊀㊀㊀辽宁大学学报㊀㊀自然科学版2023年㊀㊀㊀㊀本为244912条.样本数量正负样本比例约为1ʒ15ꎬ数量差距较大ꎬ存在类别不平衡的问题.严重的类别不均衡在机器学习的过程中可能会导致模型倾向样本数量多的类别ꎬ引起过拟合问题ꎬ影响模型预测结果的准确性ꎬ因此通过一定的采样策略ꎬ保证模型训练时正负样本比例协调.Python的XGBoost包为解决数据类别不均衡的问题提供了方法.如果只考虑模型的ROC(Receiveropertatingcharacteristiccurve)㊁AUC㊁召回率指标ꎬ而不关心样本为某一类别的概率大小ꎬ可以通过将Booster参数中的 scale_pos_weight 设置为数据负样本数量/正样本数量ꎬ为比例小的样本赋予更大的权重ꎬ改变样本在训练中的贡献ꎬ减弱类别数量不平衡的影响ꎬ即将 scale_pos_weight 的参数值设置为15.4.1.2㊀参数设置Python程序中的XGBoost包对学习目标参数eval_metric设置指定分类器训练情况的输出指标ꎬ再调用sklearn包中的metrics选择整个模型需要输出的评估指标.XGBoost一共有通用参数㊁Booster参数㊁学习目标参数3类.1)通用参数对模型宏观功能进行控制.Booster决定的是迭代所用的模型ꎬ有树模型和线性模型ꎬ本实验使用的是树模型gbtree.silent决定运行时是否输出信息ꎬ默认值0输出.nthread决定运行时使用的线程数ꎬ默认值为-1ꎬ代表自动获取最大值.2)Booster参数用于控制每一步Booster(树或回归)的生成ꎬ如表1所示.eta即学习率ꎬ决定每次迭代的收缩步长ꎬ参数值越大越难以收敛ꎬ因此将参数值设置为偏小值0.1ꎬ提升学习过程的精细化.min_child_weight为最小叶子节点样本权重和ꎬ当一个叶子节点的样本权重总和小于该参数值时则停止分裂ꎬ取值范围为[0ꎬ+ɕ)ꎬ取值越大越保守ꎬ可以防止过拟合ꎬ默认值为1.max_depth为树的最大深度ꎬ该值越大模型则越复杂ꎬ越容易导致过拟合ꎬ默认值为6.sub_sample控制构建每棵树时采用的样本比例ꎬ可以防止过拟合ꎬ取值于(0ꎬ1]之间ꎬ此处设为值0.8.colsample_bytree控制构建每棵树时随机抽取的特征占比ꎬ取值于(0ꎬ1]之间ꎬ此处设为值0.8.gamma指的是节点分裂要求的最小损失函数减少值ꎬ参数越大越能避免过拟合ꎬ默认值为0.alpha为控制复杂度的权重的L1正则化项ꎬ参数值越大越能避免过拟合ꎬ可以加快高维度数据的运算速度ꎬ此处设为值1.scale_pos_weight可在类别样本数不平衡时加快算法收敛速度ꎬ此处设为值15.表1㊀Booster参数初始值设置参数名参数值eta0.1min_child_weight1gamma0max_depth6sub_sample0.8colsample_bytree0.8alpha1scale_pos_weight153)学习目标参数ꎬ确定模型学习目标.objective确定需要被最小化的损失函数ꎬ由于研究的问题是二分类问题ꎬ并要求以概率的形式输出结果ꎬ因此将此参数设定为binary:logisticꎬ即二分类回归.eval_metric定义的是分类器的评估指标ꎬ可以同时添加多种指标ꎬ此处添加常用的auc㊁logloss(负对数似然函数值)㊁error(二分类错误率).seed为随机数种子ꎬ该参数值能使随机数据复现ꎬ此处设置为100.4.2㊀模型训练4.2.1㊀初始参数训练XGBoost包中的XGBoost.train()用于对分类器进行训练ꎬ参数主要包括params㊁dtrain㊁num_boost_round㊁evals=()㊁early_stopping_rounds.dtrain指的是被训练的数据.num_boost_round指的是141㊀第2期㊀㊀㊀㊀㊀㊀景秀丽ꎬ等:基于XGBoost算法的电商用户重复购买行为预测。

人工智能基础(试卷编号1132)

人工智能基础(试卷编号1132)说明:答案和解析在试卷最后1.[单选题]下列选项中,正确描述Flume对数据源的支持的是A)只能使用HDFS数据源B)可以配置数据源C)不能使用文件系统2.[单选题]在数据集上使用 2-fold 交叉验证,应该在kf = KFold(n_splits=_) "_"处填入:A)2B)4C)6$;8%3.[单选题]关于函数不正确的说法是__x001f______。

A)函数可以实现代码重用B)函数可以实现程序的模块化C)函数参数调用只能按位置调用D)函数的调用简化了程序的编写4.[单选题]在CNN中使用1×1卷积时,下列哪一项是正确的?A)它可以帮助降低维数B)可以用于特征池C)由于小的内核大小,它会减少过拟合D)所有上述5.[单选题]人工神经网络中的神经元一个一个的改变状态,称为( )。

A)全工工作状态B)同步工作状态C)半工工作状态D)异步工作状态6.[单选题]在统计语言模型中,通常以概率的形式描述任意语句的可能性,利用最大相似度估计进行度量,对于一些低频词,无论如何扩大训练数据,出现的频度仍然很低,下列哪种方法可以解决这一问题A)一元切分B)一元文法7.[单选题]以下选项中,不属于大数据对人才能力的要求是A)业务能力B)数学统计能力C)IT技术能力D)逻辑思维能力8.[单选题]一个对象碰巧与另一个对象相对接近,但属于不同的类,因为这两个对象一般不会共享许多近邻,所以应该选择()的相似度计算方法A)平方欧几里德距离B)余弦距离C)直接相似度D)共享最近邻9.[单选题]基于神经网络的分类模型是?A)生成模型B)判别模型C)两者都不属于D)两者都属于10.[单选题]文本分析中基于规则的方法不包括( )。

A)正向最大匹配法B)单次扫描法C)逐词遍历法D)最佳匹配法11.[单选题]信息增益对可取数目()的属性有所偏好,增益率对可取值数目()的属性有所偏好A)较高,较高B)较高,较低C)较低,较高D)较低,较低12.[单选题]不属于AI应用领域的是( )A)无人机喷洒农药B)病毒拦截C)安防监控D)CAD制图13.[单选题]numpy中向量转成矩阵使用A)reshape14.[单选题]在人工智能的( )阶段开始有解决大规模问题的能力。

商务英语短文阅读

Ps:亲们,Financial Times NEWS 共有6篇,每隔一个绿色标题为1篇。

希望大家也能分享一下。

①Europe up after Asia shows new confidenceBy Andrew Bolger in London and Patrick McGee in Hong KongThursday 08:15 GMT. European shares opened on a positive note after Asian markets signalled growing confidence that the crisis in Ukraine has eased, at least for now.In early trading, London’s FTSE 100 quickly regained Wednesday’s loss of 0.7 per cent, while the Eurofirst 300 rose by 0.4 per cent after closing flat the previous day. Futures suggest the S&P 500 will open 0.4 per cent higher, after it closed flat but near record levels.“Markets have taken on somewhat of a calmer tone in part due to hopes that discussions between the US and Russia will find some form of solution to the recent escalation of tensions in Ukraine,” wrote Mi tul Kotecha at Crédit Agricole.But investors remain cautious ahead of the European Central Bank policy decision, due later on Thursday, and the closely watched US monthly jobs report on Friday.Japan‟s Nikkei 225 average rose 1.6 per cent to its highest level since late January, outperforming other markets as the yen weakened 0.3 per cent to Y102.6 against the dollar, its lowest since February 22. The currency has fallen 1.4 per cent since Monday, when investors were seeking shelter after Russian troops occupied the Crimean peninsula.Hong Kong‟s Hang Seng index rose 