大众标准

合集下载

大众标准TL217中文2009年8月版

大众标准TL217中文2009年8月版

大众汽车集团标准TL 2172009年8月版分类号:50241关键字:锌;防腐保护;表面涂层镀锌涂层表面保护要求旧版本TL 217: 1976-07, 1979-05, 1980-01, 1983-02, 1986-01, 1987-06, 1988-06, 1989-11, 1991-11, 2001-07, 2002-07变更相对于TL217:2002-07版本作了如下变更:---第一部分“范围”的扩展---第3.2部分“一般要求”的修改---表1中增加对铸铁制动卡钳的要求说明---原表2中含Cr(VI)表面保护类型删除---特殊规则的焊接部件介绍(见表3和表5)---引用的文件更新和补充---附录“传统表面保护类型”删除1、范围本标准规格要求不含Cr(VI),对钢件上的电解离析镀锌层以及按VW13750标识字母“的热镀锌半成品制成的零件要求做出规定,该镀层不适宜长期在大于100℃的高温下使用。

Ofl-c340表面防护类型,必须优先使用于焊接螺栓,焊接螺钉,焊接销和焊接螺母。

注1:此标准已经扩大到包括特殊规则的焊接零件,表面防护Ofl-c340为改善焊接性能(详见表3和表5)2.标记方法见VW 13750第二章节3.技术要求3.1防护种类适用于表1中列举的防护种类对热镀锌半成品的要求见DINENISO1461。

表1a)用于制动卡钳的铸铁表面防护按Ofl-c343,进一步要求按VDA237-299,05型的涂层厚度,附着力,耐蚀性。

3.2基本技术要求首次供货和变更的批准,按大众标准VW 01155避免有害物质按, VW 911 01进行一次完整的试验要求10个成品件只要在图纸中未明确标出零件的某些地方不做表面防护,那么此零件整个表面必须遵守指定的表面保护类型及特定属性。

与此相反,连接部分层厚度必须按照DINENISO4042标准,连接部件相关的弱点,如弯曲半径或柄或螺纹区域,防腐要求在这些区域减少到2/3,这一例外不适用于轮毂螺栓。

大众csr标准

大众csr标准

大众csr标准:
大众CSR标准是一个企业社会责任(CSR)的体系,旨在确保大众集团在全球范围内的所有活动都符合道德、法律和可持续性的要求。

这个标准涵盖了大众集团在各个方面的责任,包括环境保护、客户权益、员工福利、供应商管理、交通安全以及公共事务等。

大众CSR标准的主要内容包括:
1.环境保护:大众集团承诺在其全球业务中采取可持续的生产方式,减少对环境的影
响,并推动环保技术的发展。

2.客户权益:大众集团承诺尊重和保护客户的权益,确保产品的质量和安全性,并及
时处理客户投诉和赔偿问题。

3.员工福利:大众集团致力于为员工提供平等的机会、安全的工作环境以及具有竞争
力的薪酬福利。

4.供应商管理:大众集团对供应商进行严格的筛选和评估,确保供应商遵循道德和法
律规定,并提供合理的采购价格和质量保证。

5.交通安全:大众集团致力于提高其产品的安全性,推动交通安全意识的普及,并积
极参与交通事故的预防和救助。

6.公共事务:大众集团积极参与公共事务,支持社会公益事业,推动社区发展和繁荣。

大众汽车分级标准

大众汽车分级标准

大众汽车分级标准
一、车辆尺寸分级
根据车辆尺寸大小,大众汽车主要分为以下几类:
1. A0级车:车辆长度在3.7米以下,如Polo、朗逸等;
2. A级车:车辆长度在
3.7米至
4.3米之间,如速腾、迈腾等;
3. B级车:车辆长度在
4.3米至4.7米之间,如帕萨特、辉腾等;
4. C级车:车辆长度在4.7米以上,如奥迪A8等。

二、车辆排量分级
根据车辆排量大小,大众汽车主要分为以下几类:
1. 小排量车型:排量在1.0L至1.6L之间,如Polo、朗逸等;
2. 中排量车型:排量在1.6L至2.0L之间,如速腾、迈腾等;
3. 大排量车型:排量在2.0L以上,如帕萨特、辉腾等。

