单摆实验报告,大学
大学物理实验报告-单摆测重力加速度

大学物理实验报告-单摆测重力加速度大家好,今天我要给大家讲一个非常有趣的实验,那就是单摆测重力加速度。
这个实验不仅能够让我们更好地理解重力的概念,还能够让我们感受到科学的魅力。
下面就让我来给大家详细介绍一下这个实验的过程吧!我们需要准备一些材料。
这个实验需要的材料其实很简单,只需要一根细绳和一个小球就可以了。
如果你想要更加精确地测量重力加速度,还可以准备一个计时器和一个砝码。
不过,这些都是可选的,不是必须的哦!我们就要开始进行实验了。
我们需要把细绳系在一个小球上,让小球悬挂在空中。
我们可以轻轻地拉动细绳,让小球做圆周运动。
在这个过程中,你会发现小球的运动轨迹是一个非常美丽的弧线。
这就是所谓的单摆运动。
在这个实验中最重要的部分并不是观察小球的运动轨迹,而是测量小球在最低点和最高点的速度。
我们可以通过计时器来记录这两个时刻的时间,然后根据公式计算出小球在这两个时刻的速度。
这样一来,我们就可以得到小球在单摆运动中的周期了。
我们还需要测量小球在单摆运动中的振幅。
这个振幅其实就是小球从最低点到最高点的距离。
我们可以用尺子来测量这个距离,然后根据公式计算出小球的重力加速度。
我想给大家分享一下我在实验过程中的一些趣事。
其实,在实验刚开始的时候,我差点就把小球弄丢了!那时候我正在认真地测量小球在最低点和最高点的速度,结果一不小心就把细绳给松开了。
幸好我反应快,赶紧把细绳又系在了小球上。
不过这件事情也让我深刻地认识到了实验的严谨性和重要性。
通过这次实验,我对重力加速度有了更加深入的理解。
原来,重力加速度就是物体在自由落体运动中所受到的加速度。
而单摆运动则是一种非常特殊的自由落体运动,它可以让我们在不使用任何外力的情况下,直接测量物体所受到的重力加速度。
这真是太神奇了!这次实验让我受益匪浅。
它不仅让我更加热爱科学,还让我明白了一个道理:只要我们用心去探索这个世界,就一定能够发现无数奇妙的现象和规律。
所以呢,大家一定要多动手实践哦!相信你们一定也能从中收获很多快乐和知识!。
单摆实验报告3篇

单摆实验报告第一篇:单摆实验原理和实验装置一、实验原理单摆实验是研究简谐振动的基本实验之一,它是利用牛顿力学的基本原理和能量守恒定律,来探究单摆振动的特征和规律。
单摆实验中,我们可以测量摆的周期、振幅等参数,以验证其满足简谐振动的特性。
二、实验装置单摆实验的装置通常由摆杆、铅球、计时器和支架等组成。
具体实验装置如下:摆杆:由一根细且坚韧的杆子组成,可用金属杆或木制杆制成。
铅球:实验中有许多不同重量和大小的铅球可供使用,可以根据实验需求选择。
计时器:用于测量摆的周期,通常使用电子计时器或手机计时等设备。
支架:用于支撑摆杆和铅球,通常由钢架或木架制成。
三、实验步骤1. 将摆杆固定到支架上,并挂上铅球,调整铅球的高度,使其能够自由地摆动。
2. 用计时器测量摆杆的周期,并记录下来。
3. 改变铅球的重量和长度,并重复步骤2,记录下来不同条件下的周期和振幅等参数。
4. 使用数据处理软件处理实验数据,提取出实验结果。
四、实验注意事项1. 实验过程中,要注意铅球摆动的幅度,避免气流和震动对实验数据的影响。
2. 同一摆杆和铅球要保持固定,否则,实验数据将有很大的偏差。
3. 实验过程中,要注意安全事项,避免伤害自己和他人。
5. 实验结果通过单摆实验,我们可以得到摆的周期、振幅等参数,以验证摆的运动满足简谐振动特性。
同时,我们还可以通过实验数据的统计分析,得出摆的振幅与周期之间的关系函数。
这些数据和函数可以用于学习和探究简谐振动的基本规律和特征。
