衍生产品市场 课后答案 第八章

合集下载

金融衍生工具_课程习题答案(2)

金融衍生工具_课程习题答案(2)

资料范本本资料为word版本,可以直接编辑和打印,感谢您的下载金融衍生工具_课程习题答案(2)地点:__________________时间:__________________说明:本资料适用于约定双方经过谈判,协商而共同承认,共同遵守的责任与义务,仅供参考,文档可直接下载或修改,不需要的部分可直接删除,使用时请详细阅读内容第一章1、衍生工具包含几个重要类型?他们之间有何共性和差异?2、请详细解释对冲、投机和套利交易之间的区别,并举例说明。

3、衍生工具市场的主要经济功能是什么?4、“期货和期权是零和游戏。

”你如何理解这句话?习题答案1、期货合约::也是指交易双方按约定价格在未来某一期间完成特定资产交易行为的一种方式。

期货合同是标准化的在交易所交易,远期一般是OTC市场非标准化合同,且合同中也不注明保证金。

主要区别是场内和场外;保证金交易。

二者的定价原理和公式也有所不同。

交易所充当中间人角色,即买入和卖出的人都是和交易所做交易。

特点:T+0交易;标准化合约;保证金制度(杠杆效应);每日无负债结算制度;可卖空;强行平仓制度。

1)确定了标准化的数量和数量单位、2)制定标准化的商品质量等级、(3)规定标准化的交割地点、4)规定标准化的交割月份互换合约:是指交易双方约定在合约有效期内,以事先确定的名义本金额为依据,按约定的支付率(利率、股票指数收益率)相互交换支付的约定。

例如,债务人根据国际资本市场利率走势,将其自身的浮动利率债务转换成固定利率债务,或将固定利率债务转换成浮动利率债务的操作。

这又称为利率互换。

互换在场外交易、几乎没有政府监管、互换合约不容易达成、互换合约流动性差、互换合约存在较大的信用风险期权合约:指期权的买方有权在约定的时间或时期内,按照约定的价格买进或卖出一定数量的相关资产,也可以根据需要放弃行使这一权利。

为了取得这一权利,期权合约的买方必须向卖方支付一定数额的费用,即期权费。

期权主要有如下几个构成因素①执行价格(又称履约价格,敲定价格〕。

衍生品市场课后习题答案-m48-ch18

衍生品市场课后习题答案-m48-ch18

−√15+8 15
=
−1.8074.
Question 18.2.
If z is standard normal, µ + σ × z is N µ, σ 2 hence our five standard normals can be use to create the desired properties: .8 + 5 (−1.7) = −7.7, .8 + 5 (.55) = 3.55, .8 + 5 (−.3) = −0.7, .8 + 5 (−.02) = .7, and .8 + 5 (.85) = 5.05.
standard deviation is 8.014% which is a yearly standard deviation of 27.76%. For this example we
did not adjust for degrees of freedom (i.e. divide the sum by 3 instead of 4).
c) No matter what time unit we use, the (annualized) mean continuous return will be ln (ST /S0) /T . This is due to the intermediate observations cancelling. For example, suppose we have 2 years of
data observed at the end of the month (for 24 months of data). The mean monthly continuous return

金融衍生工具_课程习题答案解析

金融衍生工具_课程习题答案解析

第一章1、衍生工具包含几个重要类型?他们之间有何共性和差异?2、请详细解释对冲、投机和套利交易之间的区别,并举例说明。

3、衍生工具市场的主要经济功能是什么?4、“期货和期权是零和游戏。

〞你如何理解这句话?第一章习题答案1、期货合约::也是指交易双方按约定价格在未来某一期间完成特定资产交易行为的一种方式。

期货合同是标准化的在交易所交易,远期一般是OTC市场非标准化合同,且合同中也不注明保证金。

主要区别是场内和场外;保证金交易。

二者的定价原理和公式也有所不同。

交易所充当中间人角色,即买入和卖出的人都是和交易所做交易。

特点:T+0交易;标准化合约;保证金制度〔杠杆效应〕;每日无负债结算制度;可卖空;强行平仓制度。

1〕确定了标准化的数量和数量单位、2〕制定标准化的商品质量等级、〔3〕规定标准化的交割地点、4〕规定标准化的交割月份互换合约:是指交易双方约定在合约有效期内,以事先确定的名义本金额为依据,按约定的支付率〔利率、股票指数收益率〕相互交换支付的约定。