三、车辆驱动方式分级
根据车辆驱动方式不同,大众汽车主要分为以下几类:
1. 前驱车型:采用前置发动机前轮驱动,如Polo、朗逸等;
2. 后驱车型:采用后置发动机后轮驱动,如奥迪A8等;
3. 四驱车型:采用全时四轮驱动,如途锐、辉腾等。

四、车辆用途分级
根据车辆用途不同,大众汽车主要分为以下几类:
1. 家用车型:主要用于日常代步和家庭出行,如Polo、朗逸等;
2. 商务车型:主要用于商务出行和公务接待,如帕萨特、辉腾
等;
3. 运动车型:具有较好的动力性能和操控性能,如高尔夫GTI 等。

五、车辆性能分级
根据车辆性能不同,大众汽车主要分为以下几类:
1. 经济型车型:注重燃油经济性和维修成本,适合日常代步和家庭出行;
2. 中级车型:具有较好的动力性能和操控性能,适合一般商务出行和家庭出行;
3. 高级车型:具有优秀的动力性能和操控性能,适合高端商务出行和豪华轿车市场。

大众汽车标准_VW_10540-3

大众汽车标准_VW_10540-3

72
GA7~GZ9
72
HA7~HZ9
72
504
MW5~MW9 23 MX4~MZ9
汽车零件
制造厂代码 用于国外工厂及其承制厂
VW 105 40-3
共 3 页第3页
国外工厂 自已生产 供应商
X SKODA(斯柯达) 汽车股分公司
X 美国大众
Y
自己生产 供应商
Z 墨西哥VW(大众) 自己生产 供应商
代码 XX1
自己生产 供应商
卡门荷大众
自己生产
供应商 4
长春FAW(奥迪)
长春FAW(大众)
5 上海大众(SVW) 自己生产 供应商
布鲁克西尔大众 自己生产
供应商
6 台湾
自己生产
供应商
空位
代码 2BR
3ME
2VZ
5FA 5FV 5SV
6BE
6CC
范围1) 1AA ~ 2ZZ2) 3AA ~ 3ZZ 4AA ~ 4DZ 4JA ~ 4ZZ
2) 剔除2ZV
3) 剔除VA8和VA9
4) 剔除ZA2和ZB2
5) 剔除ZAB,ZAE,ZAL,ZAO,ZBR,ZDO,ZFO,ZFP,
ZFS,ZGU,ZJJ,ZPC,ZST,ZWW,ZWN,ZZW
国外工厂
空位
秘鲁 8
空位
自己生产 供应商
尼日利亚大众
自己生产 供应商
阿根延大众 9
自己生产 供应商
空位
抄写 李莉
日期 01.09.07
汽车零件
制造厂代码 用于国外工厂及其承制厂
VW 105 40-3
共 3 页第2页
南非大众
自己生产 6ZA

大众机器人vass标准

大众机器人vass标准

大众机器人vass标准大众机器人 VASS 标准**前言**嘿,朋友们!在如今这个科技飞速发展的时代,机器人已经越来越多地走进了我们的生活和工作。

大众机器人作为其中的一员,为了确保其质量、性能和安全性,一套明确的VASS 标准就显得尤为重要啦。

今天咱们就来好好聊聊这个大众机器人 VASS 标准,搞清楚它到底是怎么回事,又能给我们带来什么好处。

**一、适用范围**1.1 工业生产领域说白了,在工厂的生产线上,大众机器人 VASS 标准那可是大有用处。

比如汽车制造厂里的焊接、喷漆、装配等工序,那些精准操作的机器人都得遵循这个标准,才能保证生产出来的汽车质量杠杠的。

你可以想象一下,如果机器人的动作不精准、不稳定,那生产出来的汽车说不定就这儿有个瑕疵,那儿有个缺陷,这可不行!1.2 服务行业在服务行业,像物流配送中心的货物搬运机器人,还有餐厅里的送餐机器人,也得按照大众机器人 VASS 标准来。

