三个事件的贝叶斯公式

合集下载

精神病学 贝叶斯公式

精神病学 贝叶斯公式

精神病学贝叶斯公式下载温馨提示:该文档是我店铺精心编制而成,希望大家下载以后,能够帮助大家解决实际的问题。

文档下载后可定制随意修改,请根据实际需要进行相应的调整和使用,谢谢!并且,本店铺为大家提供各种各样类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,如想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by the editor. I hope that after you download them, they can help yousolve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!In addition, our shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts,other materials and so on, want to know different data formats and writing methods, please pay attention!精神病学是研究精神疾病的一门学科,贝叶斯公式则是用来描述事件之间的概率关系的数学公式。

1-5全概率公式贝叶斯公式

1-5全概率公式贝叶斯公式

= 0.087.
即平均1000个具有阳性反应的人中大约只有 人 个具有阳性反应的人中大约只有87人 即平均 个具有阳性反应的人中大约只有 患有癌症. 患有癌症
课堂练习
社会调查把居民按收入分为高、 低三类, 社会调查把居民按收入分为高、中、低三类 调查结果是这三类居民分别占总户数的10%, 调查结果是这三类居民分别占总户数的 , 60%,30%,而银行存款在一万元以上的户数 , , 在这三类居民中分别为100 %,60%, 在这三类居民中分别为100 %,60%,5%. 1. 求存款在一万元以上的户数在全体居民中 的比率. 2. 若已知某户的存款在一万元以上,求该户 若已知某户的存款在一万元以上, 属中等收入家庭的概率. 属中等收入家庭的概率
= P( A B0 ) P( B0 ) + P( A B1 ) P( B1 ) + P( A B2 ) P( B2 )
≈ 0.94
P( AB1 ) P( A B1 ) P ( B1 ) = P( B1 A) = P( A) P ( A)
≈ 0.0848
i =1 n
全概率公式
证明 B = BΩ = B I ( A U A U L A ) 1 2 n
= BA1 U BA2 U L U BAn .
由 Ai A j = ∅ ⇒ ( BAi )( BA j ) = ∅
⇒ P ( B ) = P ( BA1 ) + P ( BA2 ) + L + P ( BAn ) ⇒ P ( B ) = P ( A1 ) P ( B | A1 ) + P ( A2 ) P ( B | A2 ) + L + P ( An ) P ( B | An )
A2

1-4全概率公式与贝叶斯公式

1-4全概率公式与贝叶斯公式
解 已知P(A∣C)=0.95, P(A∣ )=1一P( ∣ )=0.05,P(C)=0.005, P( )=0.995,由贝叶斯公式
P(C A) P( A C ) P(C ) P( A C ) P(C ) P( A C ) P(C ) 0.087.
13
返回 上页 下页 结束
例4 对以往数据分析结果表明,当机器调整得良 好时,产品的合格率为98%,而当机器发生某种 故障时,其合格率为55%. 每天早上机器开动时, 机器调整良好的概率为95%. 试求已知某日早上 第一件产品是合格品时,机器调整得良好的概率 是多少? 解 设A为事件“产品合格”,B为事件“机器调 整良好”.已知P(A∣B)=0.98,P(A∣ )=0.55, P(B)=0.95,P( )=0.05,由贝叶斯公式得
由概率的可列可加性 P(A)=P(AB1)+P(AB2)+…+P(ABn). 利用乘法定理即得 B1
B4 B3 A
B2
P A i 1 P Bi P A Bi .
n
3
返回 上页 下页 结束
例1 考卷中一道选择题有4个答案,仅有一 个是正确的,设一个学生知道正确答案或不知道 而乱猜是等可能的. 如果这个学生答对了,求它 确实知道正确答案的概率. 解 样本空间可以划分为事件A:知道正确答案与 :不知道.以B表示事件:学生答对,则A B, P(AB)=P(A)=1/2.P(B∣A)=1,而P(B∣ )= 1/4. 由全概率公式 P(B)=P(A)P(B∣A)+P( )P(B∣ )=5/8, 故 P(A∣B)=P(AB)/P(B)=4/5.
§1.4 全概率公式与贝叶斯公式
一.全概率公式 二.贝叶斯公式
1

