(完整版)航空知识手册全集3
航空知识手册全集

航空知识手册全集(总9页) -CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第三章 - 飞行空气动力学飞行空气动力学介绍作用于飞机上的力的相互关系和由相关力产生的效应。
作用于飞机的力至少在某些方面,飞行中飞行员做的多好取决于计划和对动力使用的协调以及为改变推力,阻力,升力和重力的飞行控制能力。
飞行员必须控制的是这些力之间的平衡。
对这些力和控制他们的方法的理解越好,飞行员执行时的技能就更好。
下面定义和平直飞行(未加速的飞行)相关的力。
推力是由发动机或者螺旋桨产生的向前力量。
它和阻力相反。
作为一个通用规则,纵轴上的力是成对作用的。
然而在后面的解释中也不总是这样的情况。
阻力是向后的阻力,由机翼和机身以及其他突出的部分对气流的破坏而产生。
阻力和推力相反,和气流相对机身的方向并行。
重力由机身自己的负荷,乘客,燃油,以及货物或者行礼组成。
由于地球引力导致重量向下压飞机。
和升力相反,它垂直向下地作用于飞机的重心位置。
升力和向下的重力相反,它由作用于机翼的气流动力学效果产生。
它垂直向上的作用于机翼的升力中心。
在稳定的飞行中,这些相反作用的力的总和等于零。
在稳定直飞中没有不平衡的力(牛顿第三定律)。
无论水平飞行还是爬升或者下降这都是对的。
也不等于说四个力总是相等的。
这仅仅是说成对的反作用力大小相等,因此各自抵消对方的效果。
这点经常被忽视,而导致四个力之间的关系经常被错误的解释或阐明。
例如,考虑下一页的图3-1。
在上一幅图中的推力,阻力,升力和重力四个力矢量大小相等。
象下一幅图显示的通常解释说明(不保证推力和阻力就不等于重力和升力)推力等于阻力,升力等于重力。
必须理解这个基本正确的表述,否则可能误解。
一定要明白在直线的,水平的,非加速飞行状态中,相反作用的升力和重力是相等的,但是它们也大于相反作用的推力和阻力。
简而言之,非加速的飞行状态下是推力和阻力大小相等,而不是说推力和阻力的大小和升力重力相等,基本上重力比推力更大。
航空知识

1 国际航空运输组织1.1 国际民用航空组织(International Civil Aviation Organization-ICAO)它是由各国政府参加组成的国际航空运输机构。
1944年在芝加哥有52个国家参加的国际民航会议上,签订了“国际民用航空公约”后决定设立的国际民航组织。
1947年“国际民航组织”正式成立,并成为联合国的专门机构,到1990年它已有161个成员国,总部设立在加拿大的蒙特利尔。
最高权利机构是该组织的大会,每3年召开一次。
理事会是常设机构,由33个理事国组成,向大会负责。
我国是该组织的成员国、理事国。
理事会每年开3次会议,下设航空技术、航空运输、法律、导航设备、财务和防止非法干扰国际民航等6个委员会。
日常办事机构设有航空技术局、航空运输局、法律局、技术援助局、行政服务局和对外关系办公室。
在全世界设立7个地区办事处,分管地区事务,这7个地区是西非和中非区、欧洲区、亚太区、中东区、东非和南非区、北美中美和加勒比区和南美区。
1.2.2 国际航空运输协会(International Air Transport Association-IATA)它是世界航空运输企业自愿组成的非政府组织,前身是1919年由欧洲的6家航空公司成立的“国际航空交通协会”。
1945年有31个国家的航空公司出席大会,加拿大议会给予它国家法人地位,改名为“国际航空运输协会”,成为一个正式的国际机构。
协会的参加成员是国际民航组织成员国的任何一家经营空运的企业,经营国际空运的为正式成员,只经营国内空运的为准成员,目前的成员有200多个。