要是送餐机器人总是迷路或者送错餐,那顾客的体验得多糟糕呀!1.3 医疗领域在医院里,一些辅助手术的机器人或者负责药品配送的机器人,更得严格遵循这个标准。

毕竟这关乎着患者的生命健康,容不得半点马虎。

**二、术语定义**2.1 精度精度呢,就是指机器人完成动作的准确程度。

比如说,让机器人把一个零件放到指定位置,精度高的机器人就能放得丝毫不差,精度低的可能就会有偏差。

2.2 重复性重复性就是机器人多次重复同一个动作时,每次结果的一致性。

好比让机器人反复做同一个抓取动作,重复性好的机器人每次抓取的位置和力度都差不多。

2.3 负载能力负载能力很好理解,就是机器人能够承受和搬运的最大重量。

要是超过了这个重量,机器人可能就“累趴下”啦。

**三、正文**3.1 机器人的运动性能标准3.1.1 速度机器人的运动速度是有明确规定的。

比如说,在生产线上进行装配工作的机器人,它的手臂移动速度得适中,既不能太快导致操作不稳,也不能太慢影响生产效率。

大众vda质量标准 -回复

大众vda质量标准 -回复

大众vda质量标准-回复"大众VDA质量标准"是指大众汽车公司针对其产品质量管理所制定的一系列标准和要求。

VDA是德语Verband Der Automobilindustrie的缩写,意思是“汽车工业协会”。

大众VDA质量标准的实施旨在确保产品的安全性、可靠性和持久性,并提升客户满意度。

本文将以中括号内的内容为主题,详细解读大众VDA质量标准。

一、VDA 6.1标准是大众VDA质量标准的核心之一。

它是基于国际ISO 9001标准的一种汽车行业特定质量管理系统要求。

VDA 6.1标准主要包括了质量管理体系的要求、管理责任、资源管理、产品实施、质量规划、质量保证、控制测试与测量等方面的内容。

通过执行VDA 6.1标准,大众公司能够建立完善的质量管理体系,确保产品从设计到交付的每个环节都符合质量要求。

二、大众VDA质量标准还包括了VDA 6.3标准。

与VDA 6.1标准关注整个质量管理体系的要求不同,VDA 6.3标准侧重于控制供应链中的质量风险。

这一标准主要关注供应商评估、供应商开发、供应商管理和采购过程中的质量规划、评估和验证等内容。

通过建立有效的供应商管理体系,大众公司能够监控和控制整个供应链,确保供应商提供的零部件和原材料能够满足产品的质量要求。

三、大众VDA质量标准中另一个重要的组成部分是VDA 6.5标准。

该标准主要关注新产品开发过程中的质量规划和控制。

它包括了产品开发的各个阶段的质量要求、验证测试、工艺评估和质量管理等内容。

通过执行VDA 6.5标准,大众公司能够确保新产品的开发过程符合质量要求,并减少产品质量问题的风险。

四、除了上述几个核心标准外,大众VDA质量标准中还包括了一些补充标准和指南。

例如,VDA 6.2标准是大众公司在软件开发过程中使用的一种质量管理方法。

该标准规定了软件开发的各个阶段的质量要求和流程控制。

此外,大众VDA质量标准还包括了VDA 6.4、VDA 6.7等多个特定领域的质量标准和指南。

大众标准中文版

大众标准中文版

大众汽车集团标准TL 2442010年12月版分类号:50223关键字:锌,镍,钝化处理,密封,无Cr(VI),防腐蚀,表面保护锌/镍-合金涂覆层表面保护要求旧版本TL 244: 1987-10, 1992-05, 1993-11, 1995-12, 2002-05, 2004-12, 2006-08, 2007-02变更相对于 TL244: 2007-02 版本,作了如下更改:--补充了热处理后零件的抗拉强度≦ 1200Mpa 部分;--添加了 Ofl-r647 和 Ofl-r648 两种涂覆方法;--原表 2 中关于含铬的表面保护类型已删除;--添加了图 1 和图 2;--添加了 PV 1209,PV 1200 和 PV1210 三种测试依据;--镀层表面形态的要求有所增加;--镍的上限值有所改变;--原第 4 条关于镀层厚度的测量的内容加入到部分;--原部分的要求有所改变;--参考标准有更新;--标准重组。

