大数据思维的五种思维方式
【大数据分析】5种经典的数据分析思维和方法

5种经典的数据分析思维和方法:启方:数据分析不是个事儿在数据分析中,数据分析思维是框架式的指引,实际分析问题时还是需要很多“技巧工具”的。
就好比中学里你要解一元二次方式,可以用公式法、配方法、直接开平方法、因式分解法。
数据分析里也有技巧,在一些通用的分析场景下可以快速使用,而且对未来构建数据分析模型也有帮助。
接下来就分享常见的5种数据分析方法,分别是:公式法、对比法、象限法,二八法,漏斗法,常常多种结合一起使用。
注:主要偏思维层面的,基于业务问题对数据的探索性分析,不同于专业统计学中的数据处理方法。
一、公式法所谓公式法就是针对某个指标,用公式层层分解该指标的影响因素,这个我在指标化思维中提到过。
举例:分析某产品的销售额较低的原因,用公式法分解•某产品销售额=销售量 X 产品单价•销售量=渠道A销售量 + 渠道B销售量 + 渠道C销售量+ …•渠道销售量=点击用户数 X 下单率•点击用户数=曝光量 X 点击率第一层:找到产品销售额的影响因素。
某产品销售额=销售量X 产品单价。
是销量过低还是价格设置不合理?第二层:找到销售量的影响因素。
分析各渠道销售量,对比以往,是哪些过低了。
第三层:分析影响渠道销售量的因素。
渠道销售量=点击用户数X 下单率。
是点击用户数低了,还是下单量过低。
如果是下单量过低,需要看一下该渠道的广告内容针对的人群和产品实际受众符合度高不高。
第四层:分析影响点击的因素。
点击用户数=曝光量X点击率。
是曝光量不够还是点击率太低,点击率低需要优化广告创意,曝光量则和投放的渠道有关。
通过对销售额的逐层拆解,细化评估以及分析的粒度。
公式拆解法是针对问题的层级式解析,在拆解时,对因素层层分解,层层剥尽。
二、对比法对比法就是用两组或两组以上的数据进行比较,是最通用的方法。
我们知道孤立的数据没有意义,有对比才有差异。
一些直接描述事物的变量,如长度、数量、高度、宽度等。
通过对比得到比率数据,增速、效率、效益等指标,这才是数据分析时常用的。
大数据带来的四种思维(一)

大数据带来的四种思维(一)引言概述:在当今数字化时代,大数据已经成为了各行各业的核心竞争力之一。
它的出现不仅给企业带来了巨大的商业机会,同时也对传统的思维方式提出了挑战。
在本文中,我们将探讨大数据带来的四种新的思维方式,以及它们对企业的影响。
正文内容:一、数据驱动思维1. 数据驱动决策的意义:通过对大量数据的分析和利用,可以更准确地进行决策,避免主观臆断。
2. 多维度数据分析:借助大数据技术,可以从不同维度对数据进行分析,揭示隐藏在数据背后的规律和趋势。
3. 实时数据反馈:大数据技术的快速处理能力,使得实时数据反馈成为可能,帮助企业更加及时地做出调整和优化。
二、创新思维1. 探索新的商业模式:通过深度挖掘数据,企业可以发现潜在的新市场和商业机会,从而开辟出全新的商业模式。
2. 提供个性化产品和服务:大数据的精准分析能力,使得企业能够更好地了解消费者需求,为其提供个性化的产品和服务。
3. 预测未来趋势:通过对大数据的分析和挖掘,可以有效预测市场趋势,帮助企业提前布局和应对未来的变化。
三、协同思维1. 跨部门协作:大数据技术的使用需要跨部门的协作,促进信息的共享和流通,提高企业的决策效率。
2. 企业生态系统:大数据可以作为企业与合作伙伴、供应商、客户之间建立生态系统的桥梁,促进共赢发展。
3. 数据共享与开放创新:大数据的共享和开放可以促进不同企业之间的合作和创新,实现资源优化配置。
四、智能思维1. 人工智能的应用:大数据与人工智能的结合,可以帮助企业实现更高效的业务流程和更精准的决策。
2. 自动化与智能化工作:借助大数据技术,一些繁琐、重复和容易出错的工作可以被自动化和智能化,提高工作效率。
3. 智能决策支持:大数据技术可以为企业提供智能化的决策支持,减少风险,优化决策结果。
总结:大数据带来的这四种思维方式,即数据驱动思维、创新思维、协同思维和智能思维,对企业的经营和发展具有重要的影响。
在大数据时代,企业应该引领思维转变,充分利用大数据的优势,不断创新和进步,抓住机遇,实现持续发展。
大数据需要什么思维(二)2024