协会的中部设在蒙特利尔,在纽约、巴黎、新加坡、曼谷、内罗毕、北京设有分支机构或办事处。
在瑞士的日内瓦还设有总办事处和清算所。
协会的最高权利机构为全体会议,另有4个常务委员会分管法律、业务、财务和技术。
国际航协从组织形式上是一个航空企业的行业联盟,属非官方性质组织,但是由于世界上的大多数国家的航空公司是国家所有,即使非国有的航空公司也受到所属国政府的强力参与或控制,因此航协实际上是一个半官方组织。
无人机驾驶员航空知识手册

无人机驾驶员航空知识手册摘要:I.引言- 无人机驾驶员航空知识手册的目的和适用对象- 手册的简要介绍II.无人机驾驶员的基本要求- 驾驶员的基本素质- 驾驶员的技能要求- 驾驶员的知识要求III.航空基础知识- 空气动力学原理- 无人机飞行原理- 无人机控制系统IV.飞行前准备- 飞行计划制定- 飞行任务分析- 飞行器检查V.飞行操作- 起飞与着陆- 空中驾驶- 应急处理VI.无人机维护与保养- 日常维护- 定期检查- 常见故障处理VII.航空法规与安全- 无人机驾驶员的证件要求- 飞行法规与空域管理- 安全飞行指南VIII.总结与展望- 无人机驾驶员航空知识手册的重要性- 对无人机行业的展望正文:无人机驾驶员航空知识手册是为从事无人机驾驶行业的人员提供的一部专业性教材。
无人机作为一种新兴的高科技产业,其驾驶员需要具备一定的航空知识、技能和素质。
本手册从无人机驾驶员的基本要求、航空基础知识、飞行前准备、飞行操作、无人机维护与保养、航空法规与安全等方面进行了详细讲解,旨在为无人机驾驶员提供一个全面、系统的学习参考。
首先,无人机驾驶员应具备一定的素质、技能和知识。
驾驶员需要具备良好的心理素质,能够在紧急情况下冷静应对。
同时,驾驶员应具备较强的动手能力和逻辑思维能力,以便于处理各种突发状况。
此外,驾驶员还应掌握一定的航空知识,以便于更好地了解飞行原理和无人机控制系统。
其次,本手册介绍了航空基础知识,包括空气动力学原理、无人机飞行原理和无人机控制系统。
这些知识是无人机驾驶员必备的基础,对理解和掌握无人机驾驶技术有着重要的指导意义。
接下来,本手册详细讲解了飞行前的准备工作,包括飞行计划制定、飞行任务分析和飞行器检查。
这些步骤是确保飞行安全的关键,驾驶员需要认真对待。
在飞行操作部分,本手册详细介绍了起飞与着陆、空中驾驶和应急处理等操作技巧。
这些技巧是驾驶员在实际操作过程中需要掌握的关键技术,对保证飞行安全和顺利完成任务具有重要意义。
飞行员航空知识手册

飞行员航空知识手册
1. 航空法规和规章,手册会介绍国内外航空法规和规章,包括
民航法、飞行规则、航空安全等相关法规,以确保飞行员了解并遵
守相关规定。
2. 飞行原理,手册会涵盖飞行原理,包括气动力学、飞行力学、飞机结构等方面的知识,以帮助飞行员理解飞机的运行原理和性能。
3. 飞行器系统,手册会详细介绍不同类型飞机的系统,包括动
力系统、操纵系统、电气系统、燃油系统、导航系统等,以帮助飞
行员了解飞机的各个系统如何工作以及如何操作。
4. 气象学,手册会涵盖气象学的基础知识,包括天气现象、气
象图解读、风、云、降水等方面的知识,以帮助飞行员了解天气对
飞行的影响,以及如何根据天气情况做出飞行决策。
5. 导航和飞行计划,手册会介绍导航的基本知识,包括地图阅读、导航设备的使用、航路规划等,以帮助飞行员进行飞行计划和
导航操作。
6. 飞行操作和技术,手册会详细介绍飞行操作和技术,包括起飞、着陆、空中操纵、紧急程序等方面的知识,以帮助飞行员掌握
正确的飞行技巧和应对各种紧急情况。
7. 人因工程和飞行安全,手册会介绍人因工程和飞行安全的基
本概念,包括人体工程学、疲劳管理、风险管理等方面的知识,以