1 范围本标准规定了抗拉强度为 Rm≦ 1000Mpa(按 VW 137 50 的特征字母 r)的铁材料和钢制件上的电解离析和无Cr( VI)后处理的锌/镍合金涂覆层的要求。

此外还定义了抗拉强度值大于 1000Mpa时的应用极限。

本标准定义了合金涂覆不适用于抗拉强度 Rm>1200Mpa 和表面硬度>370HV 的钢制件。

而且适用于抗拉强度值在 1000Mpa 和 1200Mpa之间的钢制件时,必须按 DIN EN ISO4042 作热处理。

这些当作坚固防腐层(稳定等级为 6)的涂覆层,亦特别适用于除了腐蚀负荷增加和温度负荷增加至150°C(例如:发动机室和刹车系统)之外的部件以及螺栓拧紧系统。

银色涂覆层(例如:Ofl-r642,Ofl-r643,Ofl-r645和Ofl-r647)特别适用于导线连接(接地线连接)。

这些涂覆层特别适用于内部传动的紧固元件,以避免附加的施力作用。

大众汽车标准_VW 01106-1_EN_2004-07-01

大众汽车标准_VW 01106-1_EN_2004-07-01

Gas-Shielded Arc WeldingThe English translation is believed to be accurate. In case of discrepancies the German version shall govern.Sheet Steel Joints Design, Type, Quality AssuranceVW 011 06-1Konzernnorm Descriptors: welding, gas-shielded arc welding, steel, MIG welding, MAG welding, TIG welding, sheet steel, sheet steel joint, sheet metal ContentsPage1 2 2.1 2.2 3 3.1 3.2 4 4.1 4.2 4.3 5 5.1 5.2 5.3 5.4 5.5 6 7Scope .................................................................................................................................. 2 Abbreviations and definitions .............................................................................................. 2 Abbreviations ...................................................................................................................... 2 Definitions ........................................................................................................................... 3 Gas-shielded arc welding procedure................................................................................... 4 Tungsten inert-gas welding (TIG)........................................................................................ 4 Gas-shielded metal arc welding (MIG/MAG)....................................................................... 4 General requirements ......................................................................................................... 5 Materials.............................................................................................................................. 5 Design ................................................................................................................................. 8 Weld dimensions............................................................................................................... 10 Requirements for welds and quality assurance of welds .................................................. 12 Weld quality....................................................................................................................... 12 Penetration depths ............................................................................................................ 12 Weld types ........................................................................................................................ 13 Special weld types ............................................................................................................ 18 Evaluation of imperfections ............................................................................................... 23 Drawing entries ................................................................................................................. 23 Referenced standards....................................................................................................... 24Changes The following changes have been made as compared to VW 011 06-1, 2003-05: Referenced standards updated Standard edited Section 5.1 shortened Section 5.4 extended by special weld types (multiple front weld; corner joint) Section 5.4.1: requirements revised Previous issues 1997-01; 2003-05Preface The following basic regulations are based on experience gained with partially and fully mechanized equipment and implemented tests and also on accepted engineering standards such as DIN standards and DVS specifications.Form FE 41 - 01.03Page 1 of 25Fachverantwortung/Responsibility K-QS-32 Herr Dr. Witt Tel.: 7 36 23 Normung/Standards (EZTD, 1733) Fischer Tel.: +49-5361-9-2 79 95 Sobanski© VOLKSWAGEN AGConfidential. All rights reserved. No part of this document may be transmitted or reproduced without the prior written permission of a Standards Department of the Volkswagen Group. Parties to a contract can only obtain this standard via the responsible procurement department.Check standard for current issue prior to usage.Klass.