大数据需要什么思维(二)引言概述:随着大数据时代的到来,企业和组织对数据分析和处理的需求日益增加。
在这个过程中,如何正确应用大数据思维成为了一个关键问题。
本文将从五个大点出发,探讨大数据需要什么思维。
正文:一、数据驱动思维1. 了解数据的价值:认识到数据是企业和组织的重要资产,具有巨大的商业价值。
2. 数据收集与整理:建立完善的数据收集机制,保证数据的准确性和完整性。
3. 数据分析与决策:将数据分析结果应用于决策过程,并通过数据驱动决策提高企业和组织的效率和准确性。
4. 数据共享与合作:积极寻求数据共享合作,扩大数据的应用范围和影响力。
5. 数据隐私和安全:重视数据的隐私和安全问题,建立合适的数据保护机制。
二、创新思维1. 挖掘潜在需求:通过大数据分析发现用户或市场的新需求,为产品和服务创新提供支持。
2. 快速迭代与反馈:通过不断试错和快速迭代,实现产品和服务的优化和改进。
3. 开放式创新:通过开放接口和数据共享,促进创新生态系统的建立,吸引更多创新者参与。
4. 多元思维融合:借助大数据分析,整合不同领域的知识和思维,实现创新的跨越性发展。
5. 利用数据科学方法:结合数据科学方法,进行分析和模型建立,推动创新的发展和落地。
三、智能思维1. 机器学习和算法:通过机器学习和算法的应用,实现有针对性的推荐和决策。
2. 自动化与智能化:借助人工智能技术,实现流程的自动化和智能化,提高效率和精确度。
3. 数据挖掘与发现:通过大数据分析挖掘潜在的信息和趋势,为企业和组织的决策提供支持。
4. 辅助决策工具:利用数据分析和智能算法,开发辅助决策工具,提供决策的参考和建议。
5. 数据驱动的智慧及时决策:通过实时数据分析和智能决策系统,实现智慧及时决策的能力。
四、技术思维1. 技术的理解与应用:掌握大数据相关的技术知识和工具,灵活运用于实际项目中。
2. 数据清洗和预处理:了解数据处理的流程和方法,对数据进行清洗和预处理,提高数据质量和可用性。
思维类型分类

思维类型分类“大数据”是需要新处理模式才能具有更强的决策力、洞察发现力和流程优化能力来适应海量、高增长率和多样化的信息资产。
我们学习大数据分析还需要培养相应的大数据思维。
那么大数据分析的思维培养都有哪些类型1、结构化思维归纳其实就是把复杂问题分解成多种单一因素的过程,并且将这些因素加以归纳和整理,使之条理化纲领化。
这个过程犹如抽丝剥茧,将一团乱麻理地条条顺顺。
2、假说演绎思维以情况为起点的推理方法是归纳推理,以规则为起点的推理方法可以称之为演绎推理。
归纳和演绎的思维是数据分析初期必备的,面试考察逻辑思维无非也是这两点。
实际情况中可针对不同的项目要求进行组合应用。
在经过一定阶段的训练后,可以帮助提升业务熟悉程度,完成业务的初始积累后,后续的分析过程中就可以逐步减少拓展推理的层级及组合,逐步提升问题原因定位的效率。
3、指标化思维上述的分析思维,帮助我们去定性问题,接下来我们要介入数据的方式,去定量分析。
要掌握指标化的思维。
建立指标体系的思路:向上可以按业务职能结构划分,映射出更多维度,比如渠道,运营,产品等相关模块,将相关指标映射到主要模块,通过简单快速的沟通,快速定位问题原因。
向下可以按因果结构划分,也就是指标分解,利用公式的方法。
比如营收=日活*付费率*arpu等指标因果关系进行划分,通过定位指标波动,定位细指标,辅助维度下转,能够清楚的问题原因。
4、维度分析思维维度是观察数据的角度,例如“时间”“地区”“产品”。
在具体分析中,我们可以把它认为是分析事物的角度。
时间是一种角度地区是一种角度,产品也是一种角度,所以它们都能算维度。
当我们有了维度后,就能够通过不同的维度组合,形成数据模型。
数据模型不是一个高深的概念,它就是一个多维立方体。
大数据分析的思维类型.中琛魔方大数据分析平台表示仅仅掌握单纯的理论还远远不够,实践出真知。
数据分析的方法大家不妨在自己日常工作中,有分析相关项目里尝试使用,相信可以事半功倍,创造更多商业价值。
大数据的思维方式(一)