例如,债务人根据国际资本市场利率走势,将其自身的浮动利率债务转换成固定利率债务,或将固定利率债务转换成浮动利率债务的操作。

这又称为利率互换。

互换在场外交易、几乎没有政府监管、互换合约不容易达成、互换合约流动性差、互换合约存在较大的信用风险期权合约:指期权的买方有权在约定的时间或时期内,按照约定的价格买进或卖出一定数量的相关资产,也可以根据需要放弃行使这一权利。

为了取得这一权利,期权合约的买方必须向卖方支付一定数额的费用,即期权费。

期权主要有如下几个构成因素①执行价格〔又称履约价格,敲定价格〕。

期权的买方行使权利时事先规定的标的物买卖价格。

②权利金。

期权的买方支付的期权价格,即买方为获得期权而付给期权卖方的费用。

③履约保证金。

期权卖方必须存入交易所用于履约的财力担保,④看涨期权和看跌期权。

看涨期权,是指在期权合约有效期内按执行价格买进一定数量标的物的权利;看跌期权,是指卖出标的物的权利。

第八章金融衍生品市场

第八章金融衍生品市场
互换为场外交易,具体互换条件可以商定,且期限从几个 月到几十年不等,灵活性较大;
互换的风险比较小,由于它一般不涉及本金,信用风险仅 限于息差;
使用互换进行套期保值可以省去使用期货、期权等产品时 对头寸的日常管理工作,使用起来非常方便。
七、金融期货市场
1、概念 期货是指期货交易所制定的标准化的,受法律约束的,并载明
比较优势理论是英国著名经济学家大卫李嘉图提出的。 李嘉图的比较优势理论不仅适用于国际贸易,而且适用于所有 的经济活动。只要存在比较优势,双方就可通过适当的分工和 交换使双方共同获利。 互换是比较优势理论在金融领域最生动的运用。根据比较优势 理论,只要满足以下两种条件,就可进行互换: 一是双方对对方的资产或负债均有需求; 二是双方在两种资产或负债上存在比较优势。
七、金融期货市场
2、金融期货市场特征 减少交易双方的选择工作量,只需选择期货品种,因为期货合
约事先由交易所确定; 金融期货交易采取公开竞价方式决定买卖价格,不仅可以形成
高效率的交易市场,而且透明度、可信度高; 金融期货交易实行会员制度,非会员要参与金融期货的交易必
须通过会员代理。会员要交纳一定的保征金,因而交易的信用 风险较小,安全保障程度较高; 交割期限规格化。金融期货合பைடு நூலகம்的交割期限大多是三、六、九 或十二个月,交割期限内的交割时间随交易对象而定。
5、例: A、B公司提供的借款利率:
美元
英镑
A公司 8.0%
11.6%
B公司 10.0%
12.0%
假定A、B公司商定双方平分互换收益,若不考虑本金问题,货币互换
可用下面的流程图来表示:
8%美元借款利息
A公司
10.8%英镑借款利息 8%美元借款利息

期权期货与其他衍生产品第九版课后习题与答案Chapter(.

期权期货与其他衍生产品第九版课后习题与答案Chapter(.