全概率公式与贝叶斯公式

全概率公式与贝叶斯公式
n
, i = 1,2,, n.
例1 某电子设备制造厂所用的元件是由三家元
件制造厂提供的.根据以往的记录有以下的数据 : 元件制造厂 1 2 3 无区别的标志. (1) 在仓库中随机地取一只元件 , 求它是次品的 概率; 次品率 0.02 0.01 0.03 提供元件的份额 0.15 0.80 0.05
= P ( A B1 ) P ( B1 ) P ( A B2 ) P ( B2 ) P ( A Bn ) P ( Bn ).
图示
B2
B1
A
B3
Bn1
化整为零 各个击破
Bn
2. 全概率公式
定理 设试验 E 的样本空间为 S , A 为 E 的事件 , B1 , B2 , , Bn为 S 的一个划分 , 且 P ( Bi ) > 0( i = 1, 2, , n ), 则
例2 设有一箱同类型的产品是由三家工厂生产的. 已知其中有50%的产品是第一家工厂生产的, 其他 二厂各生产25%. 又知第一、第二家工厂生产的有 2%是次品, 第三家工厂生产的有4%是次品. 现从此 箱中任取一个产品, 求拿到的是次品的概率.
例3
例4 甲、乙、丙三人同时对飞机进行射 击, 三人击中的概率分别为0.4、0.5、0.7. 飞机被一人击中而击落的概率为0.2,被两人击 中而击落的概率为0.6, 若三人都击中, 飞机 必定被击落, 求飞机被击落的概率。
§1.6 全概率公式和贝叶斯公式
一、全概率公式 二、贝叶斯公式
三、小结
一. 全概率公式
1. 样本空间的划分
定义 设 S 为试验 E的样本空间, B1 , B2 ,, Bn 为 E 的一组事件 , 若 (i ) Bi B j = , i j , i , j = 1, 2,, n ; (ii ) B1 U B2 U U Bn = S . 则称 B1 , B2 ,, Bn 为样本空间 S 的一个划分 .

贝叶斯公式

贝叶斯公式

(1) A1 A2 An S, (2) Ai Aj , 1 i j n.
n
P(B) P( Ai )P(B Ai ). i 1
P( Ai
B)
P( Ai )P(B P(B)
Ai ) .
前一页 后一页 返 回
贝叶斯公式
设随机事件A1, A2 , , An是一个完备事件组, 则对任一事件B有P(B) 0, 则
概率是多少?
收到信号0 0.8
0

收到信号1 0.2

收到信号1 0.9
1
收到信号0 0.1
2020/5中/28国 人 民 武 装 警 察 部 队 学 院
前一页 后一页 返 回
例题 在数字通讯中,信号是由数字0和1的序列组成的。
设发报台分别以概率0.7和0.3发出信号0和1.
问当收报台收到信号1时,
归纳 A1 , A2是 样本 空 间 S中的事件, 满足: (1) A1 A2 S, (2) A1 A2 .
2
P(B) P( Ai )P(B Ai ). i 1
P( Ai
B)
P( Ai )P(B P(B)
Ai ) .
2020/5中/28国 人 民 武 装 警 察 部 队 学 院
推广
A1, A2 , , An是样本空间 S中的事件, 满足:
收到信号0 0.8
发报台确是发出信号1的
A

0
概率是多少?

A1
收到信号1 0.2
收到信号1 0.9 B
收到信号0 0.1
解:设B={收到信号1}, A={发出信号1},
则 A={发出信号0},
2020/5中/28国 人 民 武 装 警 察 部 队 学 院

全概率公式—叶贝斯公式课件-高二数学人教A版(2019)选择性必修第三册

全概率公式—叶贝斯公式课件-高二数学人教A版(2019)选择性必修第三册
P(A1)
0.26
13
例如2:试卷中的一道选择题有4个答案可供选择,其中只有1个
答案是正确的.某考生如果会做这道题,则一定能选出正确答
案;若该考生不会做这道题,则不妨随机选取一个答案.设该
考生会做这道题的概率为0.85.
(1)求该考生选出此题正确答案的概率;
(2)已知该考生做对了此题,求该考生确实会做这道题的概率.
如果已知事件B已经发生,要求此时是由第 i 个原因引起
的概率,则用Bayes公式 即求 PAi B
P ( B1 | A)


0.397.
P ( A)
P ( A)
0.956
例6 在数字通信中,信号是由数字0和1组成的序列. 由于随机因素的干
扰,发送的信号0或1有可能被错误地接收为1或0. 已知发送信号0时,接收
为0和1的概率分别为0.9和0.1;发送信号1时,接收为1和0的概率分别为
0.95和0.05. 假设发送信号0和1是等可能的.
i 1
2. 贝叶斯公式:
设A1 ,A2 ,,An是一组两两互斥的事件,A1
A2