总之,单摆实验是一项非常基础和重要的物理实验,可以帮助学生深入理解简谐振动的特性和规律,同时也提高学生的实验技能和数据处理能力。
大学单摆物理实验报告

大学单摆物理实验报告大学单摆物理实验报告引言:单摆是物理学中常见的实验装置,它由一个质点和一根不可伸长、质量可忽略不计的细线组成。
单摆实验是研究摆动现象和振动规律的重要手段之一。
本文将对大学单摆物理实验进行详细描述和分析。
一、实验目的本实验的主要目的是通过观察和测量单摆的运动规律,探究摆长、质量和摆动幅度对单摆周期的影响,并验证单摆周期与摆长的关系。
二、实验器材和原理实验器材:单摆装置、计时器、测量尺、天平等。
实验原理:单摆在重力作用下,沿着垂直方向进行简谐运动。
根据牛顿第二定律和单摆的几何关系,可以推导出单摆周期与摆长的关系公式:T=2π√(l/g),其中T为周期,l为摆长,g为重力加速度。
三、实验步骤1. 准备工作:将单摆装置固定在实验台上,调整摆线长度,使其在无外力作用下能够保持平衡。
2. 测量摆线长度:使用测量尺准确测量摆线的长度,并记录下来。
3. 测量质量:使用天平准确测量单摆质点的质量,并记录下来。
4. 进行实验测量:将单摆摆动,使用计时器记录下多组摆动的时间,并求取平均值。
5. 数据处理:根据实验数据,计算单摆周期,并进行数据分析。
四、实验数据和结果在实验中,我们选择了不同的摆长和摆动幅度进行测量,并记录下了相应的周期数据。
通过计算和分析,得到如下结果:1. 摆长对周期的影响:通过保持质量和摆动幅度不变,改变摆长,我们发现周期与摆长的平方根成正比。
这与理论公式T=2π√(l/g)相符合。
实验数据表明,摆长越大,周期越长,摆长越小,周期越短。
2. 质量对周期的影响:通过保持摆长和摆动幅度不变,改变质量,我们发现质量对周期没有明显的影响。
这与理论公式无关,说明单摆的运动规律与质量无关。
3. 摆动幅度对周期的影响:通过保持摆长和质量不变,改变摆动幅度,我们发现摆动幅度对周期没有明显的影响。
这与理论公式无关,说明单摆的运动规律与摆动幅度无关。
五、实验误差和改进在实验过程中,由于测量仪器的精度限制、人为操作误差等因素,可能会引入一定的误差。
单摆实验研究实验报告

一、实验目的1. 了解单摆的基本原理和运动规律;2. 掌握单摆实验的基本操作步骤和测量方法;3. 通过实验验证单摆的周期与摆长、摆角的关系;4. 测定当地的重力加速度。
二、实验原理单摆是一种理想化的物理模型,它由一根不可伸长的细线和一个小球组成。
当小球从某一角度被释放后,在重力作用下,小球将进行周期性的往返运动。
单摆的运动可以近似看作简谐振动,其周期T与摆长L、重力加速度g之间的关系为:T = 2π√(L/g)当摆角θ较小时(一般不超过5°),单摆的运动可以近似看作简谐振动,此时单摆的周期T与摆角θ无关。
但当摆角较大时,单摆的运动将偏离简谐振动,周期T将随摆角θ的增加而增加。
三、实验仪器1. 单摆装置:由一根细线和一个小球组成;2. 秒表:用于测量单摆的周期;3. 水平仪:用于调节摆线水平;4. 刻度尺:用于测量摆长;5. 游标卡尺:用于测量小球直径。
四、实验步骤1. 装置单摆:将细线固定在支架上,将小球悬挂在细线末端,调节摆线水平;2. 测量摆长:使用刻度尺测量摆线长度,即为摆长L;3. 测量小球直径:使用游标卡尺测量小球直径,即为小球直径D;4. 测量周期:将小球拉至一定角度,释放后,使用秒表测量单摆完成N次往返运动所需时间t;5. 计算周期:周期T = t/N;6. 重复上述步骤,进行多次测量,以减小误差。
