【经典高考】高考数学 圆锥曲线齐次式与点乘双根法
高考数学必考点 圆锥曲线解题方法归纳总结

圆锥曲线解题方法归纳总结知识储备:1. 直线方程的形式(1)直线方程的形式有五件:点斜式、两点式、斜截式、截距式、一般式。
(2)与直线相关的重要内容 ①倾斜角与斜率tan ,[0,)k ααπ=∈②点到直线的距离d ③夹角公式:2121tan 1k k k k α-=+(3)弦长公式直线y kx b =+上两点1122(,),(,)A x y B x y 2x=2y - (4)两条直线的位置关系①1212l l k k ⊥⇔=-1 ② 212121//b b k k l l ≠=⇔且 2、圆锥曲线方程及性质(1)、椭圆的方程的形式有几种?(三种形式)标准方程:221(0,0)x y m n m n m n+=>>≠且2a = 参数方程:cos ,sin x a y b θθ== (2)、双曲线的方程的形式有两种标准方程:221(0)x y m n m n+=⋅<距离式方程:||2a = (3)、三种圆锥曲线的通径你记得吗?22222b b p a a椭圆:;双曲线:;抛物线:方法储备1、点差法(中点弦问题) 设()11,y x A 、()22,y x B ,()b a M ,为椭圆13422=+y x 的弦AB 中点则有1342121=+y x ,1342222=+y x ;两式相减得()()03422212221=-+-y yx x⇒()()()()3421212121y y y y x x x x +--=+-⇒AB k =ba43-2、联立消元法:你会解直线与圆锥曲线的位置关系一类的问题吗?经典套路是什么?如果有两个参数怎么办?设直线的方程,并且与曲线的方程联立,消去一个未知数,得到一个二次方程,使用判别式0∆≥,以及根与系数的关系,代入弦长公式,设曲线上的两点1122(,),(,)A x y B x y ,将这两点代入曲线方程得到○1○2两个式子,然后○1-○2,整体消元······,若有两个字母未知数,则要找到它们的联系,消去一个,比如直线过焦点,则可以利用三点A 、B 、F 共线解决之。
圆锥曲线齐次式与点乘双根法

+ = y 圆锥曲线齐次式与点乘双根法一,圆锥曲线齐次式与斜率之积(和)为定值x 2 y 2例 1:Q 1 , Q 2 为椭圆 2b 2 + b2 线OD ,求 D 的轨迹方程.= 1上两个动点,且OQ 1 ⊥ OQ 2 ,过原点O 作直线Q 1Q 2 的垂解法一(常规方法):设Q 1 (x 1 , y 1 ),Q 2 (x 2 , y 2 ) , D (x 0 , y 0 ) ,设直线Q 1Q 2 方程为 y = kx + m ,⎧ y = kx + m⎪联立⎨ x 2 ⎪⎩ 2b 2 y 2b2 1 化简可得:(2b 2k 2 + b 2 )x 2 + 4kmb 2 x + 2b 2 (m 2 - b 2 ) = 0 ,所以x 1x 2 = 2b 2 (m 2 + b 2 ) 2b 2k 2 + b 2, y 1 y 2 = b 2 (m 2 - 2b 2k 2 ) 2b 2k 2 + b 2因为OQ 1 ⊥ OQ 2 所以2b 2 (m 2 + b 2 ) b 2 (m 2 - 2b 2k 2 ) 2(m 2 - b 2 )m 2 - 2b 2k 2x 1x 2 + y 1 y 2 = 2b 2k 2 + b 2 + 2b 2k 2 + b 2 = 2k 2+1 + 2k 2 +1 =0∴3m 2 = 2b 2 (1+ k 2 ) *又因为直线 Q Q 方程等价于为 y - y = - x0 (x - xx x 2) , 即 y = - 0 x + 0 + y对比于1 2 0y 0 y 0⎨ 20 00 0y y ⎧- x 0 = k y = kx + m ,则⎪ y 0x 代入* 中,化简可得: x 2 + y 2= 2b 2. 3 ⎪ 0 + y = m ⎪ y 0 ⎩ 0解法二(齐次式):⎧ mx + ny= 1 ⎧ mx + ny = 1 ⎪ ⎪ 设直线Q 1Q 2 方程为 mx + ny = 1,联立⎨ x 2 + y 2 =⇒ ⎨ x 2 + y 2- =⎪⎩ 2b2b21⎪⎩ 2b2 b21 0x 2 y22x 2 y 2 2 2 2 22b 2 + (m x + ny ) b 2= 0 化简可得: 2b 2 + m x b 2- n y- 2mnxy = 0 整理成关于 x , y x , y 的齐次式: (2 - 2b 2n 2 ) y 2 + (1- 2m 2b 2 ) x 2 - 4mnb 2xy = 0 ,进而两边同时除以 x 2,则2 2 2 2 2 21- 2m 2b 2(2 - 2b n )k - 4mnb k +1- 2m b= 0 ⇒ k 1k 2 =2 - 2b 2n 21- 2m 2b 2因为OQ 1 ⊥ OQ 2 OQ 1 ⊥ OQ 2 所以 k 1k 2 = -1,2 - 2b 2n2= -1∴3 = 2b 2 (m 2 + n 2 ) *又因为直线 Q Q 方程等价于为 y - y = - x0 (x - xx x 2) , 即 y = - 0 x + 0 + y 对比于1 2⎧x 0= my 0 y 0⎪ x 2 + y 22mx + ny = 1,则⎨ 0 0y 代入* 中,化简可得: x 2+ y 2= b 2 .3 0 = n ⎪ x 2 + y 2 ⎩ 0 0例 2:已知椭圆 x 2 + 24= 1,设直线l 不经过点P (0,1) 的直线交于 A , B 两点,若直线 PA , PB 的斜率之和为-1,证明:直线l 恒过定点.