cHAPTra KI betUrM M«4duxn«x<^ ar ••••• f«g ・t plM OM<a to MB ll ・—TL —▼rMdV — ■ M 9•&・ Mtw«aH 叩■厂 1—、M»A-l S*2*0«M ■■ ^7521 1*4SeM 0|«tc4WB* ap*w ^«K « <* o az «•«!io •e ・fOMHVu ・w« Aft. xW*・9«v MBMk t» W*»|w «WM !•«•••— %-V> K ・9. ■・•( •*©> T-»» ■.空竺J 马A 空兰.…计•A SK<•4 «>A7・・1・•・R ・08*・5ZE 11*.F<<O<MI4WV ■❷•waw JttM <«•<«■■ J ・I9H74・ MrtMyiiPH—W ・(VAlw«・・,•■■■>•・" M «M 4 MI « E f R —W •字•字)vfViurutMjnr^vMtai 111 A —i"・^«hW —WI4»••一 y wt 卯 v >•*♦ *» <wr* 戸 x« tv•I Mt «wM ■*■<> «W ■・vfl !• mtvwvF k» VKM »> t»l • p< c» IW Mk vtt»•••• MM• tl»>■斗・4r.•丄防| n*kw !•*J M **vWatAM)' H MB*・朴・卜:卞”・ 4tJJ• Mm K -W ・ r ・Q.・ 9-QS.M > T-«» ・4CMP»c»to« A ■a0>■!«<•(■・•《 Mkwtaa 血”•>« «WE>y«»«vP • IF —・••—■—■科M4_ <tl ・oaMalWMi .11创n 11MM ■— 一A""・v«r■n«^»a w'«•!•<.•..»■ •> i- a-k>―初|・(« _F0R »*i!<■<■« i ・9” ■*!•«••«・》MM E ・》*k>e« —«E.r ■MIC ■一* »» ■•• ”・$«s» •• ts. no ¥ wr ■5— wK ・・«■•*・•••■•••・•••• *♦"■・••••・”•・•・~•l*« f*ASK"*""b QU ,,•・"♦(■* rI・・t ・K •WR XVIM •一刪・0|«・・・<||"• 8K kfk •■>•••<• ■…m»«*w<WH ” IK* lMW«IM iewr mu ■・—A« 巧 ki j«"U >• >^*10* t••<!•.»<»• ••••(■a * 、・r R if 。

金融衍生工具课后题

金融衍生工具课后题

第一章选择题答案1. ABCD2. ABCD3. BC4. B5. BDE6. C7. A8. A9. D 10. ABC第一章思考题答案1. 金融衍生工具是给予交易对手的一方,在未来的某个时间点,对某种基础资产拥有一定债权和相应义务的合约。

广义上把金融衍生工具也可以理解为一种双边合约或付款交换协议,其价值取自于或派生于相关基础资产的价格及其变化。

对金融衍生工具含义的理解包含三点:① 金融衍生工具是从基础金融工具派生出来的② 金融衍生工具是对未来的交易③ 金融衍生工具具有杠杆效应3. 从微观和宏观两个方面对金融衍生工具的功能进行以下定位:① 转化功能。

转化功能是金融衍生工具最主要的功能,也是金融衍生工具一切功能得以存在的基础。

通过金融衍生工具,可以实现外部资金向内部资金的转化、短期流动资金向长期稳定资金的转化、零散小资金向巨额大资金的转化、消费资金向生产经营资金的转化。

② 定价功能。

定价功能是市场经济运行的客观要求。

在金融衍生工具交易中,市场参与者根据自己了解的市场信息和对价格走势的预期,反复进行金融衍生产品的交易,在这种交易活动中,通过平衡供求关系,能够较为准确地为金融产品形成统一的市场价格。

③ 避险功能。

传统的证券投资组合理论以分散非系统风险为目的,对于占市场风险50%以上的系统性风险无能为力。

金融衍生工具恰是一种系统性风险的转移市场,主要通过套期保值业务发挥转移风险的功能。

同时,从宏观角度看,金融衍生工具能够通过降低国家的金融风险、经济风险,起到降低国家政治风险的作用。

④ 赢利功能。

金融衍生工具的赢利包括投资人进行交易的收入和经纪人提供服务收入。

对于投资人来说,只要操作正确,衍生市场的价格变化在杠杆效应的明显作用下会给投资者带来很高的利润;对纪经人来说,衍生交易具有很强的技术性,经纪人可凭借自身的优势,为一般投资者提供咨询、经纪服务,获取手续费和佣金收入。

