材料科学基础复习资料

合集下载

材料科学基础复习资料

材料科学基础复习资料

1、鲍林规则:鲍林根据已测定的晶体结构数据和晶格能公式所反映的关系,提出的判断离子化合物结构稳定性的规则,共包含五条规则。

2、晶体:质点在三维空间作有序排列的固体晶胞:是晶体结构中的最小单元。

3、晶子学说:玻璃结构是一种不连续的原子集合体,即无数“微晶”分散在无定形介质中。

无规则网络学说:玻璃的结构与相应的晶体结构相似,同样形成连续的三维空间网络结构。

但玻璃的网络与晶体的网络不同,玻璃的网络是不规则的、非周期性的4、扩散型相变:在相变时,依靠原子或离子的扩散来进行的相变。

非扩散型相变:相变过程不存在原子离子的扩散,或虽存在扩散但不是相变所必须的或不是主要过程的相变。

5、热缺陷:也称本征缺陷,指由热起伏的原因所产生的空位和间隙质点。

杂质缺陷:也称组成缺陷,是由外加杂质的引入所产生的缺陷。

6、点缺陷:亦称为零维缺陷,缺陷尺寸为原子大小数量级,包括空位、间隙原子、杂质原子和色心等。

线缺陷:亦称一维缺陷或位错,是指在一维方向上偏离理想晶体中的周期性、规则性排列所产生的缺陷,包括棱位错和螺形位错;7、烧结:一种或多种固体粉末经过成型,在加热到一定温度后开始收缩,在低于熔点温度下变成致密、坚硬的烧结体,这个过程叫烧结。

固相反应:固体直接参与反应并起化学变化,同时至少在固体内部或外部的一个过程中起控制作用。

8、肖特基缺陷:质点由表面位置迁移到新的表面位置,在晶体表面形成新的一层,同时在晶体内部留下空位,其特征是正负离子空位成比例出现。

弗伦克尔缺陷:质点离开正常格点后进入到晶格间隙位置,其特征是空位和间隙质点成对出现。

9、硼反常现象:当数量不多的碱金属氧化物同氧化硼一起熔融时,碱金属所提供的氧不象熔融玻璃中作为非桥氧出现在结构中,而是使硼氧三角体转变为桥氧组成的硼氧四面体,致使玻璃从原来两度空间的层状结构转变为三度空间的架状结构,从而加强了网络结构,并使玻璃的各种物理性能变好。

这与相同条件下的硅酸盐玻璃相比,其性能随碱金属或碱土金属加入量的变化规律相反,所以称之为硼反常现象10、均匀成核:晶核从均匀的单相熔体中产生的几率处处相同的成核过程。

材料科学基础复习资料

材料科学基础复习资料

材料科学基础复习资料
导论
材料科学是研究材料的结构、性质和应用的科学,是现代工程技术领域的基础学科。

它对于工程师和科学家在材料选择、设计和开发方面至关重要。

本篇文档将以复习资料的形式,对材料科学的基础知识进行系统梳理和总结。

第一章材料的结构与组成
1.1 原子结构与元素周期表
- 原子的组成:质子、中子和电子
- 元素周期表的基本结构和主要特征
- 元素周期表的分类:金属、非金属和半金属
1.2 结晶与非晶结构
- 结晶的概念和特征
- 结晶的晶体结构:离子晶体、共价晶体和金属晶体
- 非晶态材料的特点和应用
1.3 晶体缺陷
- 点缺陷:空位、间隙、杂质点等
- 线缺陷:位错、脆性断裂和塑性变形
- 面缺陷:晶界、孪晶和堆垛层错
第二章材料的物理性质
2.1 密度与晶体的结构密度
- 密度的概念和计算方法
- 晶格常数与密度的关系
2.2 热膨胀与晶体的结构变化
- 热膨胀的定义和计算方法
- 晶体结构变化对热膨胀的影响
2.3 热导率与导热机制
- 热导率的定义和计算方法
- 材料的导热机制:电子传导、晶格振动传导和辐射传导。

