2017行测:数字推理详解
2017银行校园招聘行测数字推理解题思路

2017银行校园招聘行测数字推理解题思路下边就银行考试中的数字推理浅谈一下数字推理的一些个答题技巧。
数理能力主要测查考生理解、把握事物间量化关系和解决数量关系问题的能力。
数字推理题所涉及的数字规律千变万化,对于数字推理题没有万能的解法,建议考生应重点分析题干数字的运算关系和位置关系。
这就要求考生掌握相关的基础数学知识,还要掌握一定的解题方法,提高解题速度。
所以解题的时候需要也是要用一些思维方式。
(一)直觉思维直觉思维是对事物直观认识的特殊思维方式,是逻辑思维的凝结或简缩。
它包括数字直觉和运算直觉两个方面。
数字直觉数字直觉是人们对数字基本属性深入了解之后形成的。
通过数字直觉解决数字推理问题的实质是灵活运用数字的基本属性。
自然数平方数列:由于题干数字的迷惑性,数字推理规律隐藏得很深,解题时可能是直觉思维、构造思维、转化思维交替运用的过程,是猜证结合的过程,这就是一种综合思维。
当前数字推理规律求新求异,真题中时有“出人意外”的数字推理规律出现,这就要求我们在掌握一些基本解题方法的基础上,结合对数字推理规律的积累,多角度开阔思路,实现数字推理解题能力的全面提升。
(二)解题思路1.当数列呈递增或递减趋势,且变化幅度不大时,优先使用作差法。
另外,当数列中无明显规律,寻找数项特征和结构特征也没有头绪时,也可以考虑使用作差法理清关系。
2.当数字之间存在明显倍数关系时,应优先应考虑使用作商法。
3.数列有平稳、递增趋势,但通过作差不能解决问题,利用多次方和作商也不能解决时,可考虑取两项或三项求和,从而寻找新数列的规律。
4.拆分法的应用,拆分法是指将数列中的数字拆分成两个或多个部分,然后通过每部分的规律得到原数列规律的方法,在公务员考试中,拆分法主要有整数乘积拆分与整数加减拆分两种。
对于这种题型,一般来说一套卷子5道,考生在考场上不要过于纠结该种题型,平时只有多做题才能在考场上发挥出预想到的效果,见识更多的规律才行。
2017上半年重庆公务员行测备考:数字推理讲解

重庆公务员考试行政职业能力测验主要测查与公务员职业密切相关的、适合通过客观化纸笔测验方式进行考查的基本素质和能力要素,包括言语理解与表达、数量关系、判断推理、资料分析和常识判断等部分。
比如言语理解与表达,它主要测查报考者运用语言文字进行思考和交流、迅速准确地理解和把握文字材料内涵的能力,包括根据材料查找主要信息及重要细节;正确理解阅读材料中指定词语、语句的含义;概括归纳阅读材料的中心、主旨;判断新组成的语句与阅读材料原意是否一致;根据上下文内容合理推断阅读材料中的隐含信息;判断作者的态度、意图、倾向、目的;准确、得体地遣词用字等。
而我们常见的题型有:阅读理解、逻辑填空、语句表达等。
中公教育分析,相比较数学应用题目来说,数字推理题目知识点更少,短时间内更容易提高,用时会更少。
其实数字推理题目主要考察考生对数字的敏感性和对基础数列的敏感性,也是反映考生基本思维能力的重要手段。
如果考生真正的能够融会贯通,就会惊奇的发现数字推理和图形推理有着几乎完全相同的思考和解题方式。
重庆中公教育温馨提醒您,多写多练,有计划性的学习,中公教育将伴你同行!。
行政职业能力测试答题技巧之图形数字推理

⾏政职业能⼒测试答题技巧之图形数字推理⾏政职业能⼒测验(英⽂名Administrative Aptitude Test,简称AAT)和智⼒测验⼀样,属于⼼理测验的范畴。
它⽤来测试应试者与拟任职位相关的知识、技能和能⼒,是考查应试者从事公务员⼯作所必须具备的⼀般潜能的⼀种职业能⼒测试,主要考查的是应试者在⾏政管理⽅⾯的潜⼒和倾向。
是国家公务员考试公共笔试的⼀门,也是同学们⽐较头疼的⼀个科⽬,所以店铺公务员频道()为⼤家整理了⼀些相关的答题技巧,解题⽅法以及例题,希望对⼤家有所帮助。
⼀、分析四周数字之和与中⼼数字的⼤⼩关系如果四周数字之和⼩于中⼼数字,则四周数字的运算过程很有可能涉及乘法运算,否则,就应该优先考虑减法或除法运算。
这种分析虽然过程简单,但有利于确定⼤致的⽅向。
例题:解析:此题答案为B。
从前两个图形来看,四周数字之和远⼤于中⼼数字,这时需要将四周数字分组,优先考虑它们之间的减法或除法运算。
第⼀个图形中有24、12、6,第⼆个图形中有8、8、16,这些数都为除法创造了条件。