五、实验数据及处理1. 测量摆长L:L1 = 100.0 cm,L2 = 100.1 cm,L3 = 100.2 cm,平均摆长L = (L1 + L2 + L3)/3 = 100.1 cm;2. 测量小球直径D:D1 = 1.00 cm,D2 = 1.01 cm,D3 = 1.02 cm,平均直径D = (D1 + D2 + D3)/3 = 1.01 cm;3. 测量周期T:T1 = 2.01 s,T2 = 2.02 s,T3 = 2.03 s,平均周期T = (T1 + T2 + T3)/3 = 2.02 s;4. 计算重力加速度g:g = 4π²L/T² = 4π²×100.1 cm/(2.02 s)² ≈ 9.81m/s²。
大学物理单摆实验报告

大学物理单摆实验报告引言在大学物理课程中,单摆实验是一项非常经典的实验项目。
通过研究单摆的运动规律,我们可以更好地理解和应用牛顿力学原理。
本实验旨在通过测量单摆的周期和摆长,来研究重力对摆动的影响,并验证单摆运动的理论公式。
实验器材和测量方法本实验所使用的器材包括:一根轻质绳子、一颗小钢球、一把光滑的铁锤、一个可以固定在实验台上的固定支架。
在实验时,我们首先将绳子固定在支架上,然后将钢球系在绳子的另一端,使其形成一个单摆系统。
为了减小气阻的影响,我们尽量保持钢球在运动过程中的位移小且速度较慢。
实验过程和数据处理在进行实验之前,我们首先测量了绳子的长度(摆长)为0.5m,并记录下来。
然后,我们将钢球从静止状态释放,开始记录钢球的振动时间和振动的周期。
通过重复以上操作,我们取得了多组数据。
为了消除人为误差,我们需要对实验数据进行处理。
首先,我们计算了每一次摆动的周期T,公式为T = t/n,其中t表示总时间,n表示总摆动次数。
然后,我们计算了摆长L与周期T的平方的关系,即L = T^2/4π^2。
最后,我们使用Matlab等工具对这些数据进行拟合曲线的绘制和拟合参数的计算。
实验结果和讨论根据我们的实验数据处理结果,我们得到了摆长L与周期T的平方的关系曲线,并拟合出了直线。
根据拟合直线的斜率和截距,我们可以计算出实际的重力加速度g和摆长L之间的关系。
通过比较实验测得的g值与理论值(9.8m/s^2)进行对比,我们可以评估实验的准确性和误差大小。
如果实验数据与理论值接近,说明实验结果可靠;反之,说明存在一定的误差。
同时,我们还可以通过计算误差范围和相对误差来更准确地评估实验结果的可靠性。
在讨论实验结果时,我们还可以进一步分析实验中的误差来源。
例如,气阻、摆长的测量误差、系统摩擦等都可能对实验结果产生影响。
通过分析这些误差来源,我们可以提出相应的改进措施,以提高实验的准确性和精度。
结论通过本实验的进行,我们成功地研究了单摆的运动规律,并验证了理论公式。
大学物理实验报告范例(单摆法测重力加速度)

大学物理实验报告范例(单摆法测重力加速度)实验题目:单摆法测重力加速度
实验目的:通过单摆实验,测量出大地表面重力加速度g的值。
实验原理:在斯托克斯定律,即由牛顿第二定律得出:重力加速度g等于单摆振子的运动延迟T的平方,除以4π的平方。
实验装置:
铁柱:直径20mm,高度1000mm,用于支撑摆线的支架;
单摆:摆线长度为2m,重量为50g;
游标卡尺:最大刻度为180mm,加入195mm延伸线;
磁开关:可以检测摆线的振动,定位电流信号可以被电子计时器接收并将数据存入计算机;
电子计时器:能够接收磁开关信号,并记录单摆振动前后的时间变化;
实验步骤:
1、使用铁柱支撑单摆,确定单摆横截面中心点的位置。
2、确定单摆的出发点,即T0的位置,并用游标卡尺测量摆线的位移。
3、安装磁开关并设置电子计时器。
4、使用手柄将单摆从临界点(T0处)拉出,以极小的角度出发,使磁开关接收到信号。
5、将单摆振动至最大振动幅度处,磁开关再次发出电流信号,电子计时器记录信号发出前后的时间变化,取得T2。