⎩ ⎩解:以点 P 为坐标原点,建立新的直角坐标系 x ' py ' ,如图所示:旧坐标 新坐标(x , y ) ⇒ (x ', y ')即(0,1) ⇒ (0, 0)⎧ x ' = x ⎧ A → A ' 所以⎨ y ' = y -1 ⇒ ⎨B → B '原来 k + k = -1⇒y 1 -1 + y 2 -1 = -1 则转换到新坐标就成为: y 1 ' + y 2 '= -1PAPBx x x ' x ' 1 21 2即k 1 '+ k 2 ' = -1设直线l 方程为: mx '+ ny ' = 1原方程: x 2 + 4 y 2 = 4 则转换到新坐标就成为: x '2 + 4( y '+1)2= 4展开得: x '2 + 4 y '2+ 8 y ' = 0⎨⎪x' ⎩ ⎩ 构造齐次式: x '2 + 4 y '2+ 8 y '(mx '+ ny ') = 0整理为: (4 + 8n ) y '2 + 8mx ' y '+ x '2= 0两边同时除以 x '2 ,则(4 + 8n )k '2+ 8mk '+1 = 0所以 k '+ k ' = -8m= -1 所以 2m - 2n = 1 ⇒ m = n + 1124 + 8n 21 x '而 mx '+ ny ' = 1 ∴(n + )x '+ ny ' = 1 ⇒ n (x '+ y ') + -1 = 0 对于任意 n 都成立.2 2⎧x '+ y ' = 0则: ⎪⇒ -1 = 0 ⎩ 2⎧ x ' = 2 ⎨ y ' = -2,故对应原坐标为⎧ x = 2 ⎨ y = -1所以恒过定点(2, -1) .x 2例 3:已知椭圆y 2+ = 1,过其上一定点 P (2,1) 作倾斜角互补的两条直线,分别交于椭 8 2圆于 A , B 两点,证明:直线 AB 斜率为定值.解:以点 P 为坐标原点,建立新的直角坐标系 x ' py ' ,如图所示:旧坐标新坐标(x , y ) ⇒ (x ', y ')即(2,1) ⇒ (0, 0)所以⎧x ' =x - 2⇒⎧A →A '⎨y '=y -1⎨B →B '⎩⎩原来k +k = 0 ⇒ y1-1+y2-1= 0 则转换到新坐标就成为:y1'+y2'= 0PA PB x - 2 x -1 x ' x '1 2 1 2即k1 '+k2' = 0设直线 AB 方程为: mx '+ny ' = 1原方程: x2 + 4 y2 = 8 则转换到新坐标就成为: (x '+ 2)2 + 4( y '+1)2 = 8 展开得: x '2 + 4 y '2 + 4x '+ 8 y ' = 0构造齐次式: x '2 + 4 y '2 + 4x '(mx '+ny ') + 8 y '(mx '+ny ') = 0整理为: y '2 (4 + 8n) +x ' y '(4n + 8m) + (1 + 4m)x '2 = 0两边同时除以 x '2 ,则(4 + 8n)k '2 + (4n + 8m)k '+1+ 4m = 0所以 k '+k ' =-4n + 8m= 0 所以 n =-2m1 2 4 +8n1而mx '+ny ' = 1 ∴mx '+ (-2m) y ' = 1 ⇒mx - 2my -1 = 0 .所以k =21平移变换,斜率不变,所以直线AB 斜率为定值.21 2 1 1 2 2 1 2 1 21 二,点乘双根法例 4:设椭圆中心在原点O ,长轴在 x 轴上,上顶点为 A ,左右顶点分别为 F 1 , F 2 ,线段OF 1 ,OF 2 中点分别为 B 1 , B 2 ,且△AB 1B 2 是面积为 4 的直角三角形.