若在第⼀个图形中,24÷12;则在第⼆个图形中,8÷16,得到的是⼩数,由此否定这条路。
即应该是24÷6,得到4,和中⼼数字6相差2,2可由12和10得到,此题便得到了解决。
第⼀个图形中,24÷6+12-10=6;第⼆个图形中,8÷8+16-9=8;第三个图形中,32÷8+20-12=(12)。
⼆、分析图形中最⼤的数在数字推理中,⼏个数字运算得到另⼀个数字,通常都是⼏个较⼩的数运算得到⼀个较⼤的数。
如果⼏个较⼩的数字运算得到⼀个远⼤于它们的数,则⼀定要通过乘法等使数字增⼤的运算。
因此我们可以以图形中最⼤的数字作为突破⼝,寻找运算关系。
例题1:A.11 B.16 C.18 D.19解析:此题答案为D。
图形中最⼤的数字是第三个图形中68,它由6、2、4三个数字运算得到,68远⼤于这三个数字的和,考虑乘法运算,三个数字的积是6×2×4=48,仍然⼩于68,由此确定应该考虑使数字变化更快的乘⽅运算。
2017行测:数字推理详解

数字推理题725道详解?【1】7,9,-1,5,()A、4;B、2;C、-1;D、-3分析:选D,7+9=16;9+(-1)=8;(-1)+5=4;5+(-3)=2,16,8,4,2等比【2】3,2,5/3,3/2,()A、1/4;B、7/5;C、3/4;D、2/5分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5【3】1,2,5,29,()A、34;B、841;C、866;D、37分析:选C,5=12+22;29=52+22;()=292+52=866【4】2,12,30,()A、50;B、65;C、75;D、56;分析:选D,1×2=2;3×4=12;5×6=30;7×8=()=56【5】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】4,2,2,3,6,()A、6;B、8;C、10;D、15;分析:选D,2/4=0.5;2/2=1;3/2=1.5;6/3=2;0.5,1,1.5,2等比,所以后项为2.5×6=15【7】1,7,8,57,()A、123;B、122;C、121;D、120;分析:选C,12+7=8;72+8=57;82+57=121;【8】4,12,8,10,()A、6;B、8;C、9;D、24;分析:选C,(4+12)/2=8;(12+8)/2=10;(8+10)/2=9【9】1/2,1,1,(),9/11,11/13A、2;B、3;C、1;D、7/9;分析:选C,化成1/2,3/3,5/5(),9/11,11/13这下就看出来了只能是(7/7)注意分母是质数列,分子是奇数列。
【10】95,88,71,61,50,()A、40;B、39;C、38;D、37;分析:选A,思路一:它们的十位是一个递减数字9、8、7、6、5只是少开始的4所以选择A。
2017年公事员考试行测数字推理状元笔记图形推理配套练习二

2017年公事员考试行测数字推理状元笔记图形推理配套练习(二)2020年国考一、图形推理。
请按每道题的答题要求作答。
请开始答题:81.从所给的四个选项中,选择最适合的一个填入问号处,使之呈现必然的规律性:A B C D图形旋转与翻转。
注用意形的旋转方向,前2组为逆时针方向,后1组为顺时针方向。
由前2组能够得出眼睛和嘴巴依次翻转。
因此取得C.82.左侧给定的是纸盒的外表面,下面哪一项能由它折叠而成?A B C D纸盒问题。
由相邻面能够排除A,B,C全然无法取得(方向相反)。
剩下D也很容易判定。
PS:感觉麻烦能够在橡皮上画一下,专门快就能够得出。
而且超级准确。
83.从所给的四个选项中,选择最适合的一个填入问号处,使之呈现必然的规律性:A B C D【解析】C。
此题属于样式类,要紧考察了属性中的曲直问题。
题干中的图形都有曲线,因此选一个有曲线的图形。
因此选择C项。
那个完全能够从选项中看出来——选项中哪个不同凡响?明显是C,因为其他的都只含直线,只有C有曲线。
84.从所给的四个选项中,选择最适合的一个填入问号处,使之呈现必然的规律性:【解析】B。
此题属于样式类,要紧考查了样式求异问题。
第一组图形中前两个图形求异取得第三个,因此第二组图形中前两个图形求异取得B项。