⑤ 资源配置功能。

金融衍生工具价格发现机制有利于全社会资源的合理配置。

期权期货和其它衍生产品第三版约翰赫尔答案

期权期货和其它衍生产品第三版约翰赫尔答案

第一章1.1请解释远期多头与远期空头的区别。

答:远期多头指交易者协定将来以某一确定价格购入某种资产;远期空头指交易者协定将来以某一确定价格售出某种资产。

1.2请详细解释套期保值、投机与套利的区别。

答:套期保值指交易者采取一定的措施补偿资产的风险暴露;投机不对风险暴露进行补偿,是一种“赌博行为”;套利是采取两种或更多方式锁定利润。

1.3请解释签订购买远期价格为$50的远期合同与持有执行价格为$50的看涨期权的区别。

答:第一种情况下交易者有义务以50$购买某项资产(交易者没有选择),第二种情况下有权利以50$购买某项资产(交易者可以不执行该权利)。

1.4一位投资者出售了一个棉花期货合约,期货价格为每磅50美分,每个合约交易量为50,000磅。

请问期货合约结束时,当合约到期时棉花价格分别为(a)每磅48.20美分;(b)每磅51.30美分时,这位投资者的收益或损失为多少?答:(a)合约到期时棉花价格为每磅$0.4820时,交易者收入:($0.5000-$0.4820)×50,000=$900;(b)合约到期时棉花价格为每磅$0.5130时,交易者损失:($0.5130-$0.5000) ×50,000=$6501.5假设你出售了一个看跌期权,以$120执行价格出售100股IBM的股票,有效期为3个月。

IBM股票的当前价格为$121。

你是怎么考虑的?你的收益或损失如何?答:当股票价格低于$120时,该期权将不被执行。

当股票价格高于$120美元时,该期权买主执行该期权,我将损失100(st-x)。

1.6你认为某种股票的价格将要上升。

现在该股票价格为$29,3个月期的执行价格为$30的看跌期权的价格为$2.90.你有$5,800资金可以投资。

现有两种策略:直接购买股票或投资于期权,请问各自潜在的收益或损失为多少?答:股票价格低于$29时,购买股票和期权都将损失,前者损失为$5,800$29×(29-p),后者损失为$5,800;当股票价格为(29,30),购买股票收益为$5,800$29×(p-29),购买期权损失为$5,800;当股票价格高于$30时,购买股票收益为$5,800$29×(p-29),购买期权收益为$$5,800$29×(p-30)-5,800。

