八年级数学上册 第12章 整式的乘除 12.5 因式分解 第1课时 因式分解及提公因式法作业 华东师

合集下载

八年级数学上册 第12章 整式的乘除 12.5 因式分解 2 公式法课件

八年级数学上册 第12章 整式的乘除 12.5 因式分解 2 公式法课件

(2)原式=(2a)²- 2·2a·1+(1)² =(2a - 1)2.
第十六页,共二十页。
3.多项式4a²+ma+9是完全平方式(fāngshì),那么m的值是(D ) A.6 B.12 C. -12 D. ±12
4.计算: 2 0 1 4 2 2 0 1 4 4 0 2 6 2 0 1 3 2 .

步骤
平方差公式a2-b2=(a+b)(a-b)
完全平方公式a2±2ab+b2=(a±b)2
一提:公因式;
二套:公式; 三查:多项式的因式分解有没有分 解到不能再分解为止.
第十八页,共二十页。
第十九页,共二十页。
内容(nèiróng)总结
12.5 因式分解。(3)-x2-y2。三查(多项式的因式分解要分解到不能再分解为止)。3.中间有两 底数之积的±2倍.。(5)x2+x+0.25.。(4)因为ab不是a与b的积的2倍.。所以16x2+24x+9是一个完全平 方式,。(2)-x2+4xy-4y2.。解: (1)原式=3a(x2+2xy+y2)。分析:(1)中有公因式3a,应先提出(tí chū)公因式,再进一步分解因式。1002-2×100×99+99²。二套:公式
整式乘法 ( a + b )( a - b ) = a 2 - b 2
a 2 - b 2 = ( a + b )( a - b )
因式分解
两个数的平方差,等于这两个数的和与这两个数的差的乘积.
第六页,共二十页。
辨一辨:下列多项式能否用平方差公式(gōngshì)来分解因式,为什么?
(1)x2+y2 (2)x2-y2