0.5 per cent, while South Korea‟s Kospi Composite was up 0.2 per cent.Other assets perceived as havens were steady, reflecting the cautious mood. The price of gold was flat at $1,338.9 an ounce, while the 10-year Treasury yield fell slightly overnight to 2.7 per cent.In New York, the S&P 500 also put in a steady performance on Wednesday, ending a fraction lower after touching a fresh intraday peak in spite of disappointing jobs and service sector data that prompted some economists to scale back their estimates for February‟s employment report.ADP, a private US payroll processor, said that 139,000 jobs had been created in February – fewer than the markets had expected – and revised down its January figure from 175,000 to 127,000.The US reports “revealed surprising February service sector weakness that boosted downside risks for Friday‟s US jobs report, and we have lowered our payroll estimate to 130,000 with substantial risk of a sub-100,000 figure,” said Michael Englund at Action Economics.News in Asia was sparse, but in Australia fresh data suggested two key drivers of the economy were functioning far better than anticipated in January – crucial as the economy attempts to find new sources of growth as the mining boom cools.Retail sales rose 1.2 per cent in January, a ninth consecutive month of gains and the best reading in 11 months, while Australia‟s trade surplus jumped to A$1.43bn, its highest since September 2011.“The recent string of …feel-good‟ data, combined with the rec ent buoyant turnround in business confidence, could be the key to stimulating investment and employment this year, the weak spots of 2013,” said Annette Beacher, head of Asia-Pacific research at TD Securities.“The evidence is building that domestic demand is picking up strongly. All the while, resource exports are ramping up,” added Paul Bloxham, chief economist at HSBC.The Australian stock market pared earlier losses, with the S&P/ASX 200 closing little changed near its five-and-a-half-year high.Ms Bea cher said the data were “a two-edged sword” for the equity market because they took away any chance of further stimulus from the Reserve Bank of Australia.The Australian dollar rose 0.4 per cent and so far this week has been lifted 1.4 per cent, to US$0.902 from US$0.889.Meanwhile, the Shanghai Composite rose 0.3 per cent, halting a two-day drop. China appears to be heading for its first onshore corporate bond default on Friday, after Shanghai-based solar cell maker Chaori Solar said earlier this week that it did not have the funds to make an annual interest payment.The market impact is unclear, however. Some analysts have suggested it could cause a chain reaction, while others say it should promote reform and help investors better price risk.①US feels the chill of more weak jobs dataBy Robin Harding in WashingtonFears are rising of another weak payrolls report this Friday as the long, cold winter in parts of the country puts a freeze on the US economy.Data from payrolls工资单processor ADP showed the creation of just 139,000 private sector jobs in February, and there was a nasty凶险的surprise from the services industry, where employment activity plunged to进入到its lowest level in nearly four years.Most economists still think the weak data reflect an unusually cold and snowy winter, with strong growth set to resume in the spring, but as the soft patch enters its third month their jitters are growing.“I think to blame the weather for 100 per cent of the slowdown is an overstatement,” said Steve Blitz, chief economist at ITG Investment Research in New York.The market consensus is for official jobs numbers due on Friday to show an increase of 150,000 with the unemployment rate holding steady at 6.6 per cent. Analysts expect a modest rebound after jobs growth of just 75,000 and 113,000 in December and January.At the end of 2013 the economy seemed poised to accelerate, with a run of monthly jobs growth above 200,000, but that wave of optimism has subsided after the first months of 2014 delivered only a familiar pattern of mediocre economic expansion and downward revisions to the economic data.The purchasing managers‟ index for the services sector fell from 54 in January to 51.6 in February, where a reading of 50 separates expansion from contraction. But a sub-index on hiring activity fell from 56.4 to 47.5 – the first contraction in employment after 25 months of growth.