帮助飞行员提高飞行安全意识和应对飞行中的各种挑战。
8. 紧急情况和救援,手册会介绍各种紧急情况下的处理方法和
救援程序,包括火警、机械故障、迫降等方面的知识,以帮助飞行
员在紧急情况下做出正确的决策和行动。
总之,飞行员航空知识手册是一本包含广泛航空知识的工具书,旨在帮助飞行员全面了解飞行原理、飞机系统、气象学、导航等方
面的知识,以提高飞行安全和操作技能。
民用航空器基本知识

三、一次大战中的飞机 1914-18
第一次世界大战时所有的著名作战飞机都是双翼机。 结构材料主要是优质木材。 外面再蒙以细密而结实的亚麻布或棉布。
三、一次大战中的飞机 1914-18
三、一次大战 中的飞机 1914-18
三、一次大战中的飞机 1914-18
三、一次大战中的飞机 1914-18
PART 01
第1章 飞行器发展史
一、世界上的第一架飞机
1903年12月17日,美国威尔伯和奥维尔. 莱特在基蒂霍克成功地 驾驶自己的飞机进行了第一次重于空气的动力飞行。
飞行了12秒,飞行距离约120英尺。
一、世界上的第一架飞机
一、世界上的 第一架飞机
这是世界上公认的第一架 动力推进的飞机,它翻开 了人类航空史的首页。
(包含国防、警察和海关)以外的所有的航空活动 称为民用航空。
民用飞机 的分类
民用飞机可以分为干线运输机、支线运输 机和通用航空飞机三大类
干线运输机:分别用于洲际干线(中远程) 和国内干线(中近程)的客货运输
支线运输机:大城市至中小城镇及中小城 镇之间的支线客货运输
通用航空飞机:农林牧副渔业、地质探矿、 遥感遥测、公安巡逻、海上救护、体育运 动、私人游乐等。
飞行器的分类
飞行器的分类
滑翔机 无动力装置重于空气的固定翼航空器。靠 飞机拖曳,或用绞盘、汽车等牵引起飞,升空后靠 自身重力在飞行方向的分力向前滑翔。有些滑翔机 装小型发动机,称动力滑翔机,但其发动机只用来 在滑翔飞行前获得初始速度。现代滑翔机主要用于 体育运动。
飞行器的分类
民用飞机的分类
飞机便分成了军用和民用两大类。 民用航空的定义:使用各类航空器从事除军事性质
一、大气层 概述
无人机驾驶员航空知识手册

无人机驾驶员航空知识手册(实用版)目录一、无人机驾驶员概述1.无人机驾驶员的定义与分类2.无人机驾驶员的岗位职责与需求3.无人机驾驶员的发展前景与趋势二、无人机驾驶员的培训与证书1.无人机驾驶员的培训途径与流程2.无人机驾驶员的证书类型与获取方式3.无人机驾驶员的培训课程与考试内容三、无人机驾驶员的就业方向与岗位1.无人机驾驶员的主要就业方向2.无人机驾驶员的岗位职责与任职要求3.无人机驾驶员的薪资待遇与福利四、无人机驾驶员的发展挑战与未来趋势1.无人机驾驶员面临的挑战与问题2.无人机驾驶员的未来发展趋势3.无人机驾驶员行业的政策法规与监管正文一、无人机驾驶员概述无人机驾驶员是指通过操控设备,控制无人机完成指定任务的人员。
根据无人机的用途和性质,无人机驾驶员可以分为民用无人机驾驶员和军用无人机驾驶员。
在民用领域,无人机驾驶员主要负责无人机的飞行操控、任务规划、数据处理等工作;在军用领域,无人机驾驶员则需要承担更多的作战任务和指令执行。
作为无人机驾驶员,需要具备丰富的航空知识、飞行技巧、设备操作能力以及任务规划能力。
同时,还需要具备良好的心理素质和应变能力,以应对各种突发情况。
二、无人机驾驶员的培训与证书想要成为一名合格的无人机驾驶员,需要通过专业的培训和考试,获得相应的证书。
目前,国内无人机驾驶员的培训途径主要有以下几种:1.无人机公司提供的培训课程:许多无人机公司都会提供专门的培训课程,帮助学员掌握无人机驾驶技巧和相关知识。
2.航空院校提供的无人机专业:选择考取一些军校或航空院校的无人机专业,可以在校期间接受专业的培训和教育。