浮梁县第八中学八年级数学上册 第12章 整式的乘除 12.5 因式分解 第1课时 因式分解教案 华

浮梁县第八中学八年级数学上册 第12章 整式的乘除 12.5 因式分解 第1课时 因式分解教案 华

12.5 因式分解第1课时 因式分解(1)1.理解因式分解与整式乘法之间的互逆关系.2.用提公因式法进行因式分解.重点用提公因式法分解因式.难点将多项式适当地变形并用提公因式法分解因式.一、创设情境1.完成下列各题:(1)m(a +b +c)=________________;(2)(a +b)(a -b)=________________;(3)(a +b)2=________________.2.根据上面的计算,你会做下面的填空吗?(1)ma +mb +mc =( )( );(2)a 2-b 2=( )( );(3)a 2+2ab +b 2=( )2;观察讨论以上两组题目有什么不同点?又有什么联系?二、探究新知1.你能根据上面的分析说出什么是因式分解吗?(把一个多项式化为几个整式的积的形式,这就是因式分解.) 多项式因式分解整式乘法(整式)(整式)……(整式)2.判断下列各题是否为因式分解:(1)m(a +b +c)=ma +mb +mc ;不是因式分解,是整式乘法.(2)a 2-b 2=(a +b)(a -b);是因式分解,可以看成整式(a +b)与整式(a -b)的积.(3)a 2-b 2+1=(a +b)(a -b)+1.不是因式分解,因为最后形式不是积,而是和.像ma +mb +mc =m(a +b +c)这种因式分解的方法叫提公因式法.试一试:请找出下列多项式中各项的相同因式(公因式):(1)3a +3b 的公因式是__3__;(2)-24m 2x +16n 2x 的公因式是__8x__;(3)2x(a +b)+3y(a +b)的公因式是__(a +b)__;(4)4ab -2a 2b 2的公因式是__2ab__.最后大家一起来总结公因式的特征:(1)公因式中的系数是多项式中各项系数的最大公约数;(2)公因式中的字母(或因式)是多项式中各项的相同字母(或因式);(3)公因式中字母(或因式)的指数取相同字母(或因式)的最小指数.三、练习巩固1.把下列多项式分解因式:(1)2p 3q 2+p 2q 3;(2)x n -x n y ;(3)a(x -y)-b(x -y);(4)4a 3b -2a 2b 2.2.已知a +b =5,ab =3,求a 2b +ab 2的值.3.计算:(1)9992+999;(2)13.8×0.125+86.2×18. 四、小结与作业小结1.本节课你学到了什么?是否还有不明白的地方?2.注意:在进行多项式的因式分解时,要先考虑提取公因式.作业教材第45页练习第2题(1)、(2),习题12.5第1题(1)、(2).本节课内容量较大,因式分解的概念,将多项式变形选择适当的方法进行因式分解是本节课的难点.教学过程中,要及时关注学生,在代数式变形方向给予指导与提示,让他们知道为什么要这样变形,怎样灵活变形.2.线段垂直平分线【基本目标】理解线段的垂直平分线的性质定理与逆定理.【教学重点】线段垂直平分线的性质定理与逆定理.【教学难点】线段垂直平分线的性质定理与逆定理的运用.一、创设情景,导入新课线段是轴对称图形吗?它的对称轴是什么?如图,l是线段AB的垂直平分线,点C在直线l上,CA与CB有什么关系?写出你的证明过程.二、师生互动,探究新知在学生交流发言基础上,教师板书:线段垂直平分线的性质定理,即线段垂直平分线上的点到线段两端的距离相等.巩固练习教材P96第1、2题.教师提问:你能写出这个性质定理的逆命题吗?它是不是真命题?学生完成并回答.下面我们一起来证明它,见教材P95.教师提问:这个命题与线段垂直平分线的性质定理有何关系?学生回答,教师板书.线段垂直平分线的判定定理:到线段两端距离相等的点,在线段的垂直平分线上.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分,教师巡视并及时点评,并提醒每一步推理的依据是用的性质定理还是判定定理.四、典例精析,拓展新知见书本P95的“试一试”.【教学说明】任意三角形的三边垂直平分线都相交于一点,在后面将学习这一点是三角形的外心,锐角三角形的各边垂直平分线的交点在三角形内,直角三角形各边垂直平分线的交点在斜边的中点,钝角三角形各边垂直平分线的交点在三角形外;要证明某直线是某线段的垂直平分线,可证明这条直线有两点到线段两端的距离相等.五、运用新知,深化理解完成教材P99第2、3题.六、师生互动,课堂小结这节课你学习了什么?有何收获?有何困惑?与同伴交流,在学生交流发言的基础上教师归纳总结.完成练习册中本课时对应的课后作业部分.本节课在教学过程中,首先提出问题,让学生回答,通过观察、发现、论证得出线段的垂直平分线的性质定理,接着写出性质定理的逆命题.教师与学生一起证明这个定理,并在习题中运用这两个定理,得出三角形各边的垂直平分线相交于同一点的重要结论.在教学过程中,应注意让学生搞清两个定理的条件与结论,并充分调动学生的积极性,体会成功解决问题的乐趣.13.2 三角形全等的判定1.全等三角形2.全等三角形的判定条件【基本目标】1.理解全等三角形、对应边、对应角的概念.2.理解全等三角形的性质.3.初步感知全等三角形三种变换方式.【教学重点】1.全等三角形的对应边,对应角.2.全等三角形的性质.【教学难点】全等三角形的变换方式.一、创设情景,导入课题1.先在其中一张纸上画出任意一个多边形,再用剪刀剪下,思考得到的图形有何特点?2.重新在一张纸板上画出任意一个三角形,再用剪刀剪下,思考得到的图形有何特点?二、师生互动,探究新知【学生活动】动手操作、用脑思考、与同伴讨论、得出结论.【教师活动】指导学生用剪刀剪出重叠的两个多边形和三角形.学生在操作过程中,教师要让学生事先在纸上画出三角形,然后固定重叠的两张纸,注意整个过程要细心.【互动交流】剪出的多边形和三角形,可以看出:形状、大小相同,能够完全重合.这样的两个图形叫做全等形,用“≌”表示.概念:能够完全重合的两个三角形叫做全等三角形.【教师活动】在纸板上任意剪下一个三角形,要求各小组选派学生拿一个三角形做如下运动:平移、翻折、旋转,观察其运动前后的三角形是否全等.【学生活动】要求学生实践感知、得出结论:两个三角形全等.【教师活动】要求学生将剪下的两个三角形顶点标上字母,看重合的边角有何关系?【学生活动】将两个三角形按要求标上字母,并注意放置,与同桌交流何时可重合.【教学说明】根据学生交流的情况,给予补充和语言上的规范.1.概念:把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.2.证两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上,如果本图1△ABC和△DB′C′全等,点A和点D,点B和点B′,点C和点C′是对应顶点,记作△ABC≌△DB′C′.图13.全等三角形的对应边相等,对应角相等.4.一个图形经过平移、翻折、旋转后,位置变化了,但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略.三、随堂练习,巩固新知完成练习册中本课时对应的课后作业部分,教师巡视,注意及时点评找对应角、对应边的方法.四、典例精析,拓展新知.例如图所示,已知△ACE≌△DBF,点A、B、C、D在同一条直线上,且AE=DF,CE=BF,AD=8,BC=2.(1)求AC的长;(2)求证:CE∥BF.【分析】由全等三角形的对应边相等,对应角相等的性质来求解.【教学说明】根据符号及图形寻找对应边,从而找出待求量与已知量之间关系.既训练了如何找对应边,对应角,又灵活运用全等三角形性质解决问题.五、运用新知,深化理解如图所示,△ABC≌△DEF.AB=DE,∠A=∠D,找出图中的所有相等的线段与角.【答案】相等的线段:AB=DE,AC=DF,BC=EF,BE=CF.相等的角:∠A=∠D,∠B=∠DEF,∠ACB=∠DFB,∠AOE=∠DOC,∠A=∠EOC=∠D=∠AOD.【教学说明】找等角等边时应充分利用全等三角形的性质,不要忽视间接相等的线段和角.六、师生互动,课堂小结这节课你学了什么?有何收获?有什么困惑?与同伴交流,在学生交流发言的基础上,教师归纳总结.完成练习册中本课时对应的课后作业部分.本节课通过动手剪出两个完全相同的三角形,通过比较、运动,如平移、翻折、旋转来学习全等三角形、对应角、对应边的概念,进而归纳出全等三角形的性质.教师应结合刚开始学习的学生不注意将对应的顶点写在对应的位置的特点并不断强化,因此如何找对应边、对应角是本节的难点,教师应结合例题习题归纳:有公共边(角)的,公共边(角)为对应边(角);有相等边(角)的,相等的边(角)为对应边(角);有对顶角的,对顶角是对应角,对应边对的是对应角,对应角对的是对应边.。