“The weather is likely at least a partial culprit: February was much colder and snowier than usual . . . but even allowing for that, this is a deeply disconcerting number,” said Ian Shepherdson at Pantheon Macroeconomics.“A sharp contraction in the hiring subcomponent is particularly concerning,” said Ksenia Bushmeneva, an economist at TD Bank. “The magnitude of the decline suggests the possibility of another disappointing payroll report on Friday.”The weather is likely at least a partial culprit: February w as much colder and snowier than usual . . . but even allowing for that, this is a deeply disconcerting numberSome details of the Institute of Supply Management‟s services report suggest the weather is to blame, with construction and wholesale companies explicitly citing the cold and snow, and forecasting a return to stronger activity in April.But there were also companies in industries such as finance and technical services, which are less likely to be affected by weather, that said the economy is trending slightly lower or growing very slowly.Meanwhile, the ADP data not only came in below expectations of a 155,000 increase, but there was also a large downward revision to January‟s figure from growth of 175,000 jobs to 127,000.The data pose a conundrum for the US Federal Reserve because the weather effect makes it hard to get a clear reading on the underlying health of the economy. Most Fed officials have argued that weather is the main reason for recent weakness.As a result, the Fed is likely to taper its monthly asset purchases by another $10bn to $55bn on March 19, even if there is another weak payrolls report on Friday. The March meeting will be the first at which new chairwoman Janet Yellen is in charge.②EU plans voluntary rules on conflict mineral importsMarch 5, 2014 6:02 pm EU plans voluntary rules on conflict mineral importsBy Christian Oliver in Brussels, Katrina Manson in Nairobi and James Wilson in London©ReutersA miner washes tin ore in eastern CongoThe EU on Wednesday proposed voluntary rules to prevent European companies importing conflict minerals, saying America’s tougher legislation立法had backfired违背意愿by pushing many US companies to quit Africa.Karel De Gucht, the EU’s trade commissioner贸易专员, said Europe would use a “carrot rather than a stick” to police监督the European companies that import tin锡, tantalum钽, tungsten钨and gold.Some of these minerals come from regions such as Africa’s Great Lakes, where mining bankrolls提供资金warring militias敌对民兵.Mr De Gucht argued that America’s legislation立法on conflict minerals from 2010, Dodd-Frank Section 1502, had “unintended consequences意外后果”. To avoid litigation诉讼, US companies now spurn摒弃traditional sources of minerals around Africa’s Great Lakes in favour of 支持developed nations such as Canada, he said.“Mines can get shut down as they lose business. People lose not only their jobs but often the livelihood for their families: commu nities collapse,” Mr De Gucht said, adding that people could be forced into smuggling.Although about 880,000 EU companies use sensitive minerals, Brussels insists that it will focus on the 400 main importers that supply mobile phone companies, carmakers a nd aerospace companies. “That is realistic to control,” Mr De Gucht said.The commission proposes that those 400 importers should agree to voluntary audits to acquire certification that their supply chain has not funded violence自愿获得审计认证,他们的供应链没有为暴力提供资助. Much of that will depend on the EU collaborating 合作with the OECD经济合作与发展组织, the Paris based group that aims to promote sustainable growth可持续增长, to form a “white list” of