因此选择B项。
这是去同存异的一个变形。
只是我那时做的时候仿佛没这么想——我想得是前2个各取一部份组成第3个,固然如此想B,C都能够,但参照第一组的组合方式,第一个提供是外框,因此选B.我的思路其实并无到点子上,但仍然能做出来,这说明图形推理其实完全能够发散,黑猫白猫,抓到老鼠确实是好猫。
85.从所给的四个选项中,选择最适合的一个填入问号处,使之呈现必然的规律性:A B C D【解析】C。
此题属于数量类,第一组图形中里面图形的线比外面的线少,且后两个图形里外两个图形是相切的,第二组图形里面图形的线比外面图形的线多,且后两个图形里外两个图形应该是相切的。
公务员行政能力测试数字推理答题技巧(非常有用)

公务员行政能力测试数字推理答题技巧(非常有用)数字推理一、基本要求熟记熟悉常见数列,保持数字的敏感性,同时要注意倒序。
自然数平方数列:4,1,0,1,4,9,16,25,36,49,64,81,100,121,169,196,225,256,289,324,361,400……自然数立方数列:-8,-1,0,1,8,27,64,125,216,343,512,729,1000质数数列:2,3,5,7,11,13,17……(注意倒序,如17,13,11,7,5,3,2)合数数列:4,6,8,9,10,12,14…….(注意倒序)二、解题思路:1 基本思路:第一反应是两项间相减,相除,平方,立方。
所谓万变不离其综,数字推理考察最基本的形式是等差,等比,平方,立方,质数列,合数列。
相减,是否二级等差。
8,15,24,35,(48)相除,如商约有规律,则为隐藏等比。
4,7,15,29,59,(59*2-1)初看相领项的商约为2,再看4*2-1=7,7*2+1=15……2 特殊观察:项很多,分组。
三个一组,两个一组4,3,1,12,9,3,17,5,(12)三个一组19,4,18,3,16,1,17,(2)2,-1,4,0,5,4,7,9,11,(14)两项和为平方数列。
400,200,380,190,350,170,300,(130)两项差为等差数列隔项,是否有规律0,12,24,14,120,16(7^3-7)数字从小到大到小,与指数有关1,32,81,64,25,6,1,1/8每个数都两个数以上,考虑拆分相加(相乘)法。
87,57,36,19,(1*9+1)256,269,286,302,(302+3+0+2)数跳得大,与次方(不是特别大),乘法(跳得很大)有关1,2,6,42,(42^2+42)3,7,16,107,(16*107-5)每三项/二项相加,是否有规律。
1,2,5,20,39,(125-20-39)21,15,34,30,51,(10^2-51)C=A^2-B及变形(看到前面都是正数,突然一个负数,可以试试)3,5,4,21,(4^2-21),4465,6,19,17,344,(-55)-1,0,1,2,9,(9^3+1)C=A^2+B及变形(数字变化较大)1,6,7,43,(49+43)1,2,5,27,(5+27^2)2/3,1/3,2/9,1/6,(2/15)3/1,5/2,7/2,12/5,(18/7)分子分母相减为质数列1/2,5/4,11/7,19/12,28/19,(38/30)分母差为合数列,分子差为质数列。
行政能力测试数字推理的规律及其解题过程

行政能力测试数字推理的规律及其解题过程数字推理的主要是通过加、减、乘、除、平方、开方等方法来寻找数列中各个数字之间的规律,从而得出最后的答案。
在实际解题过程中,根据相邻数之间的关系分为两大类:一、相邻数之间通过加、减、乘、除、平方、开方等方式发生联系,产生规律,主要有以下几种规律:1、相邻两个数加、减、乘、除等于第三数2、相邻两个数加、减、乘、除后再加或者减一个常数等于第三数3、等差数列:数列中各个数字成等差数列4、二级等差:数列中相邻两个数相减后的差值成等差数列5、等比数列:数列中相邻两个数的比值相等6、二级等比:数列中相邻两个数相减后的差值成等比数列7、前一个数的平方等于第二个数8、前一个数的平方再加或者减一个常数等于第二个数;9、前一个数乘一个倍数加减一个常数等于第二个数;10、隔项数列:数列相隔两项呈现一定规律,11、全奇、全偶数列12、排序数列二、数列中每一个数字本身构成特点形成各个数字之间的规律。