华师大版八年级数学上册课件-第12章 整式的乘除

华师大版八年级数学上册课件-第12章 整式的乘除

练习 下面的计算对不对?若不对,应当怎样改正?
(1) x6 x2 x3; (2) a3 a a3; (3) y5 y2 y3; (4)(-c)4 (-c)2 -c2.
例1 计算:
(1)x8÷x2 ;(2) a4 ÷a ;
(3)(ab) 5÷(ab)2;
思考:当底数是几个因式的积或是一个多项式时,需要 怎么看待? 解: (1) x8 ÷x2=x 8-2=x6.
学习目标
1.理解幂的乘方法则; 2.运用幂的乘方法则进行计算.
合作探究 达成目标
探究点一 幂的乘方法则的推导
根据乘方的意义及同底数幂的乘法填空,看看计算的
结果有什么规律:
(1)(32)3 = 32×32×32 = 3( )
(2)(a2)3 = a2 × a2 × a2 =a( )
(3)(am)3 =
试一试
计算:
(ab)3= (ab)• (ab)•(ab) = (a•a•a)•(b•b•b) = a3b3
(ab)4 = a4b4
由 (ab)3 = a3b3
(ab)4 = a4b4 从左到右的变化
猜想 (ab)n= anbn
(n是正整数)
根据乘方的意义和乘法的运算律,计算:
(ab)(n n是正整数).
1.下列各式中运算正确的是( ) A.a2·a5=a20 B. a2+a5=a7 C. a2·a2=2a2 D. a2·a5=a7 2.下列能用同底数幂进行计算的是( ) A.(x+y)2(x-y)3 B.(-x+y)3(x+y)2
C.(x+y)2(x+y)3 D.-(x-y)2(-x-y)
3.计算:
推广:(abc)n =anbncn.