global smelters 熔炉and refiners精炼者to identify those that avoid conflict minerals. Currently, the commission estimates that only 20 per cent of smelters and 40 per cent of refiners carry out due diligence on their supply chain.The EU is a big buyer of the most sensitive metals. It imports about 25 per cent of the global trade in tin, tungsten and tantalum and about 15 per cent of gold.One EU official admitted that the main incentive动机to the European importers would be reputational. Aware of increasing public scrutiny详细审查over conflict minerals, companies would seek to source their materials f rom the EU’s certified证实importers, he argued.In public procurement公营部门采购, the proposal倡议would have sharper teeth, with the EU saying it would only buy materials from certified supply chains. The bloc would also offer support to small businesses that found it too costly to carry out the necessary checks on where their minerals came from.Anything short of a mandatory强制的reporting obligation for EU-based companies using and trading natural resources will fail to prevent Europe from acting as a conflict mineral trading hub中心.However, Graham Stuart, a partner at Baker & McKenzie, a law firm, noted that the proposals were “very different from where we started out. The commission委员会will have to do quite a lot of work to explain why it thinks this approach will be the most effective and pragmatic实际的way to control the problem.”While Dodd-Frank focused on Africa, the EU plan will apply worldwide.Seema Joshi of Amnesty International said the EU’s approach did not go far enough. “Anything short of a mandatory 强制的reporting obligation for EU-based companies using and trading natural resources will fail to prevent Europe from act ing as a conflict mineral trading hub,” she said.Gregory Mthembu-Salter, a due diligence consultant and architect of UN guidelines on conflict minerals in Congo, said the European proposals could lack “enough bite to have any impact”. In fact, bothDodd-Frank and the EU proposals seemed to miss the target, he said.“The problem with Dodd-Frank is you can never fix things; you have to run away if you find a problem [in your supply chain]. You should have a chance to fix things but it shouldn’t be voluntary – you shouldn’t just do them when you feel like doing them.”③Calm returns as focus shifts from UkraineBy Dave ShellockWednesday 21:05 GMT. Calmer conditions returned to global markets as the focus began to shift away from events in Ukraine and back to more mundane世俗的matters such as economic data and the forthcoming来临的European Central Bank policy decision.China also reappeared on participa nts’ radar雷达screens amid concerns that the country was facing its first onshore corporate bond default违约,、、、、、、and as Beijing maintained its target for economic growth this year at 7.5 per cent.“The situation in Ukraine has settled down and China has le ft its growth forecasts unchanged, suggesting the focus will return to the broader fundamentals and the policy and data events over the coming days,” said Hans Redeker, head of global FX strategy at Morgan Stanley.“The ECB meeting and staff projections on Thursday, and the labour market surveys from the US will be important.”In New York, the S&P 500 equity index ended a fraction down from Tuesday’s record closing high, after reaching a fresh intraday peak earlier in the session. The CBOE Vix volatility index was down 0.1 per cent late in the session.Across the Atlantic, the FTSE Eurofirst 300 slipped less than 0.1 per cent, while the Nikkei 225 in Tokyo climbed 1.2 per cent.Russian equities were becalmed following the wild swings of the past two sessions. The Micex stock index ended 0.4 per cent lower, while the rouble held steady against the dollar as the markets scrutinised diplomatic efforts to resolve the Ukraine crisis.Meanwhile, Wall Street’s steady showing came in spite of some disappointing jobs and service sector data that prompted some economists to scale back their estimates for Friday’s February employment report.ADP, a private US payroll processor, said 139,000 jobs had been created in February – less than the markets had expected – and revised down its January figure from 175,000 to 127,000.Furthermore, the Institute of Supply Management’s index of non-manufacturing activity fell to afour-year low of 51.6 in February, from 54.0 in the previous month. The employment sub-index tumbled to 47.5, also the lowest reading since 2010.