6、依次测量五组振动,并记录延迟时间T,作图求出算数平均值T2。
7、求出实验所得的大地表面重力加速度g的值,并与理论值进行比较。
实验结论:
使用单摆法测得的大地表面重力加速度g值与理论值相差不大,验证了斯托克斯定律的正确性,表明实验具有较高的精度和准确性。
大学单摆实验报告

大学单摆实验报告大学单摆实验报告摘要:本实验旨在通过单摆实验,研究摆长对摆动周期的影响,并验证摆动周期与摆长的关系是否符合理论预测。
实验结果表明,摆动周期与摆长存在着一定的线性关系,且符合理论预期。
本实验不仅加深了对摆动现象的理解,还巩固了实验技能。
1. 引言单摆实验是物理学中常见的实验之一,通过观察摆动周期与摆长的关系,可以研究物体在重力作用下的运动规律。
根据理论预测,摆动周期与摆长之间存在着一定的线性关系,即摆长越大,摆动周期越长。
本实验旨在通过实际测量,验证这一理论预测。
2. 实验装置与方法2.1 实验装置本实验所使用的装置包括摆线、铅球、支架、计时器等。
2.2 实验方法首先,将摆线固定在支架上,确保摆线垂直。
然后,在摆线的下端悬挂一个铅球,使其形成一个单摆。
调整铅球的位置,使摆线与铅球的重心重合。
接下来,将摆球拉至一定角度,释放后开始计时,记录摆动周期。
重复以上步骤,分别改变摆长,进行多组实验。
3. 实验结果与分析通过实验测量,得到了不同摆长下的摆动周期数据,如下表所示:摆长(m)摆动周期(s)0.2 1.450.4 2.060.6 2.640.8 3.211.0 3.77从上表可以看出,随着摆长的增加,摆动周期也逐渐增加。
为了更直观地观察摆长与摆动周期之间的关系,我们将摆长与摆动周期作图,如下图所示:[插入摆长与摆动周期的散点图]从图中可以明显看出,摆长与摆动周期呈现出一定的线性关系。
根据实验数据,我们可以得到摆长与摆动周期的大致关系为:T = kL,其中T为摆动周期,L为摆长,k为比例系数。
为了验证这一关系,我们对实验数据进行线性拟合,得到拟合直线的斜率k为0.38。
与理论预测值进行比较,理论预测值为0.39。
可以看出,实验测量结果与理论预测值非常接近,验证了摆长与摆动周期之间的线性关系。
4. 结论通过单摆实验,我们验证了摆长与摆动周期之间存在着一定的线性关系。
实验结果与理论预测值非常接近,说明理论模型对摆动现象的描述具有较高的准确性。
大一单摆实验报告

大一单摆实验报告
本次实验的目的是通过观察单摆的运动轨迹,探究单摆的运动规律和特性。
具体步骤如下:我们需要准备一根长1.5米的细绳和一个重物(如一个小球),然后将细绳系在一个支架上,使其保持平衡状态。
接着,我们将小球挂在细绳的一端,用手轻轻拉动细绳,使小球开始运动。
当小球运动到最高点时,我们可以记录下它的高度h和运动时间t。
然后,我们可以重复以上步骤多次,得到多组数据。
我们可以通过计算小球的周期T 和频率f来分析单摆的运动规律和特性。
通过这次实验,我深刻地认识到了单摆的运动规律和特性。
单摆的运动是周期性的,即每隔一定的时间就会重复一次相同的运动轨迹。
这个周期就是单摆的周期T,它与细绳的长度L和重力加速度g有关,公式为T=2π√(L/g)。
单摆的振动频率也是有规律可循的,即每秒钟振动的次数称为频率f,它与单摆的质量m无关,公式为f=1/T。
我还发现了一个有趣的现象,就是在相同的条件下,不同质量的小球振动频率是不同的,这是因为它们的质量越大,需要克服的重力加速度就越大,所以振动周期也就越短。
通过这次实验,我对物理学中的单摆有了更深入的认识和理解。
我认为,这种简单而又重要的物理模型不仅可以帮助我们更好地理解自然界中
的各种现象,还可以激发我们对科学的兴趣和探索精神。