-Nr./Class. No. 04 81 7July 2004Page 2 VW 011 06-1: 2004-07 1 ScopeThis standard applies to the design, layout and quality assurance of arc-welded sheet steel joints which are predominantly subject to dynamic loads. It comprises the following procedures according to DIN EN ISO 4063: Reference no. 131 135 141 for: of: Method Metal inert-gas welding Metal active-gas welding Tungsten inert-gas welding Code MIG MAG TIGbutt and fillet welds, lap welds, plug welds and special weld types bright uncoated and coated sheet steel as well as of both high-alloyed steels and premium steels; for examples see Section 4.1; Workpiece thickness 0.5 mm to 6 mm test characteristics of quality level B (high requirement) according to DIN EN ISO 5817, see also DVS specification 0705.with:All fusion-welded joints to which this scope is not applicable require the clarification of the responsible engineering departments. Special measures made necessary because of the component, e.g. change to the quality level for specific imperfections, are permissible and shall be entered in the drawing. 2 2.1 a f1,2 fL fSt Fi h l L s s1,2 sN t1 t2 HAZ Σt ∅ Abbreviations and definitions Abbreviations Calculated throat thickness Penetrations on sheets 1 and 2 Penetration length Penetration at the face surface Joining plane Gap size Throat length Length Throat thickness Throat thickness with respect to sheets 1 and 2 smallest common throat thickness Thickness of sheet 1 Thickness of sheet 2 Heat-affected zone Sum total of sheet thicknesses Diameter mm mm mm mm or % (of face surface) mm mm mm mm mm mm mm mm mm mmPage 3 VW 011 06-1: 2004-072.2DefinitionsFüThe following definitions are valid for the application of this standard: 2.2.1 Weld jointJoint created by fusion welding. It comprises the weld, fusion line, heat-affected zone and unaffected base material (Figure 1).1 2Legend: 1 = weld 2 = heat-affected zone 3 = fusion line, fusion zone344 = unaffected base material Figure 1 – Fusion weld jointNOTE Weld and fusion line may be identical. 2.2.1.1 Weld The area where the workpiece(s) is/are joined at the weld joint. The weld comprises the base material and/or the filler metal. 2.2.1.2 Fusion line Borderline between the base metal and/or filler material melted during welding and the metal that remains solid. 2.2.1.3 Weld metal Material that solidified after welding, comprising either the base material or filler metal and base material. Some elements in the weld metal can come from casings and/or accessory materials (DIN ISO 857-1). 2.2.1.4 Heat-affected zone HAZ Area of the base material that remained solid, but, due to the energy applied during welding, experienced microstructural changes related to temperature.Page 4 VW 011 06-1: 2004-072.2.1.5 Unaffected base material Area of the base material that experienced no evident microstructural changes as a result of the energy applied during welding. 2.2.2 Same types of materialMaterials which do not differ significantly in terms of their chemical composition and their suitability for welding (DIN 8528-1). 2.2.3 Different types of materialMaterials which differ significantly in terms of their chemical composition and their suitability for welding. 3 Gas-shielded arc welding procedureGas-shielded arc welding is a form of fusion welding. An electrical arc is used as the heat source. It burns between the electrode and the workpiece. In this process, the arc and the weld pool are protected from the atmosphere by a shield of protective gas. The classification into the following procedures depends on the electrode type: 3.1 Tungsten inert-gas welding (TIG)In this procedure, an arc is ignited between a non-consumable tungsten electrode and the workpiece. Argon, helium, mixtures of both and sometimes added active gases, are used to form the protective atmosphere. The filler metal is (as in the case of gas welding) fed from the side. 3.2 Gas-shielded metal arc welding (MIG/MAG)In this procedure, an arc is ignited between the melting end of the wire electrode (filler metal) and the workpiece. The welding