3.考取无人机驾驶员证书:通过参加无人机驾驶员考试,获得由中国民航局颁发的无人机驾驶员证书。
三、无人机驾驶员的就业方向与岗位随着无人机技术的发展和应用,无人机驾驶员的需求量也在不断增加。
无人机驾驶员的主要就业方向包括:1.无人机研发与制造企业:担任无人机测试、试飞等工作。
航空飞行技术手册

航空飞行技术手册本手册将介绍航空飞行技术的基本原理、飞行规则以及飞行操作等内容。
希望能够帮助广大飞行员和飞行爱好者了解飞行的基本知识和技能,并在实际飞行中提供一些参考和指导。
第一章:航空飞行原理1.1 空气动力学基础航空飞行的基础是空气动力学,本节将介绍有关空气流动、升力、阻力、推力等基本概念,并解释它们对飞行的影响。
1.2 飞行器构造与控制本节将介绍常见的飞行器结构,例如固定翼飞机、旋翼飞机等,并讲解飞行器的控制原理和方法,包括操纵杆、踏板等控制设备的使用。
第二章:航空导航与通信2.1 航空导航系统航空飞行中的导航是非常重要的,本节将介绍各种导航设备和系统,包括地面导航设备、GPS导航仪、惯性导航系统等,并讲解它们的使用方法和注意事项。
2.2 航空通信设备与规则飞行中的通信是确保航空安全和联络的重要手段,本节将介绍航空通信设备的种类和功能,并讲解通信规则和常用术语。
第三章:飞行规则与运行3.1 航空法规与规章本节将介绍航空飞行的法规和规章,包括国际民航组织(ICAO)的相关规定、国家航空管理部门的要求等,帮助飞行员遵守法规、确保飞行安全。
3.2 飞行计划与执行飞行前的计划和实际操作是飞行员必须掌握的基本技能,本节将介绍飞行计划的编制步骤、天气状况的考虑、飞行中的导航和飞行参数的监控,以及应对紧急情况的应急程序。
第四章:飞行技巧与操作4.1 起飞与着陆起飞和着陆是每次飞行的重要环节,本节将介绍各种飞行器的起飞和着陆步骤、技巧和注意事项,帮助飞行员提高起降的安全性和顺利性。
4.2 飞行中的姿态控制与机动本节将介绍飞行过程中的姿态控制技术和机动飞行技巧,包括飞行器的升降、滚转、偏航操纵,以及高速飞行、低速飞行等特殊情况下的操控要点。
第五章:飞行安全与事故调查5.1 飞行安全管理飞行安全是航空飞行的核心,本节将介绍飞行安全管理的基本概念和方法,包括风险识别、风险评估、风险控制等,帮助飞行员预防事故和提高飞行安全水平。
无人机驾驶员航空知识手册

无人机驾驶员航空知识手册
无人机驾驶员航空知识手册主要涵盖了以下内容:
1. 航空法规:介绍了无人机操作所需遵守的各国航空法规和规定,包括无人机飞行限制区域、高度限制、航空器登记和飞行许可要求等。
2. 空中交通管制:解释了无人机与其他航空器的交互作用,包括与飞机、直升机和其他无人机的避免碰撞规则和程序。
3. 飞行器系统:介绍了无人机的不同部件和功能,包括机身、动力系统、遥控设备、导航系统和通信设备等。
4. 飞行原理:解释了无人机的飞行原理,包括气动力学、升力和阻力的产生、飞行姿态控制和操纵方式等。
5. 天气和环境因素:讲解了无人机飞行的天气和环境因素的影响,包括风速和风向、能见度、气温和湿度等。
6. 飞行计划和任务管理:指导无人机驾驶员如何制定飞行计划和任务管理,包括选择适当的飞行区域、规划飞行路线和高度、考虑任务目标和要求等。
7. 紧急情况和故障处理:介绍了无人机飞行中可能遇到的紧急情况和故障处理方法,包括失控、电池电量不足、通信中断和意外撞击障碍物等。
8. 飞行操作技巧和安全措施:提供了无人机飞行操作技巧和安全措施,包括起飞和降落的正确方法、悬停和转弯技巧、飞行器检查和维护等。
9. 人员和财产保护:介绍了无人机飞行时需要保护的人员和财产,包括隐私权、知识产权和保密性等。