赫尔期权、期货及其他衍生产品(第9版)笔记和课后习题详解

赫尔期权、期货及其他衍生产品(第9版)笔记和课后习题详解

赫尔《期权、期货及其他衍生产品》(第9版)笔记和课后习题详解目录第1章引言1.1复习笔记1.2课后习题详解第2章期货市场的运作机制2.1复习笔记2.2课后习题详解第3章利用期货的对冲策略3.1复习笔记3.2课后习题详解第4章利率4.1复习笔记4.2课后习题详解第5章如何确定远期和期货价格5.1复习笔记5.2课后习题详解第6章利率期货6.1复习笔记6.2课后习题详解第7章互换7.1复习笔记7.2课后习题详解第8章证券化与2007年信用危机8.1复习笔记8.2课后习题详解第9章OIS贴现、信用以及资金费用9.1复习笔记9.2课后习题详解第10章期权市场机制10.1复习笔记10.2课后习题详解第11章股票期权的性质11.1复习笔记11.2课后习题详解第12章期权交易策略12.1复习笔记12.2课后习题详解第13章二叉树13.1复习笔记13.2课后习题详解第14章维纳过程和伊藤引理14.1复习笔记14.2课后习题详解第15章布莱克-斯科尔斯-默顿模型15.1复习笔记15.2课后习题详解第16章雇员股票期权16.1复习笔记16.2课后习题详解第17章股指期权与货币期权17.1复习笔记17.2课后习题详解第18章期货期权18.1复习笔记18.2课后习题详解第19章希腊值19.1复习笔记19.2课后习题详解第20章波动率微笑20.1复习笔记20.2课后习题详解第21章基本数值方法21.1复习笔记21.2课后习题详解第22章风险价值度22.1复习笔记22.2课后习题详解第23章估计波动率和相关系数23.1复习笔记23.2课后习题详解第24章信用风险24.1复习笔记24.2课后习题详解第25章信用衍生产品25.1复习笔记25.2课后习题详解第26章特种期权26.1复习笔记26.2课后习题详解第27章再谈模型和数值算法27.1复习笔记27.2课后习题详解第28章鞅与测度28.1复习笔记28.2课后习题详解第29章利率衍生产品:标准市场模型29.1复习笔记29.2课后习题详解第30章曲率、时间与Quanto调整30.1复习笔记30.2课后习题详解第31章利率衍生产品:短期利率模型31.1复习笔记31.2课后习题详解第32章HJM,LMM模型以及多种零息曲线32.1复习笔记32.2课后习题详解第33章再谈互换33.1复习笔记33.2课后习题详解第34章能源与商品衍生产品34.1复习笔记34.2课后习题详解第35章章实物期权35.1复习笔记35.2课后习题详解第36章重大金融损失与借鉴36.1复习笔记36.2课后习题详解赫尔的《期权、期货及其他衍生产品》是世界上流行的证券学教材之一。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Chapter 8SwapsQuestion 8.1We first solve for the present value of the cost per two barrels:2$22$2341.033.1.06(1.065)+= We then obtain the swap price per barrel by solving:241.033(1.065)1.0622.483,x x x +=⇒=which was to be shown.Question 8.21. We first solve for the present value of the cost per three barrels, based on the forward prices:23$20$21$2255.3413.1.06(1.065)(1.07)++= Hence we could spend $55.3413 today to receive 1 barrel in each of the next three years. We thenobtain the swap price per barrel by solving:2355.34131.06(1.065)(1.07)20.9519x x x x ++=⇒=2. We first solve for the present value of the cost per two barrels (Year 2 and Year 3):23$21$2236.473.(1.065)(1.07)+= Hence we could spend $36.473 today and receive 1 barrel of oil in Year 2 and Year 3. We obtain theswap price per barrel by finding two equal payments we would make in Years 2 and 3 that have the same present value:2336.473(1.065)(1.07)21.481x x x +=⇒=94 M cDonald • Fundamentals of Derivatives MarketsQuestion 8.3Since the dealer is paying fixed and receiving floating, each year she has a cash flow $20.9519.T S − She can hedge this risk by selling 1 barrel forward (i.e., short one forward) in each of the three years. Her payoffs from the swap, the short forward contracts, and the net are summarized in the following table:Year Net Swap PaymentShort ForwardsNet Position 1$20.9519S − 1$20S − −0.9519 2 2$20.9519S −2$21S −+0.0481 33$20.9519S − 3$22S −+1.0481We need to discount the net cash flows to year zero. We have:230.95190.0481 1.0481PV(net CF)0.1.06(1.065)(1.07)−=++= Indeed, the present value of the net cash flow is zero.Question 8.4The fair swap rate was determined to be $20.9519. Therefore, compared to the forward curve price of$20 in one year, we are overpaying $0.9519. In year two, with interest, this overpayment increases to $0.9519 1.070024$1.01853,×= where we used the appropriate forward rate to calculate the interest payment.In year two, we underpay by $0.0481, so that our total accumulative underpayment is $1.01856 − $0.0481 = $0.97042. In year three, using the appropriate 1-year forward rate of 8.007%, this net overpaymentincreases to $0.97046 1.08007$1.0481.×=However, in year three, we receive a fixed payment of 20.9519, which underpays relative to the forward curve price of $22 by $22$20.9519$1.0481.