材料科学基础复习

材料科学基础复习

第一章、晶体结构基础1、晶体的基本概念晶体的本质:质点在三维空间成周期性重复排列晶体的基本性质:结晶均一性、各向异性、自限性、对称性、最小内能性2、对称的概念物体中的相同部分作有规律的重复对称要素:对称面、对称中心、对称轴(对称轴的类型和特点)(L1、L2、L3、L4、L6、C 、P )4次倒转轴不能被其他的对称要素及其组合取代对称操作:借助对称要素,使晶体的相同部分完全重复的操作对称要素的组合必须满足晶体的整体对称要求,不是无限的。

3、对称型(点群):宏观晶体中只存在32种对称型对称型的概念(所具有的宏观对称要素以一定的顺序组合起来)4、晶体的分类 、晶族分类的依据5、晶面的取向关系 、晶面指数的含义和计算(举例)6、空间点阵的概念、 14种布拉维格子( P (R) 、I 、F 、C 格子)7、晶胞的概念 、晶胞参数(计算)8、微观对称要素的特征、空间群的概念(只存在230种空间群)在微观对称操作中都包含有平移动作9、球体紧密堆积原理 (六方密堆、立方密堆)10、鲍林规则(离子晶体)11、决定晶体结构的因素:化学组成、质点相对大小、极化性质12、同质多晶、类质同晶13、典型的晶体结构(晶体结构的描述方法)CaF2结构、金刚石结构、金红石结构、刚玉结构、 CaTiO3、尖晶石结构14、硅酸盐晶体结构、硅酸盐晶体结构分类的依据15、层状硅酸盐晶体的结构特点,(晶胞参数a 和b 值相近)16、石英、鳞石英、方石英的结构特点第二章、晶体结构缺陷1、缺陷的概念(凡是造成晶体点阵的周期性势场发生畸变的一切因素)2、热缺陷 (弗伦克尔缺陷、肖特基缺陷)及计算 热缺陷是一种本征缺陷、高于0K 就存在,影响热缺陷浓度的因数:温度和热缺陷形成能(晶体结构)3、杂质缺陷、固溶体(晶态固体) 固溶体、化合物、混合物之间的比较4、非化学计量化合物结构缺陷 种类、形成条件、特点,缺陷的计算等5、连续置换型固溶体的形成条件6、影响形成间隙型固溶体的因素7、组分缺陷(补偿缺陷):不等价离子取代 形成条件、特点(浓度取决于掺杂量和固溶度) 缺陷浓度的计算、与热缺陷的比较8、缺陷反应方程和固溶式产生的各种缺陷杂质基质−−→−i Cl K K Cl 2l C Cl Ca CaCl '++−→−⨯∙⨯∙'+'+−→−ClK K KCl 2l C 2V Ca CaCl9、固溶体的研究与计算写出缺陷反应方程固溶式、算出晶胞的体积和重量理论密度(间隙型、置换型)和实测密度比较10、位错概念刃位错:滑移方向与位错线垂直,伯格斯矢量b与位错线垂直螺位错:滑移方向与位错线平行,伯格斯矢量b与位错线平行第三章、非晶态固体1、熔体的概念:不同聚合程度的各种聚合物的混合物硅酸盐熔体的粘度与组成的关系2、非晶态物质的特点3、玻璃的通性4、Tg 、Tf 相对应的粘度和特点5、网络形成体、网络变化体、网络中间体计算(如Pb玻璃中Pb2+的作用)6、玻璃形成的热力学观点(结晶化、玻璃化、分相)7、玻璃形成的动力学条件3T图---临界冷却速率8、玻璃形成的结晶化学条件(键强、键型)9、玻璃的结构学说(二种玻璃结构学说的共同之处和不同之处)10、玻璃的结构参数(注意给出的条件)Z可根据玻璃类型确定,先计算R,再计算X、Y11、硼的反常现象12、硅酸盐晶体与硅酸盐玻璃的区别硅酸盐晶体与硅酸盐玻璃在结构上的区别:(1)在硅酸盐晶体中,[SiO4]骨架按一定的对称规律有序排列;在硅酸盐玻璃中[SiO4]骨架的排列是无序的。