华师大版数学八年级上册1整式的除法课件

华师大版数学八年级上册1整式的除法课件

B.27x6+2x4+x
C.27x6-2x4-x3
D.27x4-2x2-x
1.单项式除法法则包含三个方面: (1)系数相除; (2)同底数幂相除; (3)对于只在被除式里出现的字母,则连同它的指数
作为商的一个因式. 2.进行单项式除法运算时应注意: (1)单项式的系数包括它前面的符号; (2)不要漏掉只在被除式里出现的字母; (3)运算顺序.
这里,商式中的 项a、b和c是怎 样得到的?你能 总 结出多项式
除以单项式的法 则吗?
知2-讲
多项式除以单项式法则: 多项式除以单项式,先用这个多项式的每一项除以这个 单项式,再把所得的商相加.
即:用字母表示为(am+bm)÷m=am÷m+bm÷m=a+b. 步骤: (1)用多项式的每一项除以单项式; (2)把每一项除得的商相加.
知2-练
1 (8x4-6x3-4x2+10x)÷(-2x)的结果是( )
A.-4x3-3x2-2x+5 B.-4x3+3x2+2x-5
C.-4x3-3x2+2x D.-4x4+3x3+2x2-5x
2 计算(-81xn+5+6xn+3-3xn+2)÷(-3xn-1)等于( )
A.27x6-2x4+x3
例4 计算:(1)(8a3-2a2+6a)÷(-2a);
(2)
2 3
a5b82a 2b61 3ab32
.
导引:(1)直接利用多项式除以单项式法则计算;(2)应先
算乘方,再利用多项式除以单项式法则计算.
解:(1)原式=8a3÷(-2a)+(-2a2)÷(-2a)+6a÷(-2a)
=-4a2+a-3;
(2)原式=
2 3
a5b8
2a 2b6

华师大版数学八年级上册同步课件:1第1课时分解因式和提取公因式法

华师大版数学八年级上册同步课件:1第1课时分解因式和提取公因式法
1.“多项式”说明等式的左 边是多项式,即分解 的对象 是多项式. 2.“整式的积”说明右边 的结果是整式的积. 一句话: 因式分解是整式的和差化积的变化过程.
例2 指出下列多项式各项的公因式:
3a2y-3ya+6y;
a(x-y)3+b(x-y)2+(x-y)3;
-27a2b3+36a3b2+9a2b.
为负.
例3 把下列多项式分解因式:
-5a2 +25a;3a2 -9ab.
5x(x-2y)3-20y(2y-x)3.
解: -5a2+25a
3a2 -9ab
=-5a(a - 5).
=3a(a-3b).
5x(x-2y)3-20y(2y-x)3
=5x(x-2y)3+20y(x-2y)3
=5(x-2y)3(x+4y).
因式分解
x2-1
整式乘法
(x+1)(x-1)
1.因式分解的对象是多项 式,结果是整式的积 . 2. 因式分解是恒等变形,情势改变但值不改变 . 3.因式分解必须分解到每个 多项式的因式不能再分解为止 .
视察下面这个等式中左右两边的m ma + mb + mc =( m )( a+b+c ); m是等式左边多项式的每一项共有的因式,m是等式右边 积的一个因式。
第12章 整式的乘除
12.5 第1课时 因式分解和提公因式法
情景导入
993-99能被99整除吗?为了回答这个问题,你该怎样做?把你的想法与 同学交流. 因为993-99=99×992-99×1=99(992-1), 所以993-99能被99整除. 993-99能被100整除吗?为了回答这个问题,你该怎样做?把你的想法 与同学交流.

华东师大版八年级上册数学第12章12.5 因式分解

华东师大版八年级上册数学第12章12.5   因式分解

课堂小结
定义
am+bm+mc=m(a+b+c)
因式 分解

确定公因式的方法:三定,
即定系数;定字母;定指数
提公因式法
分两步:第一步找公因

式;第二步提公因式
公式法
(下节课学习)
注意
1.分解因式是一种恒等变形; 2.公因式:要提尽; 3.不要漏项; 4.提负号,要注意变号
平方差公式a2-b2=(a+b)(a-b)
1.公因式: 多项式中的每一项都含有一个相同的因式,我们称之
为公因式.
2.相信我能行:
多项式
8x+12y 8ax+12ay 8a3bc+12a2b2y 9x2-6xy+3x
公因式
4 4a 4a2b 3x
3.相信我能行,填空: (1) 2x-6xy=_2_x_(_1_-__3_y_); (2) -6x3+9x2=_-__3_x_2(_2_x_-__3_). 提公因式法:
3.观察以上两组题目有什么不同点?又有什么联系? 答:左边式子的变形与右边式子的变形是互为逆运算 的变形过程. 4.归纳概括:把__一__个__多__项__式__化__为__几__个__整__式__的__积__的__形__式__, 叫做多项式的因式分解.
5.判断:下列各式由左到右变形,哪些是因式分解?
情景导入
1.情境引入 这是教室的一块大黑板,如图所示,请同学们计算它 的面积. (1)问:m(a+b+c)与ma+mb+mc相等吗? 答:相等,m(a+b+c)=ma+mb+mc. (2)从左边到右边的变形是什么?从右边到左边的变形 是什么? 答:整式乘法,因式分解.
2.温故知新 (1)整式乘法有几种形式? 答:单项式乘以单项式;单项式乘以多项式;多项式 乘以多项式. (2)乘法公式有哪些? 答:平方差公式;完全平方公式.