current flows via sliding contacts in the electric current guide of the gun to the wire electrode. When inert gases (low-activity gases, e.g. noble gases such as argon, helium or mixtures of both) are used as protective atmosphere, this is called metal inert-gas welding (MIG). When active gases are used (e.g. CO2, or mixtures containing CO2, or, in some cases, mixtures of CO2 and oxygen), this is called metal active-gas welding (MAG). This procedure is used to weld unalloyed and low-alloy steels.Page 5 VW 011 06-1: 2004-074General requirementsWelds that are subject to mandatory documentation shall be evaluated according to the relevant type-specific and/or component-specific test specifications (PV). Deviations with respect to the specified weld geometries and weld layouts shall be detailed in the drawing and verified by testing. They shall be described in test specifications (PV). Further requirements with respect to gas-shielded arc welding are contained in the following documents: VW 011 06-2 VW 011 06-3 VW 011 42 Shielded Arc Welding - Rework on Sheet Metal Connections Gas-Shielded Arc Welding – Part 3: Al Welded Joints Welded Seam Repairs on Aluminum Structures – Product Evaluation and Notes on ProcedureWhen creating arc-welded sheet steel joints, the greatest possible design strength in accordance with the design goal must be realized while also ensuring sufficient reliability and a favorable cost/quality ratio. For this purpose, every weld joint must be suitable for welding, i.e. the dimensions of the welding equipment and the accessibility of the weld according to DVS 0929 must be taken into consideration for design. Weldability for service of a sheet steel joint is given if the component, on the basis of its design (Section 4.2) and with the material used (Section 4.1), remains functional (Section 4.3) under the intended operating stresses (Figure 2).Material Welding suitabilityWeldability of the partWelding capability ManufacturingWeldability for service DesignFigure 2 – Representation of weldability according to DIN 8528-1 4.1 MaterialsThe following list is not complete. The following products and materials have good welding properties: a) Cold-rolled flat products made from soft steels for cold forming: DIN 1623-1 (02.83)1) DIN EN 10130 Material no. St 12 DC01 1.0330 St 13 DC03 1.0347 St 14 DC04 1.0338 1) DIN 1623-1 was replaced in October 1991 by DIN EN 10130.Page 6 VW 011 06-1: 2004-07b) c) d)Cold-rolled strips DC01 to DC04 with the surface finishes BK, RP, RPG according to DIN EN 10139. Hot-rolled strips with ≤ 0.20% C content, e.g. according to TL 1111. Hot-rolled products of structural carbon steels DIN 17100 (01.80)2) DIN EN 10025 Material no. St 37-2 -1.0037 St 37-2 R St37-2 S 235 JR 1.0114 St 37-3 S 235 JO 1.0116 St 52-3 S 355 J2G3 1.0570 Conditionally weldable: St 50-2 E295 1.0050 2) DIN 17100 was replaced in March 1994 by DIN EN 10025.The following products and materials are also weldable:e) f)g)Cold-rolled strip and sheet with higher yield point for cold working made from micro-alloyed steels (SEW 093 of March 1987) Isotropic micro-alloyed cold-rolled strip (according to VW 500 17) is a further development of the traditional micro-alloyed cold-rolled strip ZStE260 to ZStE420 (formerly SEW 093). NOTE VW 500 17 defines the material requirements of isotropic micro-alloyed steels, placing particular emphasis on the mechanical properties. Cold-rolled flat products with high yield point for cold working made from micro-alloyed steels: DIN EN 10268 Material no. H240LA 1.0480 H280LA 1.0489 H320LA 1.0548 H360LA 1.0550 H400LA 1.0556 DIN EN 10292 Material No. H260LAD+Z, +ZF 1.0929 H300LAD+Z, +ZF 1.0932 H340LAD+Z, +ZF 1.0933 H380LAD+Z, +ZF 1.0934 H420LAD+Z, +ZF 1.0935 Hot-rolled flat products made from steels with a high yield point for cold working: DIN EN 10149-2 Material no. S315MC 1.0972 S355MC 1.0976 S420MC 1.0980 S460MC 1.0982 S500MC 1.0984 S550MC 1.0986 S600MC 1.8969 S650MC 1.8976 S700MC 1.8974h)Page 7 VW 011 06-1: 2004-07i)Cold-rolled strip and sheet with higher yield point for cold working made from phosphorus-alloy steels SEW 094 Material no. ZStE220P 1.0397 ZStE260P 1.0417 ZStE300P 1.0448 DIN EN 10 292 Material no. H220PD+Z, +ZF 1.0358 H260PD+Z, +ZF 1.0431 H300PD+Z, +ZF 1.0443 Strip and sheet from stainless steels (DIN EN 10088-2): e.g. austenitic steels X5CrNi18-10 1.4301 or ferritic steels X2CrTi12 1.4512j)Page 8 VW 011 06-1: 2004-074.2DesignFüThe following specifications and the notes on design from the DVS 0929 Specification are used as the basis for the production-friendly design of arc-welded sheet-steel joints. 