(1) 求其椭圆的方程(2) 过 B 1 作直线l 交椭圆于 P , Q 两点,使 PB 2 ⊥ QB 2 ,求直线l 的方程.x 2y 2解:(1) + = 20 4(2)易知:直线l 不与轴垂直,则设直线l 方程为: y = k (x + 2) , P (x 1, y 1 ), Q (x 2 , y 2 )因为 PB ⊥ QB,则,22PB 2 QB 2 =0所以(x - 2, y )(x - 2, y ) = 0 ⇒ (x - 2)(x - 2) + k 2(x + 2)(x + 2) = 0 *⎧ y = k (x + 2) ⎪2 2 2现联立⎨ x 2+ y 2 = ⇒ x ⎩ 20 4+ 5k (x + 2) - 20 = 0则方程 x 2 + 5k 2 (x + 2)2 - 20 = 0 可以等价转化(1+ 5k 2)( x - x )( x - x ) = 012即 x 2 + 5k 2 (x + 2)2 - 20 = (1+ 5k 2)(x - x )(x - x )令 x = 2 , 4 + 80k 2- 20 = (1+ 5k 2)( x 1 - 2)( x 2 - 2) ⇒ ( x 1 - 2)( x 2 - 2) =80k 2 -16 1+ 5k 2令 x = -2 , 4 + 0 - 20 = (1+ 5k 2)( x + 2)( x + 2) ⇒ ( x + 2)( x + 2) = -161 2 1 21+ 5k 21结合(x1 - 2)(x2- 2) +k (x1 + 2)(x2 + 2) = 0 *化简可得:80k 2 -161+ 5k 2+-16= 01+ 5k 280k 2 -16k 2 -16 = 0 ⇒ 64k 2 =16 ⇒k 2 =1∴k =±1 4 2所以直线l 方程为: y =± 1(x + 2) . 22。
齐次式法与圆锥曲线斜率有关的一类问题

“齐次式”法解圆锥曲线斜率有关的顶点定值问题定点问题是常见的出题形式,化解这类问题的关键就是引进变的参数表示直线方程、数量积、比例关系等,根据等式的恒成立、数式变换等寻找不受参数影响的量。
直线过定点问题通法,是设出直线方程,通过韦达定理和已知条件找出k 和m 的一次函数关系式,代入直线方程即可。
技巧在于:设哪一条直线如何转化题目条件圆锥曲线是一种很有趣的载体,自身存在很多性质,这些性质往往成为出题老师的参考。
如果大家能够熟识这些常见的结论,那么解题必然会事半功倍。
下面总结圆锥曲线中几种常见的几种定点模型:例题、(07山东)已知椭圆C :13422=+y x 若与x 轴不垂直的直线l 与曲线C 相交于A ,B 两点(A ,B 不是左右顶点),且以AB 为直径的圆过椭圆C 的右顶点。
求证:直线l 过定点,并求出该定点的坐标。
解法一(常规法):m kx y l +=:设1122(,),(,)A x y B x y ,由223412y kx mx y =+⎧⎨+=⎩得222(34)84(3)0k x mkx m +++-=,22226416(34)(3)0m k k m ∆=-+->,22340k m +->212122284(3),3434mk m x x x x k k-+=-⋅=++ 22221212121223(4)()()()34m k y y kx m kx m k x x mk x x m k -⋅=+⋅+=+++=+以AB 为直径的圆过椭圆的右顶点(2,0),D 且1AD BD k k ⋅=-, 1212122y yx x ∴⋅=---,1212122()40y y x x x x +-++=,(*) 2222223(4)4(3)1640343434m k m mkk k k --+++=+++,(**)整理得:2271640m mk k ++=,解得:1222,7k m k m =-=-,且满足22340k m +-> 当2m k =-时,:(2)l y k x =-,直线过定点(2,0),与已知矛盾;当27k m =-时,2:()7l y k x =-,直线过定点2(,0)7综上可知,直线l 过定点,定点坐标为2(,0).7◆方法总结:本题为“弦对定点张直角”的一个例子:圆锥曲线如椭圆上任意一点P 做相互垂直的直线交圆锥曲线于AB ,则AB 必过定点))(,)((2222022220b a b a y b a b a x +--+-。
高中解析几何简化计算之点乘双根法

( Ⅰ)
设 P( m,0)
则→PA = ( →PA·P→B
x1 =(
,-Am( ,xy1 ,1 )y1,)P→,BB=(
x1 - m) ( x2 -
x2 ,y2 ) , ( x2 - m,y2 m) + y1 y2
), =(
x1
-
m)
(
x2
-
m) + k2 ( x1 - 1) ( x2 - 1) .
解题技巧与方法
JIETI JIQIAO YU FANGFA
131
高中解析几何简化计算之点乘双根法
◎陈俊健 ( 广西南宁市第三中学( 青山校区) ,广西 南宁 530021)
【摘要】高中解析几何在求解圆锥曲线与直线问题的时 候,通常需要联立方程,利用韦达定理去求解. 利用韦达定 理进行运算求解时,稍不注意就容易出错. 在求解点乘或者 斜率乘积为定值,甚至求 x1 x2 ,y1 y2 的时候,我们可以改进 解法,引入 点 乘 双 根 法,避 开 韦 达 定 理,简 化 计 算,减 少 失误.
C:
x2 a2
+
y2 b2
= 1 ( a > b > 0) 上,且椭圆的
离心率为
1 2
.
( 1) 求椭圆 C 的方程.