华东师大版数学八年级上册第12章整式的乘除复习课件

华东师大版数学八年级上册第12章整式的乘除复习课件

17.对于任何实数,我们规定符号ab
c 的意义是:a
d
bx+1=0 时,x3+x 1x-x- 1 2的值.。
解:xx+-12 3xx-1=(x+1)(x-1)-3x(x-2)=x2-1-3x2+6x=-2x2+ 6x-1,∵x2-3x+1=0,∴x2-3x=-1,∴原式=-2(x2-3x)-1=2
检测练习
一、选择题 1.下列运算正确的是( D ) A.(x-2)2=x2-4 B.x3·x4=x12 C.x6÷x3=x2 D.(x2)3=x6 2.下列多项式相乘,不能用平方差公式计算的是( D ) A.(x-2y)(2y+x) B.(2y-x)(-x-2y) C.(x-2y)(-x-2y) D.(-2y-x)(x+2y)
多项 式的 乘法
单项 式的 除法
单项式与 多项式的 除法
乘法公 式(因 式分解)
同底数幂的乘法
am •an=am+n (m、n都是正整数) 幂的乘方 (am)n=amn (m、n都是正整数) 积的乘方
(ab)=an bn (n是正整数)
同底数幂的除法
1.am ÷an=am-n
(a≠0,m、n都是正整数,m>n)
4.反向思考法:如逆用乘法公式解题等。
中考考向分析 热点:整式的乘除法、整式乘法的应 用。
冷点:整式乘除法中技能性解题方法。
本章知识在中考中主要以选择、填空 题予以考查,少数中档题考查乘法公式的 应用,约占中考试卷的7%左右。
知识体系表解
整 式 的 乘 除
幂 的 运 算 性 质
单项 式的 乘法
单项式与 多项式的 乘法
(3)利用(2)猜想的结论计算: 29-28+27-……+23-22+2。 解:在(a-b)(an-1+an-2b+…+abn-2+bn-1)=an-bn中,取a=2,b= -1,n=10,得(2+1)(29-28+27-…+23-22+2-1)=210-(-1)10, 即3(29-28+27-…+23-22+2-1)=1023,29-28+27-…+23-22+2 -1=341,∴29-28+27-…+23-22+2=342。