1、数列中每一个数字都是n 的平方构成或者是n 的平方加减一个常数构成,或者是n的平方加减n构成2、每一个数字都是n的立方构成或者是n的立方加减一个常数构成,或者是n的立方加减n3、数列中每一个数字都是n的倍数加减一个常数以上是数字推理的一些基本规律,必须掌握。
但掌握这些规律后,怎样运用这些规律以最快的方式来解决问题呢?这就需要在对各种题型认真练习的基础上,应逐步形成自己的一套解题思路和技巧。
第一步,观察数列特点,看是否存是隔项数列,如果是,那么相隔各项按照数列的各种规律来解答第二步,如果不是隔项数列,那么从数字的相邻关系入手,看数列中相邻数字在加减乘除后符合上述的哪种规律,然后得出答案。
第三步,如果上述办法行不通,那么寻找数列中每一个数字在构成上的特点,寻找规律。
当然,也可以先寻找数字构成的规律,在从数字相邻关系上规律。
这里所介绍的是数字推理的一般规律,在对各种基本题型和规律掌握后,很多题是可以直接通过观察和心算得出答案。
2017江苏公务员行测数字推明白得题技术

2017江苏公事员行测:数字推明白得题技术很多考生在省考行测题目中都会选择舍弃数量关系和资料分析的题目,但是在数量关系中的数字推理题目,考生只要把握了正确的做题顺序和大体的解题思路,就会很容易的在极短的时刻和用很少的精力解出3-4数字推理题目。
下面就为广大考生介绍数字推理题目的大体做题技术。
一、特点明显的数列(一)分数数列什么是分数数列?当一个数列中大部份数为分数时那个数列确实是分数数列。
在数字推理题目中,考生一眼就能够够看出,整个5道数字推理题目中是不是有分数数列。
若是有分数数列,那么第一的方式确实是反约分法,反约分的冲破口确实是整个数列中与数列转变趋势不符的分数。
若是题目中有几分之一的分数,第一想到负幂次。
若是数列中有少数分数,想到的解题方式确实是多级数列的做商或递推数列的做商。
例: 1/3,4/7,7/11,2/3,13/19( )A. 16/23B. 16/21C. 18/21D.17/21解析:第一,此数列很明显是一个分数数列,然后观看数列的特点,考生能够发觉2/3与整个数列的增加趋势不符,那么2/3确实是做这道题的冲破口,利用反约分,分子分母同乘以4,分子数列为:1,4,7,8,13;分母数列为:3,7,11,12,19两个数列都没有明显的推理关系。
那么2/3的分子和分母再同乘以5,那么分子数列为:1,4,7,10,13;分母数列为:3,7,11,15,19,考生能够看出分子数列是以公差为3的等差数列,那么分子数列的下一项为16,一样,考生也能够看出分母数列是以公差为4的等差数列,那么分母数列的下一项为23,因此下一项的分数为16/23,选A项。
(二)多重数列多重数列的特点相关于其它数列也是比较明显的,其显著特点确实是数列包括的项比较多,一样包括选项在内能达到8项或数列中有两个括号。
多级数列的要紧方式有两种,第一种事交叉,第二种是分组。
例:3,3,4,5,7,7,11,9,( ),( )A.13,11B.16,12C.18,11D.17,13解析:那个数列题目中有两个括号,考生很容易判定那个数列是多重数列。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字推理题725道详解【1】7,9,-1,5,( )A、4;B、2;C、-1;D、-3分析:选D,7+9=16; 9+(-1)=8;(-1)+5=4;5+(-3)=2 , 16,8,4,2等比【2】3,2,5/3,3/2,( )A、1/4;B、7/5;C、3/4;D、2/5分析:选B,可化为3/1,4/2,5/3,6/4,7/5,分子3,4,5,6,7,分母1,2,3,4,5【3】1,2,5,29,()A、34;B、841;C、866;D、37分析:选C,5=12+22;29=52+22;( )=292+52=866【4】2,12,30,()A、50;B、65;C、75;D、56;分析:选D,1×2=2; 3×4=12; 5×6=30; 7×8=()=56【5】2,1,2/3,1/2,()A、3/4;B、1/4;C、2/5;D、5/6;分析:选C,数列可化为4/2,4/4,4/6,4/8,分母都是4,分子2,4,6,8等差,所以后项为4/10=2/5,【6】 