“Today’s US reports revealed surprising February service sector weakness that boosted downside risks for Friday’s US jobs report, and we have lowered our payroll estimate to 130,000 with substantial risk of a sub-100,000 figure,” said Michael Englund at Action Economics.By contrast, the final readings for the eurozone service sector and composite purchasing managers’ indices for February were both revised up from the “flash” estimates to their highest levels in 32 months.Chris Scicluna, an economist at Daiwa Capital Markets, said this suggested a possible acceleration of growth for the region in the current quarter.“Given the firmness of the latest activity and survey data, as well as last week’s upside surprise to February’s inflation – not to mention the recent upward shift in crude oil futures prices on the back of turbulence in Ukraine – it is now very difficult to see any consensus in favour of a further rate cut when the ECB’s governing council meets on Thursday,” he said.The euro held in a narrow range against the dollar ahead of the ECB decision, with the single currency trading less than 0.1 per cent lower at $1.3731. The dollar continued to edge higher against the yen –rising 0.1 per cent to 102.28.Othe r “haven” assets remained out of favour, with the yield on the German 10-year government bond inching up 1 basis point to 1.61 per cent and that on the 10-year Treasury unchanged at 2.69 per cent.Gold was up $4 at $1,338 an ounce following a $16 fall on Tuesday. Among industrial commodities, Brent oil extended the previous day’s decline, settling $1.54 lower at $107.76 a barrel, the lowest since early February.In Shanghai, the mood was unsettled by concerns that Shanghai Chaori Solar would be unable to pay investors a near-$15m interest payment due on Friday. The Shanghai Composite stock index fell 0.9 per cent.China’s annual meeting of the Na tional People’s Congress began with Premier Li Keqiang keeping its growth target at 7.5 per cent for 2014, the same goal as in the past two years.“At the same time though, Premier Li reiterated the need to control local government debt risks, increase oversight of shadow banking and suggested that fixed asset investment should slow,” said Mark Williams at Capital Economics.“He also took a tougher line on overcapacity. At face value, these goals appear incompatible. In resolving this tension, the GDP target is likely to take precedence.”④China sets 7.5% growth targetBy Lucy Hornby and Tom Mitchell in Beijing and Simon Rabinovitch in ShanghaiChina is targeting economic growth of 7.5 per cent this year, a dovish goal that could force the government to stimulate the economy in the coming months as growth threatens to slip below the target.The target, announced by Premier Li Keqiang at the start of China’s annual meeting of the National People’s Congress –the country’s faux parliament – is identical to that set in the past two years. Many analysts and investors had predicted that Beijing might lower its target or set a broader range this year in a bid to push through reforms even at a short-term economic cost.For much of the past decade, China’s gro wth target was effectively meaningless, with the gross domestic product expanding by an average of 10 per cent while the target called for no more than 8 per cent. However, with the maturing economy slowing, the target is becoming a more important signal of policy intentions. In the final quarter of 2013, GDP expanded 7.7 per cent year on year, and survey data have pointed to a further slowdown in the first quarter of 2014, leaving the government little margin for error if it is to hit its growth target.Mr Li, in his work report to the parliament, said it would not be easy to meet but expressed confidence in doing so.