2019-2020年华师大版八年级上册数学教材变式:第12章 整式的乘除

2019-2020年华师大版八年级上册数学教材变式:第12章 整式的乘除

第12章整式的乘除12.1 幂的运算教材P18例1变式【变式1】下列算式中,结果等于x6的是( A )(A)x2·x2·x2(B)x2+x2+x2(C)x2·x3(D)x4+x2解析:A.x2·x2·x2=x6,故选项A符合题意;B.x2+x2+x2=3x2,故选项B不符合题意;C.x2·x3=x5,故选项C不符合题意;D.x4+x2,无法计算,故选项D不符合题意.故选A.【变式2】若2n+1·23=210(n为正整数),则n= 6 .解析:2n+1·23=2n+1+3=210(n为正整数),所以n+1+3=10,解得n=6.教材P20例2变式【变式1】如果a x=3,那么a3x的值为27 .解析:a3x=(a x)3=33=27.【变式2】已知x m·x n·x3=(x2)7,则当n=6时,m= 5 .解析:因为x m·x n·x3=(x2)7,所以x m+n+3=x14,所以m+n+3=14.将n=6代入,可得m+6+3=14,解得m=5.故当n=6时,m=5.教材P21例3变式【变式1】下列运算正确的是( C )(A)a2·a3=a6(B)(-2ab3)2=-4a2b6(C)(-a2)3=-a6(D)2a+3b=5ab解析:A.结果是a5,故本选项不符合题意;B.结果是4a2b6,故本选项不符合题意;C.结果是-a6,故本选项符合题意;D.2a和3b不能合并,故本选项不符合题意.故选C.【变式2】计算:x·x3·x4+(x2)4-(-2x4)2.解: x·x3·x4+(x2)4-(-2x4)2=x8+x8-4x8=-2x8.教材P23例4变式【变式1】如果3m=6,3n=2,那么3m-n为 3 .解析:因为3m=6,3n=2,所以3m-n=3m÷3n=6÷2=3.【变式2】计算x5÷(-x)2= x3.解析:原式=x5÷x2=x3.12.2 整式的乘法教材P25例1变式【变式1】下列计算正确的是( A )(A)9a3·2a2=18a5(B)2x5·3x4=5x9(C)3x3·4x3=12x3(D)3y3·5y3=15y9解析:A.9a3·2a2=18a5,正确,符合题意;B.2x5·3x4=6x9,错误,不合题意;C.3x3·4x3=12x6,错误,不合题意;D.3y3·5y3=15y6,错误,不合题意.故选A.【变式2】计算:(-2x2y)3·3(xy2)2.解:原式=-8x6y3·3x2y4=-24x8y7.教材P27例2变式【变式1】计算:(-3x+1)·(-2x)2.解:(-3x+1)·(-2x)2=(-3x+1)·(4x2)=-12x3+4x2.【变式2】数学课上,,放学回到家,,发现一道题:-3xy(4y-2x-1)=-12xy2+6x2y+ , 的地方被墨水弄污了,你认为处应填写3xy .解析:根据题意得,-3xy(4y-2x-1)+12xy2-6x2y=-12xy2+6x2y+3xy+12xy2-6x2y=3xy.教材P28例3变式【变式】如图,正方形卡片A类、B类和长方形卡片C类各若干张,如果要拼一个长为(a+3b),宽为(2a+b)的大长方形,则需要A类、B类和C类卡片的张数分别为( A )(A)2,3,7 (B)3,7,2(C)2,5,3 (D)2,5,7解析:长为a+3b,宽为2a+b的长方形的面积为(a+3b)(2a+b)=2a2+7ab+3b2,因为A类卡片的面积为a2,B类卡片的面积为b2,C类卡片的面积为ab,所以需要A类卡片2张,B类卡片3张,C 类卡片7张.故选A.教材P29例4变式【变式】探究应用:(1)计算:(x+1)(x2-x+1)= x3+1 ;(2x+y)(4x2-2xy+y2)= 8x3+y3.(2)上面的乘法计算结果很简洁,你发现了什么规律(公式)?用含a,b的字母表示该公式为(a+b)(a2-ab+b2)=a3+b3.(3)下列各式能用第(2)题的公式计算的是( C )(A)(m+2)(m2+2m+4)(B)(m+2n)(m2-2mn+2n2)(C)(3+n)(9-3n+n2)(D)(m+n)(m2-2mn+n2)解析:(1)(x+1)(x2-x+1)=x3-x2+x+x2-x+1=x3+1,(2x+y)(4x2-2xy+y2)=8x3-4x2y+2xy2+4x2y-2xy2+y3=8x3+y3.(2)(a+b)(a2-ab+b2)=a3+b3.(3)由(2)可知选C.12.3 乘法公式教材P31例1变式【变式1】下列各式中不能用平方差公式计算的是( A )(A)(x-y)(-x+y) (B)(-x+y)(-x-y)(C)(-x-y)(x-y) (D)(x+y)(-x+y)解析:A.由于两个括号中含x,y项的符号都相反,故不能使用平方差公式,A正确;B.两个括号中,-x相同,含y的项的符号相反,故能使用平方差公式,B错误;C.