( 2) 若 M 为椭圆 C 的右顶点,点 A,B 是椭圆 C 上不同
的两点(
均异于
M)
且满足直线
MA
与
MB
斜率之积为
1 4
.
试判断直线 AB 是否过定点? 若是,求出定点坐标; 若不是,
定理进行繁杂计算的过程,达到简化计算、提高解题速度的
效果,下面举例说明.
例 1 ( 2018 年西南四省名校高三第一次大联考) 已知
高中数学圆锥曲线解题技巧方法总结及高考试题和答案

圆锥曲线1.圆锥曲线的两定义:第一定义中要重视“括号”内的限制条件:椭圆中,与两个定点F 1,F 2的距离的和等于常数2a ,且此常数2a 一定要大于21F F ,当常数等于21F F 时,轨迹是线段F 1F 2,当常数小于21F F 时,无轨迹;双曲线中,与两定点F 1,F 2的距离的差的绝对值等于常数2a ,且此常数2a 一定要小于|F 1F 2|,定义中的“绝对值”与2a <|F 1F 2|不可忽视。
若2a =|F 1F 2|,则轨迹是以F 1,F 2为端点的两条射线,若2a ﹥|F 1F 2|,则轨迹不存在。
若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如方程8=表示的曲线是_____(答:双曲线的左支)2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):(1)椭圆:焦点在x 轴上时12222=+b y a x (0a b >>),焦点在y 轴上时2222bx a y +=1(0a b >>)。
方程22Ax By C +=表示椭圆的充要条件是什么(ABC ≠0,且A ,B ,C 同号,A ≠B )。
若R y x ∈,,且62322=+y x ,则y x +的最大值是____,22y x +的最小值是___(答:)(2)双曲线:焦点在x 轴上:2222b y a x - =1,焦点在y 轴上:2222bx a y -=1(0,0a b >>)。
方程22Ax By C +=表示双曲线的充要条件是什么(ABC ≠0,且A ,B异号)。
如设中心在坐标原点O ,焦点1F 、2F 在坐标轴上,离心率2=e 的双曲线C 过点)10,4(-P ,则C 的方程为_______(答:226x y -=)(3)抛物线:开口向右时22(0)y px p =>,开口向左时22(0)y px p =->,开口向上时22(0)x py p =>,开口向下时22(0)x py p =->。
2021高考《圆锥曲线齐次化》

2m 2n 1
mx ny 1过(2,2)
上移1个单位(2,1)
右移2个单位C ' : y2 2(x 2) l' : mx ny 1过(4,0)即4m 1, m 1
4 y2 2x 4 y2 2x(mx ny) 4(mx ny)2 y2 2mx2 2nxy 4(m2 x2 n2 y2 2mnxy) (1 4n2 ) y2 (8mn 2n)xy 2m2 x2 0 k1 k2 0 ABM ABN
x
x
(4n 2)k 2 4mk 1 0
mx ny 1过(1,2),m 2n 1
kAP kAQ 2
y x2 , y' x 1, x 2, M (2,1)
4
2
左移2个单位,下移1个单位C' : y 1 x 22 , A'B' : mx ny 1
4
4y 4 x2 4x 4
• 优点是:大大减小了计算量,提高准确率!如果你掌握这个方法,你会知道以前的方法有多么的low!
• 缺点:mx+ny=1不能表示过原点的直线!
• 例1:(2017秋 重庆期末)已知抛物线C:y²=2px(p> 0)上一点A(2,a)到其焦点的距离为3. • (1)求抛物线C的方程; • (2)过点(4,0)的直线与抛物线C交于P,Q两点, O为坐标原点,证明:∠POQ =90°。
•
例如要 mx+ny=
证 1(
明 为
直 什
线 么
AP与A 这样设
Q斜率之和或者斜率之积为定值,将公共点A平移到原点,设平移后 ? 因 为 这 样 齐 次 化 更 加 方 便 ), 与 圆 锥 方 程 联 立 , 一 次 项 乘 以 mx+nay
第607期:抛砖引玉——圆锥曲线齐次式与点乘双根法

第607期:抛砖引玉——圆锥曲线齐次式与点乘双根法
往期好文
●抛砖引玉——圆锥曲线的第三定义
●抛砖引玉——一定二动斜率定值
●抛砖引玉——解析几何同解变形思想
其次式、点乘双根算法是解决解析几何问题的一种简便算法,多见于解析几何与向量相结合的题目中,与传统方法相比,它可以神奇的大幅减少计算量。
一:圆锥曲线齐次式与斜率之积(和)为定值
解法一:通解
解法二:其次法
二,点乘双ห้องสมุดไป่ตู้法
第11讲 点乘双根法(解析几何)(解析版)