“We are at a critical juncture where our path upward is particularly steep,” he said, according to the text of his report. “At the same time it should be noted that China has the foundation and conditions for maintaining a medium-high rate of growth for some time to come.”It was Mr Li’s maiden annual work report to parliament, coming at the end of his and President Xi Jinping’s first year in office as the country’s new leadership duo. In 2013 when Chinese money market rates climbed towards double digits analysts argued the two were ready to accept a slowdown in growth in return for cleaning up the high levels of private and public debt accumulated over the past five years.But money market rates have dropped sharply in recent weeks, a sign the central bank has already presided over an easing of policy to help keep growth on track.China’s other important economic targets for 2014 matched those of 2013. Once again, the government said it was aiming for an average inflation rate of 3.5 per cent and 13 per cent growth in the broad M2 gauge of money.Beijing did give itself a modicum of wiggleroom for its growth target, phrasing it as“about” 7.5 per cen t, just as in 2013. InFebruary Zhou Xiaochuan, China’s centralbank governor had said the economy wouldgrow between 7 and 8 per cent this year.The government’s key criteria for assessingofficials over the past three decades havebeen their record in delivering high-speedgrowth. But Mr Xi has called for moreattention to other factors, includingenvironmental protection and debt control,when weighing up how well officials have performed.The National Development and Reform Commission, a top central planning agency, said the 7.5 per cent goal should therefore be viewed as “flexible and guiding”. It also fired a warning shot across the bow of local officials hell-bent on growth. They “must not . . . compete with each other to have the highest growth rate,” it said.Beyond the headline GDP target, the government also set goals that could tilt the Chinese growth model towards more consumption and less investment – a rebalancing that is needed to put the economy on a more stable footing.It said it would aim for a 17.5 per cent increase in fixed-asset investment, down from last year’s 18 per cent target. Meanwhile, it said it would shoot again for a 14.5 per cent increase in retail sales despite falling well short of that target in 2013. “We will fully tap the potential of domestic consumption,” the NDRC said.⑤China speeds past Europe on 4G mobile rolloutBy Daniel Thomas, Telecoms CorrespondentChina has overtaken Europe by building hundreds ofthousands of masts to carry superfast 4G mobile signalsand Western executives warn it will pull further aheadwith its plans to more than double construction thisyear.While the take-up of 4G services in China lags behindthe rollout of base stations – given services only becamecommercially available last month –the scale of the infrastructure building underlines the country’s ambitions .China Mobile became the country’s first 4G operator in December last year and it built about 200,000 base stations in advance of the launch. That is already more than are deployed Europewide, acc ording to analysts at HSBC and CCS Insight. China Mobile’s network covers as many as 500m people in the important cities on the country’s east coast.China Telecom and China Unicom are also building smaller 4G networks. Up to 1m 4G masts could be built in China by the end of 2014, according to equipment makers.At last month’s annual Mobile World Congress in Barcelo na, executives from European mobile operators feared that the combination of regulatory constraints and sluggish economic growth would curtail construction of 4G networks in the continent.Also in Barcelona this week, Wei Zaisheng, finance