《材料科学基础》期末复习

《材料科学基础》期末复习

总复习
本章区别概念:
晶体与非晶体 • 空间点阵和晶体结构
相和组织
• 固溶体和中间相 间隙固溶体和置换固溶体 • 间隙固溶体和间隙化合物 间隙相和间隙化合物
• 电子化合物和正常价化合物
总复习
第三章 晶体缺陷
1、各类缺陷的认识(点、线、面缺陷定义和特征)。
2、点缺陷、Schottky空位、Frankel空位、间隙原子、置 换原子。点缺陷的特征、平衡浓度公式及应用。 3、线缺陷、位错、位错线、刃型位错、螺型位错、混合 型位错、柏氏矢量、位错运动、滑移、交滑移、双交滑移、 多滑移、攀移、交割、割价、扭折、塞积。 • 位错类型(刃型、螺型、混合型位错)的判断及其特征。 • 柏氏矢量的确定方法、特征及表示法。 • 位错线、柏氏矢量、位错运动与作用在位错上的力之间 的关系。
总复习
本章区别概念:
• 滑移、孪生 软位向,硬位向 • 几何硬化和几何软化 沉淀强化、弥散强化 • 纤维组织与带状组织 第一类残余应力 、第二类残余应力 、第三类残余应力 • 静态回复与动态回复 静态再结晶、动态再结晶 • 正常长大、异常长大 冷加工、热加工 • 重结晶、再结晶、二次再结晶
总复习
3、晶界与相界的类型、晶界的特性和作用(对材料性能的
影响)。
总复习
本章区别概念: • 刃型位错和螺型位错 交滑移和多滑移
• 滑移和攀移
割价、扭折
• 晶界、相界、孪晶界
小角度晶界、大角度晶界 • 共格相界、非共格相界、半共格相界
总复习
第四章 固体原子及分子的运动
1、固态金属扩散的条件及影响扩散的因素; 2、扩散定律(Fick第一、二定律)的方程、稳态扩散、非稳态扩散、 扩散通量。 扩散定律的内容和表达式、物理意义、适应条件。扩散定律的解及 应用,如:渗碳等; 3、迁移率、柯肯达尔效应、扩散激活能。 4、固相中原子扩散的各种机制(空位机制、间隙机制、换位机制、 晶界扩散机制。扩散的驱动力并用扩散理论分析实际问题。 5、扩散的分类、名称(区别,);扩散、自扩散、互(异)扩散、 上坡扩散、下坡扩散;原子扩散、反应扩散;空位扩散、间隙扩散、换 位扩散、晶界扩散、表面扩散、短路扩散。 6、扩散系数及表达式(阿累尼乌斯方程)、影响扩散的因素。