第11讲 点乘双根法知识与方法在计算两个向量的数量积(即点乘)时,会遇到 (x 1−x 0)(x 2−x 0)+(y 1−y 0)(y 2−y 0)的结构, 常规 方法是将它展开, 再结合韦达定理化简整理,也可以利用“点乘双根法”进行整体处理, 达到简化运算, 快速解题的目的.1.方法介绍所谓的“点乘双根法”, 是指构建双根式,整体处理含 或 (x 1−x 0)(x 2−x 0)(y 1−y 0) 等类似结构的计算问题.(y 2−y 0)2.理论基础二次函数 的双根式. 若一元二次方程 f (x )=ax 2+bx +c ax 2+bx +c =0(a ≠0)有两根 , 则, 取 , 可得 x 1,x 2f (x )=a (x−x 1)(x−x 2)x =x 0f (x 0)=a (x 1−x 0)(x 2−x 0).3.适用类型, 或 等形式.x 1x 2, y 1y 2,(x 1−m )(x 2−m ),(y 1−m )(y 2−m )PA ⋅PB 4.解题步骤化双根式 赋值 整体代入.→→典型例题下面以一个例题来说明点乘双根法的解题步骤.【例1】 已知点 是拋物线 上一定点, 以M (x 0,y 0)y 2=2px (p >0)M 为直角顶点作该抛物线的内接直角三角形 , 则动直线 过定点 △MAB AB .(x 0+2p,−y 0)【证明】设 , 由 , 得 A (x 1,y 1),B (x 2,y 2)MA ⋅MB =0(x 1−x 0)(x 2−x 0)+(y 1−y 0)(y 2−y 0)=0(∗)显然直线 不与 轴平行,设其方程为 .AB x x =my +t 步骤 1: 化双根式联立 , 得 , 方程两根为 , 则 {y 2=2px x =my +ty 2−2pmy−2pt =0y 1,y 2(y 1−y )(y 2−y )=y 2−2pmy (1)−2pt 联立 , 得, 则 {y 2=2px x =my +t x 2−(2t +2m 2p )x +t 2=0(x 1−x )(x 2−x )=x 2−(2t +2m 2p )x +t 2(2)步骤 2: 赋值在(1)中, 令 , 则 (4)y =y 0(y 1−y 0)(y 2−y 0)=y 20−2pmy 0−2pt 在(2)中, 令 , 则 (5)x =x 0(x 1−x 0)(x 2−x 0)=x 20−(2t +2m 2p )x 0+t 2步骤 3: 整体代入即 ,t 2−(2p +2x 0)t +x 20−m 2y 20+y 20−2pmy 0=0即 ,[t−(x 0−my 0)]⋅[t−(x 0+my 0+2p )]=0所以 或 ,t =x 0−my 0t =x 0+my 0+2p 情形一:当 , 即 时, 说明点 在直线 上, 不合题意;t =x 0−my 0x 0=my 0+t M AB 情形二:当 , 即 时, 直线 过定点 t =2p +x 0+my 0x 0+2p =m (−y 0)+t x =my +t .(x 0+2p,−y 0)综上所述:直线 恒过定点 .AB (x 0+2p,−y 0)通过本例可以看到,利用点乘双根法处理这类问题时,看起来式子仍然不少, 实际上运算量已经減少了很多.【例2】 设椭圆中心在原点 , 长轴在 轴上,上顶点为 , 左右顶点分别为 O x A F 1,F 2,线段 中点分别为 , 且 是面积为 4 的直角三角形.OF 1,OF 2B 1,B 2△AB 1B 2(1) 求椭圆的方程;(2) 过 作直线 交椭圆于 两点, 使 , 求直线 的方程.B 1l P ,Q PB 2⊥QB 2l【解析】(1)设所求椭圆的标准方程为 , 右焦点为 .x 2a 2+y 2b 2=1(a >b >0)F 2(c ,0)因为 是直角三角形, 又 , 故 为直角, 因此 ,△AB 1B 2|AB 1|=|AB 2|∠B 1AB 2|OA |=|OB 2|得 .b =c2 结合 c2=a 2−b 2 得 4b 2=a 2−b 2, 故 a 2=5b 2,c 2=4b 2 , 所以离心率 e =在 中, , 故 2Rt ABB ∆12OA B B ⊥22,1221||||22MBB B cS B B OA OB OA b b =⋅=⋅=⋅=由题设条件 , 得 , 从而 .2,4AB B S ∆=24b =22520a b ==因比, 所求椭圆的标准方程为 ;221204x y +=(2) 显然直线 不与 轴垂直,设 的方程为 ,l x l ()()1122(2),,,,y k x P x y Q x y =+因为 , 则 ,22PB QB ⊥220PB QB ⋅=所以 ()()()()()()2112212122,2,022220(*)x y x y x x k x x -⋅-=⇒--+++=联立 22222(2)5(2)2001204y k x x k x x y =+⎧⎪⇒++-=⎨+=⎪⎩因为 是方程的两根, 所以 ,12,x x ()()()2222125(2)2015x k x k x x xx ++-=+--令 , 得 ,2x =()()()()()2221212280164802015222215k k k x x x x k -+-=+--⇒--=+令 , 得 ,2x =-()()()()()21212216402015222215k x xx x k -+-=+++⇒++=+代入 (*), 得,22280161601515k k k --+=++化简可得: , 所以 ,22221801616064164k k k k --=⇒=⇒=12k =±故直线 方程为: .l 1(2)2y x =±+【例3】 设 分别为椭圆 的左、右顶点, 过左焦点 且斜率为 ,A B 22132x y +=F 的直线与椭圆交于 两点. 