director for ZTE, the Chinese state-owned equipment maker, said there could be as many as 1m 4G base stations in China by the year’s end, from close to 300,000 today, as companies “speeded up construction”.China represented about 60 per cent of the market for new 4G mas ts, he said. “China is leading 4G compared to Europe.”Three industry executives said they were expecting a second tender from China Mobile for about500,000 base stations this year. Equipment-maker executives forecast that China Telecom would order up to 250,000 masts this year.Neelie Kroes, Europe’s digital commissioner, has also emphasised the need to accelerate 4G rollout, and has recently shifted the focus to developing the next stage of mobile networks with so-called “5G” technology.Beijing has made telecoms a main national industry. Only a third of Chinese households have broadband internet connections, according to data from the brokerage CLSA, intensifying the urgency to rollout high-speed mobile services.The US, South Korea and Japan lead the world in 4G deployment and usage with almost ubiquitous coverage, which is seen to have economic benefits as people work and access media swiftly while on the move.Chinese groups are also leading the development of networks based on a lesser used variant of 4G technology called TD LTE, which analysts say will give China the chance to claim an advantage in promoting a standard that had not been used much in the West, where FDD is the dominant 4G standard.TD LTE technology is gaining momentum outside China, with the recent decision by Sprint to use the technology in its 4G network in the US.。

learning to rank for information retrieval类似的字资料

"Learning to Rank for Information Retrieval" 是一个研究领域,主要关注如何使用机器学习技术来优化信息检索系统的排序性能。

以下是一些与该主题相关的类似资料:1. Books:"Learning to Rank for Information Retrieval and Natural Language Processing" by Hang Li, Synthesis Lectures on Human Language Technologies"Ranking in Intelligent Systems" edited by Hideo Watanabe and Hitoshi Iba"Information Retrieval: Implementing and Evaluating Search Engines" by Bruce Croft, Donald Metzler, and Trevor Strohman2. Research Papers and Articles:"A Survey of Learning to Rank Methods" by Tie-Yan Liu"Ranking Measures and Loss Functions in Learning to Rank" by ChengXiang Zhai and John Lafferty"ListNet: A Listwise Approach to Learning to Rank" by Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li"LambdaMART: A Machine Learning Method for Information Retrieval" by Yuyang Wang, Tie-Yan Liu, Tianqi Chen, and Hang Li "Gradient Boosted Decision Trees for Web Search Ranking" by Chris Burges, Tal Shaked, Erin Renshaw, and Yuri Lazebnik3. Datasets and Benchmarks:LETOR (Learning to Rank) dataset from Microsoft Research: A collection of benchmark datasets for learning to rank algorithms.MSLR-WEB (Microsoft Learning to Rank) dataset: A larger and more diverse set of queries and documents for evaluating ranking models.TREC (Text REtrieval Conference) datasets: Various datasets used in the annual TREC conference for information retrieval evaluation.4. Online Resources and Tutorials:"Learning to Rank" chapter in the "Introduction to Information Retrieval" book online. Tutorial on "Learning to Rank for Information Retrieval" by Tie-Yan Liu. Coursera course "Information Retrieval" by Prof. Christopher Manning .这些资料涵盖了从理论基础、算法实现到实际应用的各个方面,可以帮助你深入理解学习到排名在信息检索中的应用和最新进展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

P=
s
Ws
s Ws +
b
Wb
,
where s is the sum over signal events and b is the sum over background events. Note that P (1 − P ) is 0 if the sample is pure signal or pure background. For a given
c Los Alamos National Laboratory, Los Alamos, NM 875cision trees are applied to particle identification in the MiniBooNE experiment operated at Fermi National Accelerator Laboratory (Fermilab) for neutrino oscillations. Numerous attempts are made to tune the boosted decision trees, to compare performance of various boosting algorithms, and to select input variables for optimal performance.
a Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA b Department of Statistics, University of Michigan, Ann Arbor, MI 48109, USA
The boosting algorithm is one of the most powerful learning techniques introduced in the past decade[7, 8, 9, 10]. The motivation for the boosting algorithm is to design a procedure that combines many “weak” classifiers to achieve a final powerful classifier.
This paper is focussed on the boosting tuning. All results appearing in this paper are relative numbers. They do not represent the MiniBooNE PID performance; that performance is continually improving with further algorithm and PID study. The description of the MiniBooNE reconstruction packages[11, 12], the reconstructed variables, the overall and absolute performance of the boosting PID[13, 14], the validation of the input variables and the boosting PID variables by comparing various MC and real data samples[15] will be described in future articles.
2
S/B 52/48
< 100 PMT Hits? ≥ 100
1E-mail address: yhj@
1
In the present work numerous trials are made to tune the boosted decision trees, and comparisons are made for various algorithms. For a large number of discriminant variables, several techniques are described to select a set of powerful input variables in order to obtain optimal event separation using boosted decision trees. Furthermore, post-fitting of weights for the trained boosting trees is also investigated to attempt further possible improvement.
Decision trees have been available for some time[7]. They are known to be powerful but unstable, i.e., a small change in the training sample can produce a large change in
2 Decision Trees
Boosting algorithms can be applied to any classifier, Here they are applied to decision trees. A schematic of a simple decision tree is shown in Figure 1, S means signal, B means background, terminal nodes called leaves are shown in boxes. The key issue is to define a criterion that describes the goodness of separation between signal and background in the tree split. Assume the events are weighted with each event having weight Wi. Define the purity of the sample in a node by
arXiv:physics/0508045v1 [physics.data-an] 8 Aug 2005
Studies of Boosted Decision Trees for MiniBooNE Particle Identification
Hai-Jun Yanga,c,1, Byron P. Roea, Ji Zhub
node let
n
Gini = ( Wi)P (1 − P ),
i=1
where n is the number of events on that node. The criterion chosen is to minimize
Ginileft child + Giniright child.
To determine the increase in quality when a node is split into two nodes, one maximizes
1 Introduction
In High Energy Physics (HEP) experiments, people usually need to select some events with specific interest, so called signal events, out of numerous background events for study. In order to increase the ratio of signal to background, one needs to suppress background events while keeping high signal efficiency. To this end, some advanced techniques, such as AdaBoost[1], ǫ-Boost[2], ǫ-LogitBoost[2], ǫ-HingeBoost, Random Forests [3] etc., from Statistics and Computer Sciences were introduced for signal and background event separation in the MiniBooNE experiment[4] at Fermilab. The MiniBooNE experiment is designed to confirm or refute the evidence for νµ → νe oscillations at ∆m2 ≃ 1 eV 2/c4 found by the LSND experiment[5]. It is a crucial experiment which will imply new physics beyond the standard model if the LSND signal is confirmed. These techniques are tuned with one sample of Monte Carlo (MC) events, the training sample, and then tested with an independent MC sample, the testing sample. Initial comparisons of these techniques with artificial neural networks (ANN) using the MiniBooNE MC samples were described previously[6]. This work indicated that the method of boosted decision trees is superior to the ANNs for Particle Identification (PID) using the MiniBooNE MC samples. Further studies show that the boosted decision tree method has not only better event separation, but is also more stable and robust than ANNs when using MC samples with varying input parameters.
相关文档
最新文档