材料科学基础复习

材料科学基础复习

材料科学基础复习第一章材料科学与工程1. 金属是电的良好导体,强度高和较致密,可以形成复杂的形状,当经受高速冲击力时有抵抗脆性断裂的能力。

这些性能使金属在导电和结构应用上成为最重要的材料类别之一。

金属在强度和韧性(断裂抗力)两方面具有优异的综合性能。

2. 普通的陶瓷包括:沙.砖块和泥灰.窗玻璃和石墨3. 陶瓷通常由金属和非金属原子组成。

很多陶瓷是晶体,不是晶体的常见例子是窗玻璃(主要由SiO2 组成)。

陶瓷中中非金属元素通常是氧。

陶瓷倾向于以脆性形式断裂,而不是以弯曲来缓解外力。

陶瓷的优点:高温稳定性,抗化学腐蚀性,不吸收外来物质。

陶瓷中的离子键和共价键很强。

4. 聚合物大部分是共价键合,但链之间以比较弱的二次键互相键合,因此强度较低。

聚合物一般不能应用于高温条件,因为在中等温度下倾向于软化。

价格低廉,密度低,易于加工成复杂形状。

5. 复合材料是由两种或多种材料结合在一起而产生一种新的材料,这种材料的性能用传统方法是不能得到的。

例如:胶合板,混凝土和钢束轮胎。

6. 主要的半导体材料是共价键结合的元素硅和锗以及一系列共价键化合物,半导体是陶瓷的一小类。

第二章原子尺度的结构1. 阿累尼乌斯过程(热激活过程)遵循的公式:反应速率=Cexp(-Q/RT)C为常数,R为气体常数,T为热力学温度,Q为过程的激活能R总是具有相同的值,而C和激活能Q却随反应变化而变化2. 一次键通常比二次键强一个数量级以上一次键的 3 个主要类型:离子键,共价键,金属键二次键的 2 个类型:氢键(最强的二次键),范德瓦尔键3. 离子键:包含正电性和负电性两种元素的化合物最通常的键类型4. 配位数:每个原子周围最邻近的数目5. 确定半径比值与所得配位数的关系的限定条件:(1)正离子与负离子相接触(2)给定正离子周围的负离子数目在几何上尽可能高(3)同性的例子不能相互重叠表:每个配位数的临界(r/R )比值(P34)6. 离子材料的配位数(CN有几何构型决定,共价键材料的配位数由每个原子的价电层中的电子数决定,金属固体中原子的配位数主要是由几何条件决定7. 二次键与一次键的根本区别:二次键既不涉及电子的转移,也不涉及电子的公用8. 交联:通过未饱和双键而形成的一次键9.橡胶老化的原因:硫化橡胶的交联程度并不大,仍然存在大量的未饱和键,因此当大气中的硫或氧侵蚀使用中的硫化橡胶时就会变脆和开裂第三章晶体结构1. 晶体:以基本的积木块按一定间隔重复、规则排列方式结晶的材料2. 短程有序(SRO:在一个中心原子周围最近邻原子的局部排列长程有序(LRO :材料在比键长大得多的距离呈现有序3. 点阵:点的无限延伸的排列,其中每一点被相同类型的临点所包围4. 基元:处在一个点阵的物质群5. 线密度:沿一个方向单位长度上相同点真的数目面密度: 所关心的面的单位面积上的原子数。

材料科学基础复习资料

材料科学基础复习资料

一:知识:1:晶面和晶向:晶面:(hkl);晶向:[hkl];2:对于能量和熵的判断:(1):G=H-TS,高温主要考虑熵作用(熔化等),低温主要考虑能量作用(常温等),较高温度时综合考虑;(2):分析:能量分为结合能和应变能。

结合能:可用简单立方系或平面正方点阵,观察过程前后键数量的变化(最近邻假设);同时原子间距越小结合能越大(越稳定)。

应变能:“偏离平衡状态越远,应变能越高”,同时(同样偏离距离)压应变的数值高于拉应变。

熵:由S=KlnΩ,有:体系微观状态数越大,熵越高(应用此式说明时需注意过程前后体系物质种类及数量不能变化);可用排列组合比较Ω。

一般情况可直观感觉,体系越无序,所受的限制越少,熵越大。

3:“属+种差”:对于词汇“ABC”:C是主要成分,A、B是对C的修饰。

第一章问题P7-1:已知α-Fe的密度为7.8,其晶胞是立方的,每个晶胞中原子个数为2,求点阵常数。

【】2:在一个晶胞内,画出(123)、(101)、(021)、(111)和[111]、[212]、[301]、[231]。

【】3:根据立方系夹角公式,计算以下界面的夹角:(111)与(111);(110)和(111)。

【】5:有一个反派角色问了该问题:(e π2)晶面该怎么画?如何看待他的问题?答:这个晶面只能近似地作出……但是不必考虑这个问题,因为高指数晶面没有意义。

之所以无意义,是因为高指数晶面上的原子间距离很远,相互作用可忽略不计,没有研究价值。

6:说明面心立方中(111)面间距最大,而体心立方中(110)面间距最大。

【】P91:铜的密度为8.9,铝为2.7(8.9/2.7=3.3),但两者的原子量之比为63.5/27=2.35。

请问两个比值不同说明了什么?(铜和铝结构相同)【】2:画出fcc(111)晶面和bcc(110)晶面的原子分布图。

【】4:已知金刚石中C-C键长为0.155nm,求其密度。

【】6:金刚石强度远高于石墨,但熔点却低于石墨。

材料科学基础复习资料整理

材料科学基础复习资料整理

一.名词解释塑性韧性强度弹性比功分子键(空间)点阵固溶体间隙固溶体固溶强化位错多晶体单晶体反应扩散柯肯达尔效应二次结晶共晶转变包晶转变共析转变铁素体(非)均匀形核结构起伏成分过冷过冷度加工硬化再结晶淬透性(过)时效回火脆性调幅分解二. 需掌握的知识点1. 延性断裂和脆性断裂的区分标准—断裂前有无明显塑性变形。