An ,且P ( Ai ) 0 ,
i 1,2,,n,则对任意的事件B ,P ( B) 0 ,有
P ( Ai B ) P ( Ai ) P ( B | Ai )
P ( Ai ) P ( B | Ai )
P(B)
0.475
1
=
19
课堂小结:
1. 全概率公式:
一般地,设A1 ,A2 , ,An是一组两两互斥的事件,A1
A2

An ,且
P ( Ai ) 0,i 1,2, ,n,则对任意的事件B ,有

条件概率、全概率、贝叶斯公式

条件概率、全概率、贝叶斯公式

杨鑫的数学课堂条件概率、全概率、贝叶斯公式、p(A|B)=P(A∩B)P(B)⇒p(A∩B)=p(A|B)×p(B)⇒p(A∩B)=P(B|A)×P(A)(1)p(A|B)=P(A∩B)P(B)=p(B|A)×P(A)p(B)(2)先举个例子,小张从家到公司上班总共有三条路可以直达(如下图),但是每条路每天拥堵的可能性不太一样,由于路的远近不同,选择每条路的概率如下:p(L1)=0.5,p(L2)=0.3,p(L3)=0.2(3)每天上述三条路不拥堵的概率分别为:p(C1)=0.2,p(C2)=0.4,p(C3)=0.7(4)其实不迟到就是对应着不拥堵,设事件C为到公司不迟到,事件Li为选择第i 条路,则:p(C)=p(L1)×p(C|L1)+p(L2)×p(C|L)+p(L3)×p(C|L3) p(C)=p(L1)×p(C1)+p(L2)×p(C2)+p(L3)×p(C3)p(C)=0.5×0.2+0.3×0.4+0.2×0.7=0.36(5)全概率计算公式p(C)=p(L1)p(C|L1)······p(L n)p(C|L n)=n∑i=1p(L i)p(C|L i)(6)三、贝叶斯公式仍旧借用上述的例子,但是问题发生了改变,问题修改为:到达公司未迟到选择第1条路的概率是多少?0.5这个概率表示的是,选择第一条路的时候并没有靠考虑是不是迟到,只是因为距离公司近才知道选择它的概率,而现在我们是知道未迟到这个结果,是在这个基础上问你选择第一条路的概率,所以并不是直接就可以得出的。

故有:p(L1|C)=p(C|L1)×p(L1)p(C)p(L1|C)=p(C|L1)×p(L1)P(L1)×p(C|L1)+P(L2)×p(C|L2)+P(L3)×p(C|L3)p(L1|C)=0.2×0.50.2×0.5+0.3×0.4+0.2×0.7=0.28(7)1。

全概率公式与贝叶斯公式

全概率公式与贝叶斯公式

例一商店出售的某型号的晶体管是甲、乙、丙三家工厂生产的,其中乙厂产品占总数的50%,另两家工厂的产品各占25%。

已知甲、乙、丙各厂产品合格率分别为0.9、0.8、0.7,试求随意取出一只晶体管是合格品的概率(此货合格率)。

例连续做某项试验,每次试验只有成功和失败两种结果.已知当第k次成功时,第k+1次成功的概率为1/2 ,当第k次试验失败时,第k+1次成功的概率为3/4,如果第一次试验成功和失败的概率均为1/2,求第n次试验成功的概率.
例两台机床加工同样的零件,第一台出现废品的概率为0.05,第二台出现废品的概率为0.02,加工的零件混放在一起,若第一台车床与第二台车床加工的零件数为5:4。

求(1)任意地从这些零件中取出一个合格品的概率;
(2)若已知取出的一个零件为合格品,那么,它是由哪一台机床生产的可能性较大。

例(市场问题)某公司计划将一种无污染、无副作用的净化设备投放市场。

公司市场部事先估计该产品畅销的概率是0.5,一般为0.3,滞销为0.2。

为测试销路,公司决定进行试销,并设定了以下标准:若产品畅销,则在试销期内卖出7000~10000台产品的概率是0.6;若产品的销路一般,则在产品的试销期内卖出7000~10000台产品的概率是0.9;若产品滞销,则在试销期间能卖出7000~10000台产品的概率是0.2。

若在试销期满后,实际卖出的产品是9000台。

求该产品
(1)为销路一般的概率。

(2)为畅销品的概率。

(3)畅销或销路一般的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档