若 , 求 的值.k ,C D 8AC DB AD CB ⋅+⋅=k 【答案】 k =【解析】设点 , 由 得直线 的方程为 ()()1122,,,C x y D x y (1,0)F -CD (1)y k x =+,由方程组 , 消去 , 整理得 .22(1)12y k x y x =+⎧⎪⎨+=⎪⎩y ()2222236360k x k x k +++-=由韦达定理可得 .22121222636,2323k k x x x x k k -+=-=++因为,(A B 所以AC DB AD CB⋅+⋅()()11222211,,x y x y xy x y =+⋅-+⋅--1212622x x y y =--()()2121262211x x k x x =--++8=由 , 得 .8AC DB AD CB ⋅+⋅=()()21212111x x k x x +++=-因为 是方程 的两根, 所以12,x x ()2222236360k x k x k +++-=()()()()()()()2222221212236362323k xk x k k x x x x k x x xx +++-=+--=+--令 , 则 , 所以 0x =()22123623k kx x -=+21223623k x x k -=+令 , 则 1x =-()()()()222212236362311k k k k x x+-+-=+++所以 ()()12241123x x k ++=-+因为 ,()()21212111x x k x x +++=-所以 , 解得222223641,22323k k k k k--=-=++k =【例4】设 为曲线 上两点, 与 的横坐标之和为 4 .,A B 2:4x C y =A B (1) 求直线 的斜率;AB(2) 设 为曲线 上一点, 在 处的切线与直线 平行, 且 , M C C M AB AM BM ⊥求直线 的方程.AB 【答案】 (1) 1; (2) 7y x =+【解析】(1) 设 , 则 ()()1122,,,A x y B x y 2212121212,,,444x x x x y y x x ≠==+=于是直线 的斜率 .AB 12121214y y x x k x x -+===-(2) 由 , 得 .24x y =2x y '=设 , 由題设知, 解得 , 于是 ()33,M x y 312x =32x =(2,1)M 因为 , 所以 , 即 .AM BM ⊥0MA MB ⋅=()()()()121222110x x y y --+--=设直线 的方程为 , 因为点 在直线 上,AB y x m =+,A B AB 所以 ,1122,y x m y x m =+=+所以 .()()()()121222110x x x m x m --++-+-=由 得 . 由 , 得 .24y x m x y =+⎧⎪⎨=⎪⎩2440x x m --=16(1)0m ∆=+>1m >-()()21244x x m x x x x --=--在 式中, 令 , 得 (1)2x =()()212242422m x x -⨯-=--在(1)式中, 令 , 得 1x m =-()()212(1)4(1)411m m m x m x m --⨯--=+-+-∴()()()()12122211x x x m x m --++-+-,222424(1)4(1)40m m m m =-⨯-+--⨯--=解得 , 或 (舍), 所以直线 的方程为 .7m =1m =-AB 7y x =+强化训练1. 椭圆 , 若直线 与椭圆 交于 两点 22:143x x C +=:l y kx m =+C ,A B (,A B 不是左右顶点), 且以直线 为直径的圆恒过椭圆 的右顶点. 求证:直线AB C 恒过定点, 并求出该点的坐标.l【答案】 2,07⎛⎫⎪⎝⎭【解析】设椭圆的右顶点为 ,()()1122(2,0),,,,C A x y B x y 则 ()()1212220,(*)CA CB x x y y ⋅=--+=联立 , 整理得: ,22143x y y kx m ⎧+=⎪⎨⎪=+⎩()()222348430k x mkx m +++-=因为 是方程 的两个根, 所以12,x x ()()222348430k x mkx m +++-=()()()()()2222123484334(1)k xmkx m k x x x x +++-=+--取 , 得 ,2x =()()()()()2221243416433422k mk m k x x +++-=+--所以 (2).()()22122161642234k mk m x x k++--=+取 , 并两边同时乘以 , 可得 m x k =-2k 2221212231234m m m k y y k x x k k k -⎛⎫⎛⎫=++= ⎪⎪+⎝⎭⎝⎭(3).将(2和(3)整体代入 (*), 得,2222221616431203434k mk m m k k k ++-+=++即 , 即 或 ,2241670k mk m ++=(72)(2)0,2m k m k m k ++=∴=-27m k =-当 时, 直线 过点 , 不合题意;2m k =-:(2),l y kx m k x l =+=-(2,0)C 当 时, 直线 , 显然 恒过定点 .27m k =-2:7l y kx m k x ⎛⎫=+=- ⎪⎝⎭l 2,07⎛⎫⎪⎝⎭2. 已知椭圆 的右焦点为 , 过 且与2222:1(0)x y E a b a b+=>>(1,0)F F x 轴垂直的弦长为 3 .(1) 求椭圆标准方程;(2) 直线 过点 与满圆交于 两点, 问 轴上是否存在点 , 使 l F ,A B x P PA PB ⋅为定值?