2. 原子核外电子分布规律遵循的三个原则。

3. 金属键、离子键、共价键、分子键的特点。

4. 混合键比例计算与电负性差的关系。

5. fcc、bcc、hcp的常见金属、一个晶胞内原子数、配位数、致密度、常见滑移系等。

6. 固态合金相分为两大类:固溶体(间隙固溶体与置换固溶体)和中间相(区别点)。

7.影响固溶体溶解度的因素。

8.间隙相和间隙化合物的区别。

9. 晶体缺陷几何特征分类-点、线、面缺陷。

10. 点缺陷的种类及其区别(肖脱基缺陷和弗兰克尔缺陷)。

11.获得过饱和点缺陷的方法及原因。

12. 各类位错运动方向与柏氏矢量、切应力、位错线的位向关系。

13. 位错的主要运动方式;常温下金属塑性变形的方式。

14. 位错的增殖机制:F-R位错增殖机制、双交滑移增殖机制的主要内容。

15.说明柏氏矢量的确定方法。

掌握利用柏氏矢量和位错线的位向关系来判断位错类型。

16.两根平行的螺型位错相遇时的相互作用情况。

17.刃型位错和螺型位错的不同点。

18. 大小角度晶界的位向差、常见类型、模型描述、能量等。

19. 扩散第一定律、第二定律的数学表达式及其字母的物理含义。

20. 体扩散的主要机制、适用对象、扩散激活能大小等;短路扩散等;反应扩散与原子扩散;多晶材料的三种扩散途径—晶内、晶界、表面扩散。

21.柯肯达尔效应的含义及说明的问题(重要意义)。

22. 上坡扩散:物质由低浓度→高浓度,说明扩散的真正原因是化学势梯度而非浓度梯度。

23. 反应扩散定义、特点、扩散层增厚速度的决定因素。

24. 影响扩散的主要因素简述及分别叙述。

材料科学基础复习提纲

材料科学基础复习提纲

材料科学基础复习提纲复习资料(修订版)修正部分错别字,增删部分重点内容(红字标出)材料科学基础Ⅰ(贵清部分)第⼀章晶体学基础1.1晶⾯指数、晶向指数(不包含四指数问题)的标定及晶⾯间距、晶向长度的计算(公式P40~P41)1.2晶体结构和空间点阵的区别?答:晶体结构是晶体中各原⼦的分布,种类丰富多样,⽽空间点阵是原⼦分布规律的代表点,由这些抽象出来的阵点构成,只有14种结构。

1.3 晶胞选择的条件?答:晶胞的选择要尽量满⾜以下三个条件:1)能反映点阵的周期性;2)能反映点阵的对称性;3)晶胞的体积最⼩。

1.4结构胞和原胞的联系和区别?答:结构胞和原胞必须都能反映点阵的周期性,结构胞是在保证对称性的前提下选取体积尽量⼩的晶胞;原胞是保证晶胞体积最⼩,⽽不⼀定反映对称性。

1.5 周期的概念?答:⽆论从哪个⽅向看去,总是相隔⼀定的距离就出现相同的原⼦或者原⼦集团,这个距离就是周期。

1.6 常见晶体结构中的重要间隙?答:FCC晶体中⼋⾯体间隙4个,四⾯体间隙8个;BCC晶体中⼋⾯体间隙6个,四⾯体间隙12个;HCP晶体中⼋⾯体间隙6个,四⾯体间隙12个。

1.7 常见晶体结构的堆垛⽅式?答:BCC和HCP晶体的堆垛⽅式是ABABAB……;FCC晶体的堆垛⽅式是ABCABC……。

1.8 晶带⽅程的表达式?答:hu+kv+lw=0。

第⼆章固体材料的结构2.1 什么是合⾦、组元、合⾦相、组织以及组元、合⾦相、组织之间的关系?答:合⾦:由⾦属和其他⼀种或⼏种元素通过化学键合⽽形成的材料;组元:组成合⾦的每种元素称为组元;合⾦相:具有相同的成分、结构和性能的部分称为合⾦相或简称相;组织:在⼀定外界条件下,⼀定成分的合⾦可以由若⼲不同的相组成,这些相的总体便称为组织。