−=Therefore, our cumulative balance is indeed zero, which was to be shown.Question 8.5Question 8.3 showed that, at the initial yield curve, the swap has a zero present value. To look at how the yield curve affects the value of the dealer’s swap position, we repeat the hedge and then look at the present value of the hedged cash flows under the new yield curve.As in Question 8.3, the dealer is paying fixed and receiving floating; hence each year she has a cashflow $20.9519.T S − She can hedge this risk by selling 1 barrel forward (i.e., short one forward) in each of the three years. Her payoffs from the swap, the short forward contracts, and the net are summarized in the following table:Year Net Swap Payment Short ForwardsNet Position 1 1$20.9519S − 1$20S − −0.9519 2 2$20.9519S − 2$21S − +0.0481 33$20.9519S −3$22S −+1.0481Chapter 8 Swaps 95We need to discount the net positions to year zero, taking into account the uniform shift of the termstructure. We have:230.95190.0481 1.0481PV(net CF)0.0081.1.065(1.07)(1.075)−=++=−The present value of the net cash flow is negative; the dealer never recovers from the increased interestrate he faces on the overpayment of the first swap payment. When the interest rates fall, the value of the swap becomes:230.95190.0481 1.0481PV(net CF)0.00831.055(1.06)(1.065)−=++=+The present value of the net cash flow is positive. The dealer makes money, because he gets a favorableinterest rate on the loan he needs to take to finance the first overpayment.The dealer could have tried to hedge his exposure with a forward rate agreement or any other derivative protecting against interest rate risk.Question 8.6In order to answer this question, we use Equation (8.13) of the main text with the substitution: 00,().i i t f t F = With an effective quarterly interest of 1.5%, the zero-coupon price for quarter i is 1.015i . Using this result, the zero-coupon prices are:QuarterZero-coupon price1 0.9852 20.970730.956340.942250.928360.914570.901080.8877Using Equation (8.13), the 4-quarter swap price is:.985221.970721.1.956320.8.942220.520.8533.9852.9707.9563.9422R ×+×+×+×==+++A similar calculation will yield an 8-quarter swap price of $20.4284.The total costs of prepaid 4- and 8-quarter swaps are the present values of the payment obligations.Note that a simple algebra exercise shows this is just the numerator in Equation (8.13). For the 4-quarter swap, we find this is equal to:4-quarter prepaid swap price 20.8533(.9852.9707.9563.9422)$80.3768=×+++=A similar calculation will yield an 8-quarter prepaid swap price of $152.9256.96 M cDonald • Fundamentals of Derivatives MarketsQuestion 8.7In order to answer this question, we use Equation (8.13) of the main text with the substitution: 00,().i i t f t F = For example, the 3-quarter swap price is3.985221.970121.1.954620.820.9677.9852.9701.9546R ×+×+×==++Similar calculations lead to the following swap prices:Quarter Swap price1 21.00002 21.04963 20.96774 20.85365 20.72726 20.61107 20.51458 20.4304Question 8.8We use Formula (8.4), and replace the forward interest rate with the forward oil prices. In particular, we calculate:60,363(0,).954620.8.938820.5.923120.2.90752020.3807.9546.9388.9231.9075(0,)iit i ii P t FR P t ==×+×+×+×===+++∑∑Therefore, the swap price of a 4-quarter oil swap with the first settlement occurring in the third quarter is $20.3807.Question 8.9We use Equation (8.6) of the main text to answer this question:80,1801(0,),where [1,2,1,2,1,2,1,2](0,)iiit it i t ii Q P t FR Q Q P t ====∑∑After plugging in the relevant variables given in the exercise, we obtain a value of $20.4099 for the swap price. Note that it is probably easiest to set up a spreadsheet with 0(0,)i t i Q P t × as one column and 0,i t F as another column. Then use the SUMPRODUCT function for the numerator and SUM function for the denominator.Chapter 8 Swaps 97Question 8.10We are now asked to invert our equations. The swap prices are given, and we want to back out the forwardprices. We do so recursively. For a one-quarter swap, the swap price and the forward price are identical. Given the one-quarter forward price, we can find the second quarter forward price, etc. For example,0,10,220,120,2(0,1)(0,2)[(0,1)(0,2)](0,1)(0,1)(0,2)(0,2)P F P F R P P P F R F P P P ++−=⇒=+Hence0,2 2.4236 1.9553.9852 2.252.60.9701F ×−×==Doing a similar calculation for Years 3, 4, etc. yields the