若存在, 求出 的坐标; 若不存在, 说明理由.P【答案】 (1) ; (2) 见解析22143x y +=【解析】 (1)易得椭圆标准方程为 ;22143x y +=(2) 当直线 的斜率存在时, 设为 , 则直线 的方程为 ,l k l (1)y k x =-设 , 则()()1122(,0),,,,P m A x y B x y ()()()22221234(1)1234x k x k x x x x +--=+--(1).()()1122,,,PA x m y PB x m y =-=-()()()()()()21212121211(2)PA PB x m x m y y x m x m k x x ⋅=--+=--+--在(1)中令 , 得 , (3)x m =()()22212234(1)1234m k m x m x m k+----=+在(1)中令 , 得 , (4)1x =()()12291134x x k ---=+把(3)4代入(2)并整理得()()22224(1)931243m k m PA PB k --+-⋅=+ 所以, 得 , 此时 .()224(1)931243m m---=118m =13564PA PB ⋅=- 当直线 的斜率不存在时, , 仍有 .l 33111,,1,,,0228A B P ⎛⎫⎛⎫⎛⎫- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭13564PA PB ⋅=- 综上所述, 的坐标为 .P 11,08P ⎛⎫⎪⎝⎭3. 已知椭圆2222:1(0)x y E a b a b+=>>的两个焦点与短轴的一个端点是直角三角形的三个顶点, 直线 与椭圆 有且只有一个公共点 .:3l y x =-+E T (1) 求椭圆 的方程及点 的坐标;E T (2) 设 是坐标原点, 直线 平行于 , 与椭圆 交于不同的两点 , O l OT E ,A B 且与直线 交于点 . 证明: 存在常数 , 使得 , 并求 l P λ2||||||PT PA PB λ=⋅λ的值.【答案】 (1) (2) ,(2,1);45λ=【解析】 (1) , 点 坐标为 , 过程路.22163x y +=T (2,1)(2) 由已知可设直线 的方程为 ,l 1(0)2y x m m =+≠由方程组 可得 1,23y x m y x ⎧=+⎪⎨⎪=-+⎩223213m x m y ⎧=-⎪⎪⎨⎪=+⎪⎩所以 点坐标为 , 设点 的坐标分别为, P 222282,1,||339m m PT m ⎛⎫-+= ⎪⎝⎭,A B ,()()1122,,,A x y B x y 由方程组 , 可得 (1)2216312x y y x m ⎧+=⎪⎪⎨⎪=+⎪⎩()22344120x mx m ++-=而 是 的两根, 所以12,x x ()22344120x mx m ++-= (2)()()()2212344123x mx m x x x x ++-=--方程(2)的判别式为 , 由 , 解得 .()21692m ∆=-0∆>m <<由(2)得 212124412,33m m x x x x -+=-=所以1122||233m m PA x x ==-=-同理, 所以22||3m PB x =-1252222433m m PA PB x x ⎛⎫⎛⎫=----⎪⎪⎝⎭⎝⎭②中令,得223mx =-得()2212222232424123223333m m m m m m x x ⎛⎫⎛⎫⎛⎫⎛⎫-+-+-=---- ⎪ ⎪⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭得 21222822339m m x x m ⎛⎫⎛⎫----= ⎪⎪⎝⎭⎝⎭,故存在,使得2109PA PB m =54λ=2||||||.{PT PA PB λ=⋅。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一,圆锥曲线齐次式与斜率之积(和)为定值
例1:12,Q Q 为椭圆22
2212x y b b
+=上两个动点,且12OQ OQ ⊥,过原点O 作直线12Q Q 的垂
线OD ,求D 的轨迹方程.
解法一(常规方法):设111222(,),(,)Q x y Q x y ,00(,)D x y ,设直线12Q Q 方程为y kx m =+,
联立22
221
2y kx m
x y b
b =+⎧⎪⎨+=⎪⎩化简可得: 22222222(2)42()0b k b x kmb x b m b +++-=,所以 22222221212222222
2()(2)
,22b m b b m b k x x y y b k b b k b
+-==++ 因为12OQ OQ ⊥所以
222222222222
121222222222
2()(2)2()2=0222121
b m b b m b k m b m b k x x y y b k b b k b k k +---+=+=+++++ 22232(1)
m b k ∴=+*
又因为直线12Q Q 方程等价于为0
000()x y y x x y -=--,即200000
x x y x y y y =-++
对比于
y kx m =+,则00200
x k y x y m
y ⎧-=⎪⎪⎨⎪+=⎪⎩代入*中,化简可得:22
20023x y b +=.