关系:合⾦相由组元构成,⽽组织⼜由合⾦相组成,单⼀元素即可以称之为组元⼜可以称之为相⼜也可以称之为组织。

2.2 固溶体和化合物的区别?答:固溶体的溶质和溶剂占据⼀个共同的布拉菲点阵,且此点阵类型和溶剂的点阵类型相同,固溶体有⼀定的成分范围,组元含量在⼀定范围内可以变化⽽点阵类型不变,由于成分可变,固溶体不能⽤⼀个化学式表达;化合物是由两种或多种组元按⼀定⽐例构成⼀个新的点阵,它既不是溶剂的点阵也不是溶质的点阵,化合物通常可以⽤⼀个化学式表达,⾦属与⾦属形成的化合物往往有⼀定的成分范围,但⽐固溶体范围⼩得多。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1..晶界偏聚:由于晶内与晶界上的畸变能差别或由于空位的存在使得溶质原子或杂质原子在晶界上的富集现象2.科垂尔气团:溶质原子在刃型位错周围的聚集的现象,这种气团可以阻碍位错运动,产生固溶强化效应等结果3.反应扩散:伴随有化学反应而形成新相的扩散称为反应扩散,如从金属表面向内部渗入金属时,渗入元素浓度超过溶解度出现新相4.变形织构:经过塑性变形后原来多晶体中位向不同的晶粒变成取向基本一致,形成晶粒的择优取向,择优取向后的晶体结构为织构,若织构是在塑性变形中产生的,称为变形织构5.割阶和扭折:位错运动过程中与其它位错交截后形成一定的位错交截折线,若交截后的位错折线在原来位错的滑移面上,此位错折线称为扭折,若交截后的位错折线垂直于原来位错的滑移面,此位错折线称为割阶6.冷加工与热加工:通常根据金属材料的再结晶温度来加以区分,在再结晶温度以上的加工称为热加工,低于再结晶温度又是室温下的加工称为冷加工7.面角位错:在位错反应中,fcc晶体中不同滑移面上的全位错分解为不全位错后,领先不全位错反应生成新的不可动位错,导致出现的三个不全位错之间夹杂两个层错的不可动位错组态;8.变形织构:多晶体中位向不同的晶粒经过塑性变形后晶粒取向变成大体一致,形成晶粒的择优取向,择优取向后的晶体结构称为变形织构,织构在变形中产生,称为变形织构;9.再结晶织构是具有变形织构的金属经过再结晶退火后出现的织构,位向于原变形织构可能相同或不同,但常与原织构有一定位向关系。

10.再结晶全图:表示冷变形程度、退火温度与再结晶后晶粒大小的关系(保温时间一定)的图。

11.带状组织:多相合金中的各个相在热加工中可能沿着变形方向形成的交替排列称为带状组织;12.加工流线:金属内部的少量夹杂物在热加工中顺着金属流动的方向伸长和分布,形成一道一道的细线;13.动态再结晶:低层错能金属由于开展位错宽,位错难于运动而通过动态回复软化,金属在热加工中由温度和外力联合作用发生的再结晶称为动态再结晶。

14.临界变形度:再结晶后的晶粒大小与冷变形时的变形程度有一定关系,在某个变形程度时再结晶后得到的晶粒特别粗大,对应的冷变形程度称为临界变形度。

二次再结晶:某些金属材料经过严重变形后在较高温度下退火时少数几个晶粒优先长大成为特别粗大的晶粒,周围较细的晶粒逐渐被吞掉的反常长大情况。

15.退火孪晶:某些面心立方金属和合金经过加工和再结晶退火后出现的孪晶组织16.堆垛层错:密排晶体结构中整层密排面上原子发生滑移错排而形成的一种晶体缺陷17.弗兰克-瑞德位错源:两个结点被钉扎的位错线段在外力的作用下不断弯曲弓出后,互相邻近的位错线抵消后产生新位错,原被钉扎错位线段恢复到原状,不断重复产生新位错的,这个不断产生新位错、被钉扎的位错线即为弗兰克-瑞德位错源18.Orowan机制:合金相中与基体非共格的较硬第二相粒子与位错线作用时不变形,位错绕过粒子,在粒子周围留下一个位错环使材料得到强化的机制19.铃木气团:溶质原子在层错区偏聚,由于形成化学交互作用使金属强度升高20.多边形化:连续弯曲的单晶体中由于在加热中通过位错的滑移和攀移运动,形成规律的位错壁,成为小角度倾斜晶界,单晶体因而变成多边形的过程21.空位平衡浓度:金属晶体中,空位是热力学稳定的晶体缺陷,在一定的空位下对应一定的空位浓度,通常用金属晶体中空位总数与结点总数的比值来表示。