following forward prices:Quarter Forward price1 2.252 2.603 2.204 1.905 2.206 2.507 2.158 1.80Question 8.11From the given zero-coupon bond prices, we can calculate the one-quarter forward interest rates(i.e., 01(,)i i r t t +). For instance, the forward interest rate factor for Quarter 4 is0(0,3)0.9546(3,4)11 1.6830%(0,4)0.9388P r P ===−=The forward interest factors for the quarters are:QuarterForward interest rate1 1.5022%2 1.5565%3 1.6237%4 1.6830%5 1.7008%6 1.7190%7 1.7491%8 1.7802%98 M cDonald • Fundamentals of Derivatives MarketsNow, we can calculate the deferred swap price according to the formula:61262(0,)(,)1.6553%(0,)i i i i ii P t r tt X P t −====∑∑Question 8.12From the given zero-coupon bond prices, we can calculate the one-quarter forward interest rates (i.e., 01(,)i i r t t +). For instance, the forward interest rate factor for Quarter 4 is0(0,3)0.9546(3,4)11 1.6830%(0,4)0.9388P r P ===−=The forward interest factors for the quarters are:QuarterForward interest rate1 1.5022%2 1.5565%3 1.6237%4 1.6830%5 1.7008%6 1.7190%7 1.7491%8 1.7802%Now, we can calculate the swap prices for 4 and 8 quarters according to the formula:111(0,)(,),where 4 or 8(0,)ni i i i nii P t r tt X n P t −====∑∑This yields the following prices:4-quarter fixed swap price: 1.59015% 8-quarter fixed swap price: 1.66096%Note that it is probably easiest to set up a spreadsheet with 0(0,)i P t as one column and 01(,)i i r t t − as another column. Then use the SUMPRODUCT function for the numerator and SUM function for the denominator.Chapter 8 Swaps 99Question 8.13We can calculate the value of an 8-quarter dollar annuity that is equivalent to an 8-quarter Euro annuity byusing Equation (8.8) of the main text. We have:8*0,1*81(0,)where1 euro (0,),iit i ii P t R FX R P t ====∑∑Plugging in the forward price for one unit of Euros delivered at time t i , which are given in the price table, yields a dollar annuity value of $0.9277.Question 8.14The dollar zero-coupon bond prices for the three years are:0,10,220,3310.94341.0610.8900(1.06)10.8396(1.06)P P P ======R * is 0.035, the Euro-bond coupon rate. The current exchange rate is 0.9$/€. Plugging all the above variables into Formula (8.9) indeed yields 0.06, the dollar coupon rate:3*0,0,00,30,0131/(/1)0.0980550.0623170.0602.673(0,)ii n t t t i ii PR F x P F x R P t ==+−+===∑∑Question 8.15We can use the standard swap price formula for this exercise, but we must use the euro zero-coupon bonds and the derived quarterly forward interest rates. From the given euro zero-coupon bond prices, we can calculate the one-quarter forward interest rates. For example, the quarterly euro forward rate with maturity in Quarter 4 is0(0,3)0.9735(3,4)110.9541%(0,4)0.9643P r P =−=−=100 M cDonald • Fundamentals of Derivatives MarketsThe euro denominated quarterly forward rates are:QuarterEuro denominated impliedforward interest rate1 0.8776%2 0.8957%3 0.9245%4 0.9541%5 0.9632%6 0.9726%7 0.9822%8 1.0028%Now, we can calculate the swap prices for 4 and 8 quarters according to the formula:111(0,)(,)where 4 or 8(0,),ni i i i nii P t r tt R n P t −====∑∑Using the euro forward rates in the table above with the euro zero coupon bond prices in the formula yields the following euro fixed swap rates:4-quarter fixed swap rate:0.91267%8-quarter fixed swap rate:0.94572%Question 8.16Equation (8.9) requires the following ingredients: • The euro fixed swap rate, which from Question 8.15 is *0.94572%R =.• The forward exchange rates in dollars per euro; i.e., 0,.i t F These are found in the Table 8.9. • The dollar denominated zero coupon bond prices. These are found in the Table 8.9. •The spot exchange rate, which is given as 00.9x =. Again this is in dollars per euro.With these substitutions, we have:8*0,0,0/0.0726,ii t t iPR F x =∑80,0,0(/1)0.05102,i t t P F x ×−=and80,7.4475it iP=∑Hence (.0726.05102)/7.4475 1.66%R =+= which agrees with our previous dollar denominated 8-quarter fixed swap rate.。

相关文档
最新文档