10. 飞行记录和报告:讲解了无人机飞行时记录和报告的重要性,包括飞行日志、飞行器维护记录和事件报告等。
这本手册提供了无人机驾驶员所需的关键知识,并帮助其提高飞行技能和操作安全性。
无人机驾驶员应该认真学习并遵守手册中的指南和建议,以确保安全和法律合规。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第三章 - 飞行空气动力学飞行空气动力学介绍作用于飞机上的力的相互关系和由相关力产生的效应。
作用于飞机的力至少在某些方面,飞行中飞行员做的多好取决于计划和对动力使用的协调以及为改变推力,阻力,升力和重力的飞行控制能力。
飞行员必须控制的是这些力之间的平衡。
对这些力和控制他们的方法的理解越好,飞行员执行时的技能就更好。
下面定义和平直飞行(未加速的飞行)相关的力。
推力是由发动机或者螺旋桨产生的向前力量。
它和阻力相反。
作为一个通用规则,纵轴上的力是成对作用的。
然而在后面的解释中也不总是这样的情况。
阻力是向后的阻力,由机翼和机身以及其他突出的部分对气流的破坏而产生。
阻力和推力相反,和气流相对机身的方向并行。
重力由机身自己的负荷,乘客,燃油,以及货物或者行礼组成。
由于地球引力导致重量向下压飞机。
和升力相反,它垂直向下地作用于飞机的重心位置。
升力和向下的重力相反,它由作用于机翼的气流动力学效果产生。
它垂直向上的作用于机翼的升力中心。
在稳定的飞行中,这些相反作用的力的总和等于零。
在稳定直飞中没有不平衡的力(牛顿第三定律)。
无论水平飞行还是爬升或者下降这都是对的。
也不等于说四个力总是相等的。
这仅仅是说成对的反作用力大小相等,因此各自抵消对方的效果。
这点经常被忽视,而导致四个力之间的关系经常被错误的解释或阐明。
例如,考虑下一页的图3-1。
在上一幅图中的推力,阻力,升力和重力四个力矢量大小相等。
象下一幅图显示的通常解释说明(不保证推力和阻力就不等于重力和升力)推力等于阻力,升力等于重力。
必须理解这个基本正确的表述,否则可能误解。
一定要明白在直线的,水平的,非加速飞行状态中,相反作用的升力和重力是相等的,但是它们也大于相反作用的推力和阻力。
简而言之,非加速的飞行状态下是推力和阻力大小相等,而不是说推力和阻力的大小和升力重力相等,基本上重力比推力更大。
必须强调的是,这是在稳定飞行中的力平衡关系。
总结如下:•向上力的总和等于向下力的总和•向前力的总和等于向后力的总和对旧的“推力等于阻力,升力等于重力”公式的提炼考虑了这样的事实,在爬升中,推力的一部分方向向上,表现为升力,重力的一部分方向向后,表现为阻力。
在滑翔中,重力矢量的一部分方向向前,因此表现为推力。
换句话说,在飞机航迹不水平的任何时刻,升力,重力,推力和阻力每一个都会分解为两个分力。
如图3-2对前面概念的讨论在航空学课本或者手册中经常被忽略。
原因不是因为他们不重要,而是因为由于忽略这个讨论,谈到作用于飞行中飞机的航空动力学作用力的主要思想就可以用最基本的要素来表达,而不用考虑航空动力学者的专业性。
就事实而言,仅仅考虑水平飞行和稳定状态中的正常爬升和下降,机翼升力确实是重要的向上的力而重力是重要的向下的力的表述仍然是正确的。
经常的,在解释作用于飞机的力时遇到的大量困难在很大程度上是语言和其含义的问题。
例如,飞行员长期认为在飞机爬上是因为升力大于重力。
如果他仅仅根据机翼升力考虑的话这是不对的。
然而,如果考虑所有向上力的合力导致升力大于重力,那么这就是对的。
但是当提到“升力推力和重力阻力”时,为这些力确立的前面的定义就不再有效,使问题变的复杂。
语言表述的如此不严密为大量的争论提供了借口,这些争论集中于基本原理的精练。