22.位错:晶体中的一种原子排列不规则的缺陷,它在某一个方向上的尺寸很大,另两个方向上尺寸很小。

23.柏氏回路:确定柏氏族矢量的过程中围绕位错线作的一个闭合回路,回路的每一步均移动一个原子间距,使起点与终点重合。

24.25.P-N力:周期点阵中移动单个位错时,克服位错移动阻力所需的临界切应力26.扩展位错:两个不全位错之间夹有层错的位错组态27.堆垛层错:密排晶体结构中整层密排面上原子发生滑移错排而形成的一种晶体缺陷。

28.弗兰克-瑞德位错源:两个结点被钉扎的位错线段在外力的作用下不断弯曲弓出后,互相邻近的位错线抵消后产生新位错,原被钉扎错位线段恢复到原状,不断重复产生新位错的,这个不断产生新位错、被钉扎的位错线即为弗兰克-瑞德位错源。

29.Orowan机制:合金相中与基体非共格的较硬第二相粒子与位错线作用时不变形,位错绕过粒子,在粒子周围留下一个位错环使材料得到强化的机制。

30.科垂尔气团:围绕刃型位错形成的溶质原子聚集物,通常阻碍位错运动,产生固溶强化效果。

31.铃木气团:溶质原子在层错区偏聚,由于形成化学交互作用使金属强度升高。

32.面角位错:在fcc晶体中形成于两个{111}面的夹角上,由三个不全位错和两个层错构成的不能运动的位错组态。

33.多边形化:连续弯曲的单晶体中由于在加热中通过位错的滑移和攀移运动,形成规律的位错壁,成为小角度倾斜晶界,单晶体因而变成多边形的过程。

34.固溶强化:固溶体中的溶质原子溶入基体金属后使合金变形抗力提高,应力-应变曲线升高,塑性下降的现象35.应变时效:具有屈服现象的金属材料在受到拉伸等变形发生屈服后,在室温停留或低温加热后重新拉伸又出现屈服效应的情况;36.孪生:金属塑性变形的重要方式。

晶体在切应力作用下一部分晶体沿着一定的晶面(孪晶面)和一定的晶向(孪生方向)相对于另外一部分晶体作均匀的切变,使相邻两部分的晶体取向不同,以孪晶面为对称面形成镜像对称,孪晶面的两边的晶体部分称为孪晶。

形成孪晶的过程称为孪生;37.临界分切应力:金属晶体在变形中受到外力使某个滑移系启动发生滑移的最小分切应力38.临界变形度:再结晶后的晶粒大小与冷变形时的变形程度有一定关系,在某个变形程度时再结晶后得到的晶粒特别粗大,对应的冷变形程度称为临界变形度39.二次再结晶:某些金属材料经过严重变形后在较高温度下退火时少数几个晶粒优先长大成为特别粗大的晶粒,周围较细的晶粒逐渐被吞掉的反常长大情况40.二.1. 判断某个位错反应在面心立方晶体中能否进行?若两个扩展位错的领先位错发生上述反应,会对面心立方金属性能有何影响。

参考答案:参照几何条件和能量条件要求,位错反应可以进行;反应后位错不可动,影响晶体的加工硬化机制和断裂性能2. 试述针对工业纯铝、Al-5%Cu合金、Al-5%Al2O3复合材料分别可能采用那些主要的强化机制来进行强化。

参考答案:对工业纯铝主要的强化机制为加工硬化、细晶强化;Al-5%Cu合金的强化机制为固溶强化、沉淀强化、加工硬化、细晶强化;Al-5%Al2O3复合材料的强化机制为加工硬化、细晶强化、弥散强化3. 低层错能的工业纯铜铸锭采用T=0.5T熔点温度热加工开坯轧制。

(1)画出该材料分别在高、低应变速率下热加工时的真应力-真应变曲线示意图,并说明影响曲线变化的各种作用机制;(2)开坯后该金属在室温下继续进行轧制,画出此时的真应力-真应变曲线示意图,并说明影响曲线变化的机制;(3)开坯后该金属要获得硬态、半硬态和软态制品,最后工序中可采用那些方法,为什么?参考答案:(1)该材料热加工时的真应力-真应变曲线示意图(略),[注意曲线中均应有应力峰值,在高应变速率下出现应力峰值后曲线基本水平,在低应变速率下出现应力峰值后曲线呈波浪]。