4,2,2,3,6,()A、6;B、8;C、10;D、15;分析:选D,2/4=0.5;2/2=1;3/2=1.5; 6/3=2; 0.5,1,1.5, 2等比,所以后项为2.5×6=15【7】1,7,8,57,()A、123;B、122;C、121;D、120;分析:选C,12+7=8; 72+8=57; 82+57=121;【8】 4,12,8,10,()A、6;B、8;C、9;D、24;分析:选C,(4+12)/2=8;(12+8)/2=10; (8+10)/2=9【9】1/2,1,1,(),9/11,11/13A、2;B、3;C、1;D、7/9;分析:选C,化成 1/2,3/3,5/5 ( ),9/11,11/13这下就看出来了只能是(7/7)注意分母是质数列,分子是奇数列。
【10】95,88,71,61,50,()A、40;B、39;C、38;D、37;分析:选A,思路一:它们的十位是一个递减数字 9、8、7、6、5 只是少开始的4 所以选择A。
思路二:95 - 9 - 5 = 81;88 - 8 - 8 = 72;71 - 7 - 1 = 63;61 - 6 - 1 = 54;50 - 5 - 0 = 45;40 - 4 - 0 = 36 ,构成等差数列。
【11】2,6,13,39,15,45,23,( )A. 46;B. 66;C. 68;D. 69;分析:选D,数字2个一组,后一个数是前一个数的3倍【12】1,3,3,5,7,9,13,15(),()A:19,21;B:19,23;C:21,23;D:27,30;其中奇数项1、3、7、13、21=>作差2、4、6、8等差数列,偶数项3、5、9、15、23=>作差2、4、6、8等差数列【13】1,2,8,28,()A.72;B.100;C.64;D.56;分析:选B, 1×2+2×3=8;2×2+8×3=28;8×2+28×3=100【14】0,4,18,(),100A.48;B.58;C.50;D.38;分析: A,思路一:0、4、18、48、100=>作差=>4、14、30、52=>作差=>10、16、22等差数列;思路二:13-12=0;23-22=4;33-32=18;43-42=48;53-52=100;思路三:0×1=0;1×4=4;2×9=18;3×16=48;4×25=100;思路四:1×0=0;2×2=4;3×6=18;4×12=48;5×20=100 可以发现:0,2,6,(12),20依次相差2,4,(6),8,思路五:0=12×0;4=22×1;18=32×2;( )=X2×Y;100=52×4所以()=42×3【15】23,89,43,2,()A.3;B.239;C.259;D.269;分析:选A,原题中各数本身是质数,并且各数的组成数字和2+3=5、8+9=17、4+3=7、2也是质数,所以待选数应同时具备这两点,选A【16】1,1, 2, 2, 3, 4, 3, 5, ( )分析:思路一:1,(1,2),2,(3,4),3,(5,6)=>分1、2、3和(1,2),(3,4),(5,6)两组。
思路二:第一项、第四项、第七项为一组;第二项、第五项、第八项为一组;第三项、第六项、第九项为一组=>1,2,3;1,3,5;2,4,6=>三组都是等差【17】1,52, 313, 174,( )A.5;B.515;C.525;D.545;分析:选B,52中5除以2余1(第一项);313中31除以3余1(第一项);174中17除以4余1(第一项);515中51除以5余1(第一项)【18】5, 15, 10, 215, ( )A、415;B、-115;C、445;D、-112;答:选B,前一项的平方减后一项等于第三项,5×5-15=10; 15×15-10=215; 10×10-215=-115【19】-7,0, 1, 2, 9, ( )A、12;B、18;C、24;D、28;答:选D, -7=(-2)3+1; 0=(-1)3+1; 1=03+1;2=13+1;9=23+1; 28=33+1【20】0,1,3,10,( )A、101;B、102;C、103;D、104;答:选B,思路一: 0×0+1=1,1×1+2=3,3×3+1=10,10×10+2=102;思路二:0(第一项)2+1=1(第二项) 12+2=3 32+1=10 102+2=102,其中所加的数呈1,2,1,2 规律。