两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,C错误;D.两个括号中,含x项的符号相反,y项的符号相同,故能使用平方差公式,D错误.故选A.【变式2】若x+y=2,x2-y2=6,则x-y= 3 .解析:因为x+y=2,x2-y2=(x+y)(x-y)=6,所以x-y=3.教材P32例2 变式【变式1】用整式的乘法公式计算:2 0002-2 001×1 999= 1 .解析:原式=2 0002-(2 000+1)×(2 000-1)=2 0002-(2 0002-1)=2 0002-2 0002+1=1.【变式2】计算:9(10+1)(102+1)+1.解:原式=(10-1)(10+1)(102+1)+1=(102-1)(102+1)+1=104-1+1=104=10 000.教材P32例3变式【变式1】某街区花园有一块边长为a米的正方形广场,为了周边建设统一,经统一规划后,南、北方向各加长5米,东、西方向各缩短5米,则改造后的长方形广场的面积是(a2-100) 平方米(用含a的式子表示).解析:根据题意得,(a+5×2)(a-5×2)=(a+10)(a-10)=a2-100.【变式2】一个三角形的一条边长为(2a+4)cm,这条边上的高为(2a-4)cm,则这个三角形的面积为(2a2-8) cm2.解析:这个三角形的面积为×(2a+4)(2a-4)=×(4a2-16)=2a2-8.教材P33例4变式【变式1】运用乘法公式计算(x+3)2的结果是( C )(A)x2+9 (B)x2-6x+9(C)x2+6x+9 (D)x2+3x+9解析:(x+3)2=x2+6x+9,故选C.【变式2】已知x+y=-5,xy=6,则x2+y2的值是( B )(A)1 (B)13 (C)17 (D)25解析:因为x+y=-5,xy=6,所以x2+y2=(x+y)2-2xy=25-2×6=25-12=13.故选B.教材P34例5变式【变式1】运用乘法公式计算(m-2)2的结果是( C )(A)m2-4 (B)m2-2m+4(C)m2-4m+4 (D)m2+4m-4解析:(m-2)2=m2-4m+4,故选C.【变式2】(x-2)2+4(x-1)= x2.解析:原式=x2-4x+4+4x-4=x2.12.4 整式的除法教材P39例1变式【变式1】计算(-ab2)3÷(-ab)2的结果是( B )(A)ab4(B)-ab4(C)ab3(D)-ab3解析:(-ab2)3÷(-ab)2=-a3b6÷a2b2=-ab4,故选B.【变式2】一个三角形的面积为4a3b4,底边的长为2ab2,则这个三角形的高为4a2b2. 解析:4a3b4×2÷2ab2=8a3b4÷2ab2=4a2b2.教材P41例2变式【变式1】小亮与小明在做游戏,两人各报一个整式,小明报的被除式是x3y-2xy2,商式必须是2xy,则小亮报一个除式是x2-y .解析:(x3y-2xy2)÷2xy=x2-y.【变式2】长方形面积是3a2-3ab+6a,一边长为3a,则它的另一边长是a-b+2 .解析:因为长方形面积是3a2-3ab+6a,一边长为3a,所以它的另一边长是(3a2-3ab+6a)÷3a=a-b+2.12.5 因式分解教材P44例1变式【变式1】下列多项式分解因式,正确的是( B )(A)12xyz-9x2y2=3xyz(4-3xyz)(B)3a2y-3ay+6y=3y(a2-a+2)(C)-x2+xy-xz=-x(x2+y-z)(D)a2b+5ab-b=b(a2+5a)解析:A.12xyz-9x2y2=3xy(4z-3xy),故此选项错误;B.3a2y-3ay+6y=3y(a2-a+2),故此选项正确;C.-x2+xy-xz=-x(x-y+z),故此选项错误;D.a2b+5ab-b=b(a2+5a-1),故此选项错误.故选B.【变式2】简便计算:(1)1.992+1.99×0.01;(2)2 0172+2 017-2 0182.解:(1)1.992+1.99×0.01=1.99×(1.99+0.01)=3.98.(2)2 0172+2 017-2 0182=2 017(2 017+1)-2 0182=2 017×2 018-2 0182=2 018×(2 017-2 018)=-2 018.教材P44例2变式【变式1】分解因式y3-4y2+4等于( B )(A)y(y2-4y+4) (B)y(y-2)2(C)y(y+2)2(D)y(y+2)(y-2)解析:原式=y(y2-4y+4)=y(y-2)2,故选B.【变式2】分解因式:(1)x2(x-y)+(y-x);(2)a4-4a3b+4a2b2.解:(1)x2(x-y)+(y-x) =(x-y)(x2-1)=(x-y)(x+1)(x-1).(2)a4-4a3b+4a2b2 =a2(a2-4ab+4b2) =a2(a-2b)2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