4.2.1 Joint typesThe weld joint is the area in which the parts are joined by welding. The respective type of joint is determined by the arrangement of the parts with respect to each other (extension, reinforcement, branching), see Table 1. Table 1 – Joint types (DIN EN 12345) Position of parts Description The parts lie in the same plane and touch against each other end to end The parts lie on top of one another in parallel, e.g. in explosive cladding The parts lie in parallel on top of one another and overlap. The parts meet at right angles (Tshaped) and lie on top of one another Two parts lying in the same plane meet on a third part that lies between them at right angles (forming a double T shape) One part meets the other at an angle. The edges of two parts meet at an angle of more than 30° (corner)No. 1 2 3Type of joint Butt joint Edge joint Lap joint4T-joint5Double T-joint6Bevel joint7Corner joint8Front jointThe edges of two parts meet at an angle of 0° to 30°9Multiple jointThree or more parts meet at any angle Two parts, e.g. wires, lie on top of one another in a cross shape10Cross jointPage 9 VW 011 06-1: 2004-074.2.2Weld typesThe weld type is determined by the following: Type of weld joint Type and scope of preparation, e.g. gap optimization (see DIN EN ISO 5817 and DIN EN ISO 9692-1) Material Welding method. 4.2.2.1 Fillet weld The parts lie in two planes with respect to one another, form a fillet joint and are joined by welding. It is possible to differentiate between a fillet weld (Figures 3 and 5) and a double fillet weld (Figure 4) with and without edge preparationFigure 3 - Fillet weld on T-jointFigure 4 – Double fillet weld on T-jointFigure 5 - Fillet weld on bevel joint without edge preparation4.2.2.2 Square butt weld on butt joint, flanged weld The parts lie in one plane, form a gap and are joined by welding, see Figures 6 and 7.Figure 6 - Square butt weld 4.2.2.3 Lap weldFigure 7 – Flanged weldThe parts lie in parallel on top of one another. The face surface of the top sheet and the bottom sheet form a fillet. Both parts are joined by welding. This is termed lap weld (see Figure 8). Variant 1 Variant 2Figure 8 – Lap weldPage 10 VW 011 06-1: 2004-074.2.2.4 Front weld See Figure 9.Figure 9 – Front weld 4.2.2.5 Plug weld See Figure 10.Figure 10 – Plug weld 4.3 4.3.1 Weld dimensions Throat thicknessThe calculated throat thickness a is required for the calculation of the forces acting on a weld joint. For example, the following applies to the design of a fillet weld: a ≤ 0.7 tmin. In production, the actually measured throat thickness s must always be greater than or the same as the calculated throat thickness a. If the throat thickness s (Figure 11) cannot be determined directly, the smallest common throat thickness sN (Figure 12) can be used for an alternative criterion. The smallest common throat thickness sN is the shortest distance between the contact surfaces of component edge and weld metal and the surface of the weld (see also Figures 13 and 14).sN saaFigure 11 - Fillet weldFigure 12 - Fillet weld with deep penetrationPage 11 VW 011 06-1: 2004-07sNsNFigure 13 – Concave weldFigure 14 – Convex weldThe shortest (common) distance between both components of the weld joint shall be measured in order to determine the shortest common throat thickness sN. Excess weld metal must not be considered for convex welds (see Figure 14). 