大数据的思维方式(一)引言概述:在当今信息爆炸的时代,大数据已经成为企业和组织决策中不可或缺的重要元素。
大数据的思维方式则是指我们在面对大规模、多样化的数据时,所需要具备的一种思维模式和技能。
本文将从五个大点来阐述大数据的思维方式,并探讨其在决策和创新中的应用。
正文:一、数据意识1. 理解数据的价值:认识数据对企业发展的重要性,了解数据可以带来的商业价值。
2. 掌握数据采集和分析技术:学习数据采集、存储和处理的方法和工具,提高数据处理能力。
3. 建立数据驱动的决策机制:倡导以数据为基础做出决策,降低主观臆断的风险。
二、跨领域思维1. 学习多个领域的知识:拓宽视野,还可以从其他领域中借鉴经验和方法论。
2. 带着问题来思考:以问题驱动的思维方式,利用不同领域的知识来解决实际问题。
3. 发掘数据中的潜在联系:对多个领域的知识进行连接和整合,挖掘出新的洞察和发现。
三、统计分析能力1. 学习基本统计学原理:了解统计学的基本概念和方法,掌握常用的统计分析技巧。
2. 掌握数据可视化技术:通过图表和可视化工具将数据转化为更直观的形式,便于分析和传达。
3. 进行数据模型建立和预测:利用统计学和机器学习的方法,对数据进行建模和预测,提供决策支持。
四、创新思维1. 提倡挑战常规和传统观念:打破固有的思维模式,敢于尝试和创新。
2. 鼓励多元化的想法:从多个角度思考问题,纳入不同的观点和意见。
3. 快速试错和迭代:以快速试错的方式进行创新实验,从中学习和不断改进。
五、团队协作1. 建立跨学科的团队:组建既懂领域知识又懂数据分析的团队,共同解决问题。
2. 推行数据共享和开放合作:鼓励团队成员之间分享数据和思路,促进协作和共同学习。
3. 培养有效沟通和解释能力:能够将复杂的数据分析结果以简洁明了的方式向团队和决策者解释和传达。
总结:大数据的思维方式是在处理大规模、多样化的数据时所需要具备的思考方式和技能。
它要求我们具备数据意识、跨领域思维、统计分析能力、创新思维和团队协作能力。
数据分析的五大思维方式

数据分析的五大思维方式数据分析是一种有效的方法,用于提取和解释数据中的有用信息。
它涉及使用技术和工具来收集、整理、处理和解析数据,以便推导出有意义的结论和决策。
在进行数据分析时,采用正确的思维方式非常重要。
下面将介绍数据分析的五大思维方式。
1. 批判思维在进行数据分析时,批判思维至关重要。
这意味着要质疑和评估数据的来源、准确性和可靠性。
通过审查数据的质量和完整性,分析人员可以避免基于虚假或不准确数据做出错误的决策。
此外,批判思维还可以帮助分析人员提出更有针对性的问题,并考虑潜在的偏差或错误。
2. 创造性思维创造性思维对于数据分析同样至关重要。
数据分析不仅仅是解释和总结数据,而是要能够发现隐藏在数据中的模式和趋势。
通过创造性思维,分析人员可以探索不同的方法和角度来解释数据,并发现新的见解和机会。
创造性思维还可以帮助分析人员生成创新的解决方案和策略。
3. 系统性思维数据分析需要从整体的角度来考虑问题,而不仅仅是关注局部的细节。
系统性思维是一种将数据和信息组织和关联起来的方法。
通过系统性思维,分析人员可以了解不同因素之间的相互依赖关系,并评估它们对整体结果的影响。
通过将数据放置在一个更广泛的框架中来分析,分析人员可以识别和解释更深层次的因果关系。
4. 统计思维统计思维是数据分析过程中不可或缺的一种思维方式。
它涉及将数据转化为统计指标和度量,以进行比较和分析。
通过统计思维,分析人员可以对数据进行推断和概括,并使用统计方法来验证假设和模型。
统计思维还可以帮助分析人员识别数据中的模式和关联,并从中得出准确的结论。
5. 持续学习思维数据分析是一个不断发展和演变的领域。
持续学习思维是一种积极主动地追求新知识和技能的思维方式。
在数据分析中,新的技术和工具不断涌现,新的方法和模型不断进展。
通过持续学习思维,分析人员可以保持对行业趋势和最新发展的了解,并不断提高自己的技能和能力。
持续学习思维还可以帮助分析人员适应不断变化的数据环境,并应对未来的挑战。
大数据思维是什么?