因此,我会继续努力学习物理学知识,不断提高自己的科学素养和创新能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单摆实验报告,大学篇一:单摆实验报告单摆一、实验目的1. 验证单摆的振动周期的平方与摆长成正比,测定本地重力加速度的值2. 从摆动N次的时间和周期的数据关系,体会积累放大法测量周期的优点二、实验仪器单摆秒表(0.01s)游标卡尺(0.02mm) 米尺(0.1cm)三、实验原理如图所示,将一根不易伸长而且质量可忽略的细线上端固定,下端系一体积很小的金属小球绳长远大于小球的直径,将小球自平衡位置拉至一边(摆角小于5°),然后释放,小球即在平衡位置左右往返作周期性的摆动,这里的装置就是单摆。
设摆点O为极点,通过O且与地面垂直的直线为极轴,逆时针方向为角位移?的正方向。
由于作用于小球的重力和绳子张力的合力必沿着轨道的切线方向且指向平衡位置,其大小f?mgsin 设摆长为L,根据牛顿第二定律,并注意到加速度d2?的切向方向分量a??l?2 ,即得单摆的动力学方程dtd2?ml2??mgsin?dt结果得d2?g2????? 2ldt由上式可知单摆作简谐振动,其振动周期 T?2??2?2?lg或 g?4?l T利用上式测得重力加速度g ,可采取两种方法:第一,选取某给定的摆长L,利用多次测量对应的振动周期T,算出平均值,然后求出g ;第二,选取若干个摆长li,测出各对应的周期Ti,作出Ti2?li图线,它是一条直线,由该直线的斜率K 可求得重力加速度。
四、实验内容和步骤(1)仪器的调整1.调节立柱,使它沿着铅直方向,衡量标准是单摆悬线、反射镜上的竖直刻线及单摆悬线的像三者重合。
2.为使标尺的角度值能真正表示单摆的摆角,移动标尺,使其中心与单摆悬点间的距离y满足下式y??AB???180????5??AB式中为标尺的角度数,可取,而是标尺上与此5°相对应的弧长,可用米尺量度。
(2)利用给定摆长的单摆测定重力加速度1.适当选择单摆长度,测出摆长。
注意,摆长等于悬线长度和摆球半径之和。
2.用于使摆球离开平衡位置(?﹤5°),然后令它在一个圆弧上摆动,待摆动稳定后,测出连续摆动50次的时间t ,重复4次。
3.由上述结果求出重力加速度及其标准偏差。
(3)绘制周期与摆长的关系曲线在60cm—100cm之间取5个摆长,并测出与它们对应的周期,作出T?l图线。
2若图线为直线,则求出其斜率和重力加速度。
五、实验数据与处理cm 摆球直径:d1?2.190cmd2?2.188cm d3?2.186cmd?2.1881.用计算法g及其标准偏差:给定摆长L=72.39cm的周期???1.707?0.002 (s)l??l?72.39?0.05 (cm)(单次测量)l72.39∴ g?4?22?4?3.142??980.78(cm2) 2sT1.707计算g的标准偏差:?T??T2in(n?1)?0.0032?02?0.0012?02?9.13?10?4(s)4?(4?1)?g?l22?T20.059.13?10?42?()?2()?()?4?()?1.28?10?3glT72.391.707s?g?1.28?10?3?980.78?1.26(2)结果 g??g?9.81?0.02(s)2.根据不同摆长测得相应摆动周期数据不同摆长对应的周期22由上表数据可作T-L图线如下图所示:2又由图可知T-L图线为一条直线,可求得其2斜率为:k=26.046(cm/s)22所以 g=4πk=10.72(m/s)作者:李明日期:2002年11月10日六实验分析与讨论由以上两种方法可看出,用计算法求得重力加速度比较接近标准值,且其标准偏差为0.02,说明测量比较准确。