尽管已经定义了作用于飞机上的力,飞行员如何使用他们来进行受控的飞行就需要对他们进行深入详细的讨论。
推力飞机开始移动前,必须施加推力。
飞机持续移动,速度增加,直到推力和阻力相等。
为了维持恒定的空速,就像升力和重力必须保持相等以维持稳定的飞行高度一样,推力和阻力必须保持相等。
假设在平直飞行中,引擎功率降低,推力就会下降,飞机速度就减慢。
只要推力小于阻力,飞机就会一直减速,知道它的空速不足以支持飞行。
同样的,如果引擎的动力增加,推力比阻力大,空速就增加。
只要推力一直比阻力大,飞机就一直加速。
当阻力等于推力时,飞机飞行在恒定的空速。
平直飞行可以维持的速度可以很慢也可以很快。
如果飞机要保持水平飞行,飞行员必须在所有飞行状态协调迎角和推力。
概略的,这些飞行状态可以按类分为三组,低速飞行,巡航飞行和高速飞行。
在低空速时,要维持升力和重力的平衡,迎角必须相对较高以增加升力。
如图3-3,如果推力降低空速增加,升力变得小于重力,飞机就会开始下降。
要维持水平飞行,飞行员可以增加一定量的迎角,它会再次让升力等于飞机的重力,而飞机会飞的更慢点,如果飞行员适当的协调了推力和迎角也可以保持水平飞行。
低速状态的平直飞行提供了需要关注的和力平衡有关的条件,因为飞机处于高机头的姿态,有一个垂直的推力分量帮助支持飞机。
首先,可以预期机翼载荷趋于减少。
大多数飞行员知道相比发动机停止时飞机在有动力时速度较低会失速,螺旋桨引起的气流通过机翼时也会恶化这种情况。
然而,如果分析仅仅限于通常定义的这四个力,你可以说,平直低速飞行时推力等于阻力,升力等于重力。
在平直飞行中,推力增加时,空速增加,必须要降低迎角。
如果协调好了变化,飞机仍然保持平直飞行,但是推力和迎角之间建立了合适的关系后飞行速度会变高。
如果推力增加时迎角没有降低,飞机会爬升。
但是降低迎角可以修正升力,保持它等于重力,如果做的恰好,飞机仍然保持平飞。
轻微的负迎角甚至可以出现在非常高速度的平直飞行中。
那么就很明显,可以以失速迎角和高速时的相对较小负迎角之间的任意迎角进行平飞。
阻力飞行中的阻力有两个基本类型:寄生阻力和诱导阻力。
第一个称为寄生的是因为它永远对飞行的帮助是无用的,第二个是由机翼产生升力的结果所导致的。
寄生阻力有两个基本元素:形阻力,来自机身对气流的破坏,另外就是外壳的摩擦阻力。
对于寄生阻力的两个因素,在设计飞机时容易降低形阻力。
一般的,一个物体越是流线型的就越容易降低寄生阻力的形阻力。
外壳摩擦力是最难降低的寄生阻力类型。
没有完全光滑的表面。
甚至是机械加工的表面,通过放大来检测的话,仍然可以看到粗糙的不平坦的外观。
这种粗糙的表面会使表面的空气流线型弯曲,对平滑气流产生阻力。
通过使用光滑的磨平的表面,和去掉突出的铆钉头,粗糙和其他的不规则物来最小化外壳摩擦力。
设计飞机时必须要增加另一个对寄生阻力的考虑。
这个阻力复合了形阻力效应和外壳摩擦,称为所谓的干涉阻力。
如果两个物体靠近放置,产生的合成紊乱会比单个测试时大50%到200%。
形阻力,外壳摩擦力和干涉阻力这三个阻力都要被计算以确定一个飞机的寄生阻力。
寄生阻力中一个物体的外形是一个很大的因素。
然而,说道寄生阻力时指示空速也是一个同样重要的因素。
一个物体的外形阻力保持在一个相对气流固定的位置,大约以速度的平方成正比增加;这样,空速增加为原来的两倍,那么阻力就会变成原来的四倍,空速增加为三倍的话阻力也就增加为九倍。
但是,这个关系只在相当的低音速时维持很好。
在某些更高速度,外形阻力的增加会随速度而变的突然很快。
第二个基本的阻力类型是诱导阻力。
以机械运动方式工作的系统没有一个可以达到100%的效率,这是一个确定的物理事实。
这就意味着无论什么特性的系统,总是以系统中消耗某些额外的功来获得需要的功。