大数据思维是什么?大数据时代的来临必将会使互联网行业发生一场新型的革命。
大数据已经迅速的影响了整个行业,正在显示自身的强大功能。
无论是大数据相关的技术专家,还是未来学者,都认为必须加快解读和丰富大数据的步伐。
目前大数据思维分为容错思维、全样思维和相关思维3种。
接下来小编就这3种思维为大家进行解读和分享。
1、容错思维▼过去我们只能采用小数据抽样的方法解读数据,这就导致了样品的不稳定性。
而全样的样本数量比抽样样本的数量高很多倍,因此也决定了他不能出现丝毫的错误,否则带来的后果是不可估量的。
因此,为了保证结果的精准,就需要提高对抽样数据的要求。
大数据时代的来临就提供了很好的契机,在大数据时代,我们需要优先采用全样数据的方式,不再是对一部分数据进行分析,最终结果也更接近于客观现实。
2、全样思维▼大数据和“小数据”是相对应的。
他们最直观的差别就是大数据采用全样思维模式,小数据更注重抽样。
随着时代的发展和计算机技术的更新迭代,小数据的抽样方法开始慢慢退出人们的视野,取而代之的是高薪高科技,这也是大数据给我们带来的改变。
3、相关思维举一个简单的例子,我们去超市买饮料的时候,顺便买了垃圾桶。
这两种商品并不是同类商品,而且也不是互补商品。
不是买饮料就需要买垃圾桶,所以这两者也不是因果关系。
大数据的相关思维亦是如此。
我们强调全样,忽略抽样,当我们对做的全部数据进行步骤分析时,由于存在一个反例,因此因果关系并不成立。
在大数据时代中,因果关系几乎是不可能存在的,剩下的就是相关关系。
在这个大数据时代,程序员也要与时俱进,不能只关注眼前的工作,使用自己熟悉的编程语言,大数据的学习也刻不容缓。
数据分析的五大思维方式

数据分析的五大思维方式在当今数字化的时代,数据如同隐藏着无数宝藏的矿山,而数据分析则是挖掘这些宝藏的关键工具。
要想从海量的数据中提取有价值的信息,掌握正确的思维方式至关重要。
下面,我们将探讨数据分析的五大思维方式。
一、对比思维对比思维是数据分析中最基本也是最常用的思维方式之一。
通过对比不同的数据,我们能够发现差异、找出规律,从而为决策提供依据。
比如说,一家电商企业想要了解某个商品的销售情况。
如果只是单纯地知道该商品的销售额是 10 万元,这并没有太大的意义。
但如果将这个销售额与上个月、去年同期或者同类型其他商品的销售额进行对比,就能清晰地看出该商品的销售趋势是上升还是下降,以及在市场中的竞争地位。
对比可以是时间上的,如同比、环比;也可以是空间上的,如不同地区、不同渠道的对比;还可以是不同业务指标之间的对比,如销售额与利润、访客数与转化率等。
在进行对比时,要确保对比的对象具有可比性,比如在对比不同地区的销售数据时,要考虑到地区的经济发展水平、人口规模等因素的影响。
二、细分思维当我们面对一个整体的数据时,往往难以发现其中的问题和规律。
这时,就需要运用细分思维,将数据按照不同的维度进行分解,以便更深入地了解数据的内部结构。
以一家连锁超市为例,如果发现某个月的总销售额下降了,通过细分思维,可以将销售额按照商品类别、门店位置、销售时间段等维度进行分解。
也许会发现是某个类别的商品销售额大幅下降,或者是某个门店的销售业绩不佳,又或者是在特定的时间段内销售额出现了低谷。
细分的维度可以根据具体的业务需求和数据特点来选择,常见的细分维度包括用户属性(如年龄、性别、地域)、业务流程(如销售渠道、营销活动环节)、时间(如季度、月份、周、日)等。
通过不断地细分,我们能够逐渐找到问题的根源,从而采取有针对性的措施来解决问题。
三、溯源思维在数据分析中,当我们发现一个异常的数据或者现象时,不能仅仅停留在表面,而要运用溯源思维,追根究底,找出导致这个结果的原因。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大数据思维是指一种基于数据驱动的思维方式,它强调通过收集、分析和利用大量数据来揭示事物的本质和规律,从而更好地理解和解决问题。
以下是大数据思维的五种思维方式:
1. 数据驱动思维:大数据思维强调以数据为基础,通过数据分析和挖掘来发现问题、解决问题和做出决策。
2. 全样本思维:传统的数据分析往往基于抽样调查,但大数据思维则强调全样本分析,即通过收集和分析所有可用数据来获取更全面和准确的信息。
3. 相关性思维:大数据思维强调关注数据之间的相关性,而不仅仅是因果关系。
通过分析数据之间的相关性,可以发现一些以前难以察觉的规律和趋势。
4. 开放性思维:大数据思维鼓励开放的数据共享和合作,通过共享数据和知识,可以更好地发挥数据的价值,促进创新和发展。
5. 快速迭代思维:大数据思维强调快速迭代和实验,通过不断尝试和改进,可以更快地找到最佳的解决方案。
总之,大数据思维是一种以数据为中心的思维方式,它强调通过数据分析和挖掘来发现问题、解决问题和做出决策,具有全样本、相关性、开放性、快速迭代等特点。