高应变速率下曲线分三个阶段:未发生动态再结晶的加工硬化阶段,动态再结晶加剧阶段,完全动态再结晶阶段(此时加工硬化与再结晶软化达到平衡,曲线接近水平,达到稳态流变阶段)低应变速率下完全动态再结晶阶段呈波浪形,是反复动态再结晶软化-加工硬化-动态再结晶软化交替进行的结果;(2)开坯后金属在室温下继续进行轧制的真应力-真应变曲线示意图(略);真应力-真应变曲线一直上升,直至断裂,主要机制为加工硬化;(3)开坯后要获得硬态金属,可以进行冷加工,机制为加工硬化;获得软态制品,可采用冷加工后再结晶退火;获得半硬态制品,可采用冷加工后回复退火,或者完全再结晶退火后适当冷变形4.工业纯铜的熔点为,在剧烈冷变形后的工业纯铜板上取三个试样,第一个试样加热到,第二个试样加热到,第三个试样加热到,各保温一小时,然后空冷。

试画出各试样热处理后的显微组织示意图,说明它们在强度和塑性方面的区别及原因。

试样热处理后的显微组织示意图(略,分别为纤维组织,再结晶组织和晶粒长大组织);加热试样强度高,塑性低,加热试样强度低,塑性好,加热试样强度更低5.分析多晶体金属的变形过程及影响多晶体金属变形的因素。

参考答案要点多晶体金属的变形过程中每个晶粒的变形主要是滑移,还可能出现孪生和扭折,需要开动多个滑移系,出现交滑移,由于晶界的影响还有位向差效应和晶界的阻滞效应;影响因素主要有晶粒大小,变形温度,变形速度6.铝板在轧制一天后和四天后在同一温度下进行退火,退火时间相同,将它们进行再结晶时温度有何不同,为什么?放置四天后的铝板再结晶温度较高。

原因:再结晶驱动力是变形金属储存的畸变能,畸变能越大,驱动力越大,再结晶温度越低。

放置四天后的铝板由于时效作用,释放出部分畸变能,因而再结晶驱动力减小,再结晶温度升高7.许多金属材料的塑性比陶瓷好,为什么?纯铁和纯铜的相比,谁的塑性比较好,为什么?金属材料的塑性好,因为陶瓷烧结过程中具有很多先天性微裂纹,在拉伸时,裂纹尖端会产生严重的应力集中,当裂纹达到临界尺寸时就会失稳扩展而断裂;且构成陶瓷晶体相的主要为离子键和共价键,共价键的饱和性和方向性使陶瓷的塑性较低。

(加上金属材料主要是金属键。

)纯铜的塑性好,因为纯铜是FCC结构,纯铁是BCC结构,虽然BCC的滑移系较多,但是滑移方向较FCC的少,且BCC滑移面原子的密排程度较低,所以面心立方的塑性高于体心立方8.用位错解释细晶强化和加工硬化晶粒越细,在一定体积内的晶粒数目越多,则在同样的变形量下,变形分散在更多的晶粒内进行,变形较均匀,且每个晶粒内塞积的位错少,因应力集中而引起的开裂机会少,可能在断裂之前承受较大的变形量,表现出较高的塑性;细晶粒金属中,裂纹不易萌生,也不易传播,因而在断裂过程中吸收了较多的能量,表现出较高的韧性;另一方面,晶界上原子排列不规则,杂质和缺陷较多,能量较高,阻碍位错的移动,晶粒细小时在一定体积内的晶粒数目越多,晶界越多,位错移动更困难,使金属难以变形,因而强度高。

加工硬化即是随变形量的增加,金属的强度、硬度上升,塑性、韧性下降的现象。

随着塑性变形的进行,金属应变增加,发生多滑移,位错之间发生相互作用,产生大量的位错缠结或位错塞积,阻止位错进一步运动,使应力急剧上升,发生了加工硬化。

9.再结晶与固态相变有何区别?答:再结晶是一种组织转变,从变形组织转变为无畸变新晶粒的过程,再结晶前后组织形态改变,晶体结构不变;固态相变时,组织形态和晶体结构都改变;晶体结构是否改变是二者的主要区别。

相关文档
最新文档