系统越高效,损失就越小。
在平飞过程中,机翼的空气动力学特性产生要求的升力,但是这只能通过某种代价才能获得。
这种代价的名字就叫诱导阻力。
诱导阻力是内在的,在机翼产生升力的任何时刻,而事实上,这种阻力是升力的产物中不可分离的。
继而,只要有升力就会有这种力。
机翼通过利用三种气流的能量产生升力。
无论什么时候机翼产生升力,机翼下表面的压力总是大于机翼上表面的压力。
结果,机翼下方的高压区空气有向机翼上方的低压去流动的趋势。
在机翼的翼尖附近,这些压力有区域相等的趋势,产生一个从下表面到机翼上表面的向外的侧面气流。
这个侧向气流给予翼尖的空气和机翼后面的尾流一个旋转速度。
因此,翼尖的气流会变成随着机翼运动的两个涡流轨迹。
从尾部看飞机时,右边翼尖的涡流逆时针旋转,而左边翼尖的涡流顺时针旋转。
如图3-4记住这些涡流的旋转方向,可以看到他们在翼尖之外引入一个向上的气流,在机翼尾缘之后产生一个向下的气流。
这个诱导的下洗气流和产生升力所需的下洗气流没有关系。
实际上是诱导阻力的来源。
涡流和后面的机翼上净气流分量越大越强,诱导阻力效应也就越强。
这个机翼顶部的下洗流在翼尖处有相同的使向后的升力矢量弯曲的效果,因此升力和相对气流的蒸饺稍微向后,产生一个后向升力分量。
这就是诱导阻力。
要记住为了在机翼上表面产生较大的负压力,机翼可以倾斜获得更大的迎角;如果不对称机翼的迎角为零,也就没有压力差,继而没有下洗分量,因此也就没有诱导阻力。
无论如何,只要迎角增加,诱导阻力相应的增加。
换一种说法就是,较低的空速时就要求更大的迎角来产生等于飞机重量的升力,因而诱导阻力也就更大。
总诱导阻力和空速的平方成反比变化关系。
从前面的讨论知道寄生阻力随空速的平方增加,诱导阻力随空速的平方反比变化。
当空速降低到接近失速速度时,总阻力变的更大,主要由于诱导阻力的快速升高。
类似的,当空速达到飞机的终速时,因为寄生阻力的飞速增加使得总阻力再次快速增加。
从图3-5可以看到,在某些空速上,总阻力处于最大值。
在计算最大续航力和航程时这是非常重要的;阻力最小时,克服阻力所需要的动力也是最小的。
为理解飞行中飞机的升力和阻力的影响,需要结合考虑两者以及升阻比L/D(升力/阻力)。
对于稳定的非加速状态的飞机,用不同空速时升力和阻力的数据,可以计算每一具体迎角时的升力系数CL和阻力系数CD。
升阻比对迎角的结果图显示升阻比增加到一最大值,在较高的升力系数和迎角阶段开始下降,如图3-6。
注意最大升阻比(L/D Max)出现在一个特定的迎角和升力系数处。
如果飞机在最大升阻比处稳定飞行,总阻力为最小。
任何比最大升阻比(L/D Max)处更大或者更小的迎角,升阻比降低继而在给定飞机升力时总阻力增加。
重心(CG)的位置在每一具体飞机的总体设计阶段确定。
设计者要确定压力中心(CP)会移动多大距离。
他们然后把重心朝相应的飞行速度下的压力中心前面固定,这是为了提供足够的恢复运动以保持飞行平衡。
一架飞机的配置也对升阻比有很大的影响。
高性能滑翔机会有极高的升阻比,超音速飞机在亚音速飞行时好像升阻比低,那可是超音速飞行(高马赫数时高升阻比)需要的飞机配置导致这样的情况。
重力重力是趋向把所有物体朝地球中心拽的拉力。
重心可以看成是飞机的所有重量都集中于所在的一点。
如果飞机的重心恰好得到支持,飞机就会平衡在任何姿态。
也会注意到重心占飞机的主导重要性,因为它的位置对稳定性有极大的影响。
重心的位置通过每个飞机的总体设计来确定。
设计者要确定压力中心(CP)会移动多大距离。
他们然后把重心朝相应的飞行速度下的压力中心前面固定,这是为了提供足够的恢复运动以保持飞行平衡。
重力和升力有明确的关系,推力对应于拉力。