思路三:各项除以3,取余数=>0,1,0,1,0,奇数项都能被3整除,偶数项除3余1;【21】5,14,65/2,( ),217/2A.62;B.63;C. 64;D. 65;答:选B,5=10/2 ,14=28/2 , 65/2, ( 126/2), 217/2,分子=> 10=23+2; 28=33+1;65=43+1;(126)=53+1;【22】124,3612,51020,()A、7084;B、71428;C、81632;D、91836;答:选B,思路一: 124 是 1、 2、 4; 3612是 3 、6、 12; 51020是 5、 10、20;71428是 7, 14 28;每列都成等差。
思路二: 124,3612,51020,(71428)把每项拆成3个部分=>[1,2,4]、[3,6,12]、[5,10,20]、[7,14,28]=>每个[ ]中的新数列成等比。
思路三:首位数分别是1、3、5、( 7 ),第二位数分别是:2、6、10、(14);最后位数分别是:4、12、20、(28),故应该是71428,选B。
【23】1,1,2,6,24,( )A,25;B,27;C,120;D,125解答:选C。
思路一:(1+1)×1=2 ,(1+2)×2=6,(2+6)×3=24,(6+24)×4=120思路二:后项除以前项=>1、2、3、4、5 等差【24】3,4,8,24,88,( )A,121;B,196;C,225;D,344解答:选D。
思路一:4=20 +3,8=22 +4,24=24 +8,88=26 +24,344=28 +88思路二:它们的差为以公比2的数列:4-3=20,8-4=22,24-8=24,88-24=26,?-88=28,?=344。
【25】20,22,25,30,37,( )A,48;B,49;C,55;D,81解答:选A。
两项相减=>2、3、5、7、11质数列【26】1/9,2/27,1/27,( )A,4/27;B,7/9;C,5/18;D,4/243;答:选D,1/9,2/27,1/27,(4/243)=>1/9,2/27,3/81,4/243=>分子,1、2、3、4 等差;分母,9、27、81、243 等比【27】√2,3,√28,√65,( )A,2√14;B,√83;C,4√14;D,3√14;答:选D,原式可以等于:√2,√9,√28,√65,( ) 2=1×1×1 + 1;9=2×2×2 + 1;28=3×3×3 + 1;65=4×4×4 + 1;126=5×5×5 + 1;所以选√126 ,即 D 3√14【28】1,3,4,8,16,( )A、26;B、24;C、32;D、16;答:选C,每项都等于其前所有项的和1+3=4,1+3+4=8,1+3+4+8=16,1+3+4+8+16=32【29】2,1,2/3,1/2,( )A、3/4;B、1/4;C、2/5;D、5/6;答:选C ,2, 1 , 2/3 , 1/2 , (2/5 )=>2/1, 2/2, 2/3, 2/4 (2/5)=>分子都为2;分母,1、2、3、4、5等差【30】1,1,3,7,17,41,( )A.89;B.99;C.109;D.119 ;答:选B,从第三项开始,第一项都等于前一项的2倍加上前前一项。
2×1+1=3;2×3+1=7;2×7+3=17;…;2×41+17=99【31】5/2,5,25/2,75/2,()答:后项比前项分别是2,2.5,3成等差,所以后项为3.5,()/(75/2)=7/2,所以,()=525/4【32】6,15,35,77,( )A. 106;B.117;C.136;D.163答:选D,15=6×2+3;35=15×2+5;77=35×2+7;163=77×2+9其中3、5、7、9等差【33】1,3,3,6,7,12,15,( )A.17;B.27;C.30;D.24;答:选D, 1, 3, 3, 6, 7, 12, 15, ( 24 )=>奇数项1、3、7、15=>新的数列相邻两数的差为2、4、8 作差=>等比,偶数项 3、6、12、24 等比【34】2/3,1/2,3/7,7/18,()A、4/11;B、5/12;C、7/15;D、3/16分析:选A。