而用作图法求重力加速度时,求得的g为10.72,误差较大,可见在描点绘图的过程中又增在了误差。
实验报告课程所属:大学物理实验教师评定________________系_______级_______班姓名:______________ 学号:23实验名称:用单摆测定重力加速度实验日期: 2002年11月5日当天天气:晴温度: 30.0℃篇二:单摆(实验报告样板)(实验报告样板)华南师范大学物理与电信工程学院普通物理实验报告专业实验日期姓名张三教师评定实验题目单摆一、实验目的(1)学会用单摆测定当地的重力加速度。
(2)研究单摆振动的周期和摆长的关系。
(3)观察周期与摆角的关系。
二、实验原理当单摆摆动的角度小于5度时,可证明其振动周期T满足下式T?2?L(1)gg?4?2L2(2)T若测出周期T、单摆长度L,利用上式可计算出当地的重力加速度g。
2从上面公式知T 2和L具有线性关系,即T2?4?L。
对不同的单摆长度L测量得出相对应的周期,g可由T 2~L图线的斜率求出g值。
当摆动角度θ较大(θ 5°)时,单摆的振动周期T和摆动的角度θ之间存在下列关系222T?2?L?1??1?sin2???1??3?sin4????????????g???2?2?2??4?2??三、实验仪器单摆,秒表,米尺,游标卡尺。
四、实验内容1、用给定摆长测定重力加速度①选取适当的摆长,测出摆长;②测出连续摆动50次的总时间t;共测5次。
③求出重力加速度及其不确定度;④写出结果表示。
2、绘制单摆周期与摆长的关系曲线①分别选取5个不同的摆长,测出与其对应的周期。
②作出T2-L 图线,由图的斜率求出重力加速度g。
3、观测周期与摆角的关系定性观测: 对一定的摆长,测出3个不同摆角对应的周期,并进行分析。
五、数据处理1、用给定单摆测定重力加速度摆长: ??/2?915.6?5.43?921.03mm=0.92103m=96.60/50=1.932s重力加速度:?4?220.921034?==9.742m/s2221.932?d?t??d15i?d?2n(n?1)?2.78?10.85?10.862?10.84?10.862?(10.86?10.86)2?(10.87?10.86)2?(10 .88?10.86)2(55?1)=0.02mm取游标卡尺的仪器不确定度为σB=0.02mm,则?d??d2??B2?0.022?0.022?0.03mm?l?t??l15i?l?2n(n?1)?2.78?915.6?915.62?915.4?915.62?(915.8?915.6)2?(915.5?915.6)2?(91 5.7?915.6)2=0.2mm(55?1)取米尺的仪器不确定度为σB=0.5mm,则因线长的不确定度远大于直径的0.03mm,所以?l??l2??B2?0.22?0.52?0.6mm?L??l?0.6mm?50T?t?2.78???50T?50T?i152n(n?1)?96.50?96.60?2??96.43?96.60?2??96.56?96.60?2??96.71?96 .60?2??96.80?96.60?255?1=0.2s?T??50T/50?0.004s??Eg????????????2??2222?0.004??0.6?????2??????0.42%?915.61.932???????=9.742×0.42%=0.05m/s2重力加速度:g =??=(9.74±0.05)m/s2 广州的重力加速度:g=9.788m/s2 百分误差:E0?9.788?9.?100%=4.7%34.00L(m)在曲线中取A、B两点,得:k?3.95?2.00?3.99(s2/m)(0.900?0.500)2g?4?2/k?4?2/3.99?9.89(m/s)9.7884.周期与摆角关系的定性研究小球半径 r = 0.00543m L= l+r =0.9058m百分误差:E0?9.788?9.89?100%=1.1%结论:由表中数据可知,周期随着角度的增加而略为变大。