[12.5 第1课时因式分解及提公因式法]
,
一、选择题
1.xx·滨州下列各式从左到右的变形中,属于因式分解的是( )
A.a(m+n)=am+an
B.a2-b2-c2=(a-b)(a+b)-c2
C.10x2-5x=5x(2x-1)
D.x2-16+6x=(x+4)(x-4)+6x
2.把多项式a2-4a分解因式,结果正确的是( )
A.a(a-4) B.(a+2)(a-2)
C.a(a+2)(a-2) D.(a-2)2-4
3.多项式15m3n2+5m2n-20m2n3的各项的公因式是( )
A.5mn B.5m2n2C.5m2n D.5mn2
4.把多项式3m(x-y)-2(y-x)2分解因式的结果是( )
A.(x-y)(3m-2x-2y)
B.(x-y)(3m-2x+2y)
C.(x-y)(3m+2x-2y)
D.(y-x)(3m+2x-2y)
5.计算(-2)xx+(-2)2019的结果是( )
A.-1 B.-22018C.2xx D.-22019
二、填空题
6.分解因式:(1)xx·潍坊x2-2x+(x-2)=__________.
(2)xx·南京2a(b+c)-3(b+c)=____________.
(3)xx·河南洛阳孟津期中x(x-y)2+y(y-x)2=____________.
7.若多项式x2+ax+b分解因式的结果为(x+1)(x-2),则a+b的值为________.
8.已知x+y=3,xy=6,则x2y+xy2的值为________.
三、解答题
9.把下列各式分解因式:
(1)6x3-18x2+3x;(2)a(b-a)-2b(a-b);
(3)8a(x-y)2-4b(y-x).
10.利用因式分解计算:
xx×25.6+xx×73.4+xx.
11.长和宽分别为a,b的长方形,它的周长为14,面积为10,则a2b+ab2的值是多少?
整体思想阅读下列因式分解的过程,再回答所提出的问题:
1+x+x(x+1)+x(x+1)2
=(1+x)[1+x+x(x+1)]
=(1+x)2(1+x)
=(1+x)3.
(1)上述因式分解的方法是________,共应用了________次;
(2)若分解因式1+x+x(x+1)+x(x+1)2+…+x(x+1)xx,则需应用上述方法________次,结果是________;
(3)分解因式:1+x+x(x+1)+x(x+1)2+…+x(x+1)n(n为正整数).
详解详析
【课时作业】
[课堂达标]
1.[解析] C因式分解是把一个多项式化为几个整式的积的形式,只有C选项满足,故选C.
2.A
3.[解析] C多项式15m3n2+5m2n-20m2n3中,各项系数的最大公因数是5,各项都含有的相同字母是m,n,字母m的最小指数是2,字母n的最小指数是1,所以它的公因式是5m2n.故选C.
4.B
5.[解析] B(-2)xx+(-2)2019=(-2)xx×(1-2)=2xx×(-1)=-2xx.故选B.
6.(1)(x-2)(x+1) (2)(b+c)(2a-3)
(3)(x-y)2(x+y)
[解析] (1)原式=x(x-2)+(x-2)=(x-2)·(x+1).
(2)原式=(b+c)(2a-3).
(3)原式=x(x-y)2+y(x-y)2=(x-y)2(x+y).
7.-3
8.18 [解析] ∵x+y=3,xy=6,
∴x2y+xy2=xy(x+y)=18.
9.解:(1)6x3-18x2+3x=3x(2x2-6x+1).
(2)a(b-a)-2b(a-b)=a(b-a)+2b(b-a)=(b-a)(a+2b).
(3)8a(x-y)2-4b(y-x)=4(x-y)[2a(x-y)+b]=4(x-y)(2ax-2ay+b).
10.解:xx×25.6+xx×73.4+xx
=xx×(25.6+73.4+1)
=xx×100
=xx00.
11.[解析] 本题若先求出a,b的值,再代入a2b+ab2中计算,显然比较烦琐,此时可把a2b+ab2分解因式,然后利用整体代入法计算求值.
解:根据已知可得2(a+b)=14,ab=10,
所以a+b=7,ab=10,
则a2b+ab2=ab(a+b)=10×7=70.
[素养提升]
解:(1)提公因式法2
(2)xx (1+x)2019
(3)1+x+x(x+1)+x(x+1)2+…+x(x+1)n=(1+x)n+1.
如有侵权请联系告知删除,感谢你们的配合!。

相关文档
最新文档