解法二(齐次式):
设直线12Q Q 方程为1mx ny +=,联立222
2
222211
11022mx ny mx ny x y x y b b b b
+=+=⎧⎧⎪⎪⇒⎨⎨+=+-=⎪⎪⎩⎩ 222
22()02x y mx ny b b +-+=化简可得:22222222202x y m x n y mnxy b b
+---= 整理成关于,x y ,x y 的齐次式:2222222(22)(12)40b n y m b x mnb xy -+--=,进而两边同时除以2
x ,则
222
2
2
2
22
1222
12(22)412022m b b n k mnb k m b k k b n
---+-=⇒=- 因为12OQ OQ ⊥12OQ OQ ⊥所以121k k =-,22
22
12122m b b n
-=-- 22232()
b m n ∴=+*
又因为直线12Q Q 方程等价于为0
000()x y y x x y -=--,即200000x x y x y y y =-++对比于
1mx ny +=,则0
2200022
00
x m x y y n x y ⎧=⎪+⎪⎨⎪=⎪+⎩代入*中,化简可得:22
20023x y b +=.
例2:已知椭圆2
214
x y +=,设直线l 不经过点(0,1)P 的直线交于,A B 两点,若直线,PA PB
的斜率之和为1-,证明:直线l 恒过定点.
解:以点P 为坐标原点,建立新的直角坐标系''x py ,如图所示:
旧坐标 新坐标
(,)(',')x y x y ⇒
即(0,1)(0,0)⇒
所以''
'1'x x A A y y B B =→⎧⎧⇒⎨
⎨
=-→⎩⎩
原来12121111PA PB y y k k x x --+=-⇒
+=-则转换到新坐标就成为:1212''
1''
y y x x +=- 12''1k k +=-即
设直线l 方程为:''1mx ny +=
原方程:2244x y +=则转换到新坐标就成为:22'4('1)4x y ++=
展开得:22'4'8'0x y y ++=
构造齐次式:22'4'8'('')0x y y mx ny +++=
整理为:22(48)'8'''0n y mx y x +++=
两边同时除以2
'x ,则2(48)'8'10n k mk +++=
所以128''148m k k n +=-
=-+所以1
2212
m n m n -=⇒=+
而''1mx ny +=1
'
()''1('')102
2
x n x ny n x y ∴++=⇒++
-=对于任意n 都成立. 则:''0
'2''2102
x y x x y +=⎧=⎧⎪
⇒⎨⎨=--=⎩⎪⎩,故对应原坐标为21x y =⎧⎨=-⎩所以恒过定点(2,1)-. 例3:已知椭圆22
182
x y +=,过其上一定点(2,1)P 作倾斜角互补的两条直线,分别交于椭圆于,A B 两点,证明:直线AB 斜率为定值.
解:以点P 为坐标原点,建立新的直角坐标系''x py ,如图所示:
旧坐标 新坐标
(,)(',')x y x y ⇒
即(2,1)(0,0)⇒
所以'2''1'x x A A y y B B =-→⎧⎧⇒⎨⎨
=-→⎩⎩
原来1212110021PA PB y y k k x x --+=⇒
+=--则转换到新坐标就成为:1212''
0''
y y x x += 12''0k k +=即
设直线AB 方程为:''1mx ny +=
原方程:2248x y +=则转换到新坐标就成为:22('2)4('1)8x y +++=
展开得:22'4'4'8'0x y x y +++=
构造齐次式:22'4'4'('')8'('')0x y x mx ny y mx ny +++++=
整理为:22'(48)''(48)(14)'0y n x y n m m x +++++=
两边同时除以2
'x ,则2(48)'(48)'140n k n m k m +++++=
所以1248''048n m
k k n
++=-
=+所以2n m =-
而''1mx ny +='(2)'1210mx m y mx my ∴+-=⇒--=.所以1=
2
k 平移变换,斜率不变,所以直线AB 斜率为定值12
.
二,点乘双根法
例4:设椭圆中心在原点O ,长轴在x 轴上,上顶点为A ,左右顶点分别为12,F F ,线段
12,OF OF 中点分别为12,B B ,且12AB B △是面积为4的直角三角形.
(1)求其椭圆的方程
(2)过1B 作直线l 交椭圆于,P Q 两点,使22PB QB ⊥,求直线l 的方程.
解:(1)
22
1204x y +=
(2)易知:直线l 不与轴垂直,则设直线l 方程为:(2)y k x =+,1122(,),(,)P x y Q x y 因为22PB QB ⊥,则22=0PB QB ,
所以211221212(2,)(2,)0(2)(2)(2)(2)0
x y x y x x k x x --=⇒--+++=*
现联立22222(2)5(2)200
1204y k x x k x x y =+⎧⎪
⇒++-=⎨+
=⎪⎩
则方程2225(2)200x k x ++-=可以等价转化212(15)()()0k x x x x +--= 即2222125(2)20(15)()()
x k x k x x x x ++-=+--
令2x =,22
2
12122801648020(15)(2)(2)(2)(2)15k k k x x x x k -+-=+--⇒--=
+
令2x =-,2
12122164020(15)(2)(2)(2)(2)15k x x x x k -+-=+++⇒++=
+
结合2
1212(2)(2)(2)(2)0
x x k x x --+++=*化简可得:222
801616
01515k k k --+=++
222211
8016160641642k k k k k --=⇒=⇒=∴=±
所以直线l 方程为:1
(2)2
y x =±
+.。