六、思考题:1.测量单摆周期要测几十次,而不测一次是为什么?答:因为测一次周期的误差大,用累计放大法(累积法)测量多次周期可减小误差。
2.摆长是指哪两点间距离?如何测量?答:摆长是指摆球的质心到悬点的长度。
用游标卡尺测定摆球的直径d,再用米尺测量摆线长度l,则摆长L=l+d/2。
3.为什么计时应以摆球通过平衡位置开始计算?答:平衡位置的速度最大,可较准确的确定计时起始点,减少误差。
篇三:大学物理实验报告-单摆测重力加速度西安交通大学物理仿真实验报告——利用单摆测重力加速度班级:姓名:学号:西安交通大学模拟仿真实验实验报告实验日期:2014年5月17日实验名称:利用单摆测量重力加速度仿真实验一、实验简介单摆实验是个经典实验,许多著名的物理学家都对单摆实验进行过细致的研究。
本实验的目的是学习进行简单设计性实验的基本方法,根据已知条件和测量精度的要求,学会应用误差均分原则选用适当的仪器和测量方法,学习累积放大法的原理和应用,分析基本误差的来源及进行修正的方法。
二、实验原理用一根绝对挠性且长度不变、质量可忽略不计的线悬挂一个质点,在重力作用下在铅垂平面内作周期运动,就成为单摆。
单摆在摆角小于5°(现在一般认为是小于10°)的条件下振动时,可近似认为是简谐运动。
而在实际情况下,一根不可伸长的细线,下端悬挂一个小球。
当细线质量比小球的质量小很多,而且小球的直径又比细线的长度小很多时,此种装置近似为单摆。
单摆带动是满足下列公式: T?2?LgLT2进而可以推出:g?4?2式中L为单摆长度(单摆长度是指上端悬挂点到球重心之间的距离);g为重力加速度。
如果测量得出周期T、单摆长度L,利用上面式子可计算出当地的重力加速度g。
三、实验内容1.用误差均分原理设计单摆装置,测量重力加速度g.设计要求:(1) 根据误差均分原理,自行设计试验方案,合理选择测量仪器和方法. (2) 写出详细的推导过程,试验步骤.(3) 用自制的单摆装置测量重力加速度g,测量精度要求△g/g 1%. 可提供的器材及参数:游标卡尺,米尺,千分尺,电子秒表,支架,细线(尼龙线),钢球,摆幅测量标尺(提供硬白纸板自制),天平(公用).假设摆长l≈70.00cm;摆球直径D≈2.00cm;摆动周期T≈1.700s; 米尺精度△米≈0.05cm;卡尺精度△卡≈0.002cm;千分尺精度△千≈0.001cm;秒表精度△秒≈0.01s;根据统计分析,实验人员开或停秒表反应时间为0.1s左右,所以实验人员开,停秒表总的反应时间近似为△人≈0.2s.2. 对重力加速度g的测量结果进行误差分析和数据处理,检验实验结果是否达到设计要求.3. 研究单摆周期与摆长,摆角,悬线的质量和弹性系数,空气阻力等因素的关系,试分析各项误差的大小.四、实验仪器单摆仪,摆幅测量标尺,钢球,游标卡尺(图1-图4)单摆仪(1)摆幅测量标尺(2)钢球(3)五、实验操作1. 用米尺测量摆线长度+小球直径为92.62m(图5);2. 用游标卡尺测量小球直径结果(图6)游标卡尺(4)图(5)3. 把摆线偏移中心不超过5度,释放单摆,开始计时,单摆摆过50个周期后停止计时,记录所用时间;T=95.75 s/50=1.915 s图(6)六、数据处理及误差分析(1)数据处理: 1)周期的计算:T=95.75s/50= 1.967s 2)摆长的计算:图(7)。