4.3.2 Weld lengthThe calculated weld length l is the weld length defined for the specific design by the designer. Both the starting and end areas (end crater) are used to determine the weld length. In order to improve the dynamic load capacity, the weld length can exceed the component length (Figure 15).l1 = Calculated weld length e.g. component length l2 = Weld seam length Figure 15 – Magnified weld length Proof of sufficient strength is provided by the component-specific strength tests.Page 12 VW 011 06-1: 2004-075Requirements for welds and quality assurance of weldsIn general, the welding quality requirements according to DIN EN 729-1 shall be taken into consideration together with the comprehensive quality requirements set out in DIN EN 729-2. The design of a weld shall be described clearly by indicating the weld’s length, thickness and quality. These requirements are part of the drawing specifications (also see Section 6). Unless other specifications are noted in the drawing, the requirements of Sections 5.1 to 5.5 shall apply. 5.1 Weld qualityIf there is no component-specific test specification, quality level B, high, specified in DIN EN ISO 5817, shall apply. The imperfections specified there are represented for square butt welds and fillet welds on a T-joint. The limit values for imperfections apply to other weld types, too (e.g., flanged weld, fillet weld on lap joint). Unequal weld leg lengths as an imperfection according to DIN EN ISO 5817 must not be evaluated for the fillet weld in joints of sheet metal in the body-in-white and in exhaust systems. 5.2 Penetration depthsThe weld joint is sufficient once a continuous crystalline joint with a measurable penetration depth of f ≥ 0.2 mm is created between the sheets involved. For certain weld types – e.g. fillet weld on lap joint or flanged weld – the penetrations f cannot always be determined if 100% of the face surfaces is included in the weld. Permissible penetration depths f < 0.2 mm shall be indicated in the drawing or specified in a component-specific test specification. The weld quality and/or strength must be verified by means of a dynamic strength test and a microscopic examination. NOTE: Due to the smaller “welding window” the test intervals for f < 0.2 mm (e.g. using microsections) shall be conducted at shorter time intervals or on smaller batch sizes. The processes shall be coordinated with all the departments involved (Design, Quality Assurance, Production).Page 13 VW 011 06-1: 2004-075.3 5.3.1Weld types Square butt weld on butt jointt1sFigure 16 - Square butt weld on butt joint s = throat thickness fSt = penetration The face surfaces (fSt ) shall be 100% melted. Design as flanged weld: s ≥ tmin. (see Figure 16) fSt ≥ 100 %SNt1Figure 17 – Flanged weld sN = smallest common throat thickness The face surfaces (fSt ) shall be 100% melted. sN ≥ tmin. (see Figure 17)t2t2Page 14 VW 011 06-1: 2004-075.3.2Front weldSNf1 SN fL2sNf2t1t2 t1a) b) Figure 18 – Front weld sN fL2. f1,2 tmin. t1 0.2 mmt2t1c)t2sN = smallest common throat thickness fL2 = penetration length f1,2 = penetration 5.3.3 Fillet weld on lap joints1 sN N af2t1hs2Figure 19 - Lap weld s1,2 sN a f2 h = throat thickness = smallest common throat thickness = calculated throat thickness = side wall penetration on the component t2: = gap size s1,2 0.7 tmin. sN f2 s1,2 and sN 0.7 tmin. a ≤ 0.7 tmin. (design recommendation) 0.2mm (see Figure 19)NOTE: If the throat thicknesses s1,2 cannot be determined directly, the smallest common throat thickness sN may be chosen as an alternative criterion.t2Page 15 VW 011 06-1: 2004-075.3.4Fillet weld with deep penetrationt1 f1 s1 sNt2aTheoretical root pointFigure 20 - Fillet weld with deep penetration s1,2 sN a f1,2 = throat thickness (with deep penetration) = smallest common throat thickness = calculated throat thickness = side wall penetration on component t1,2 s1,2 0.7 tmin. sN s1,2 and sN 0,7 tmin. a ≤ 0.7 tmin. f1,2 0.2 mm (see Figure 20)NOTE: If the throat thicknesses s1,2 cannot be determined on the microsection directly, the smallest common throat thickness sN may be chosen as an alternative criterion. 5.3.5 Fillet weld on bevel jointt1sN≤ 30°Figure 21 - Fillet weld on bevel joint sN = throat thickness f2 = penetration sN f2 tmin. 0.2 mm (see Figure 21)The face surface of the upper sheet must be 100 % melted.f2t2f2 s2Page 16 VW 011 06-1: 2004-075.3.6Multiple jointf1f2lt1t3Figure 22 – Three-sheet-T-joint f1,2,3 = penetration fSt1,2 = face surface penetration of t1,2 fSt3 = face surface penetration of t3 5.3.7 Corner joint f1,2,3 > 0.2 mm fSt1,2 ≥ insertion depth l fSt3 = 100% meltedsNt1t2Figure 23 – Corner joint The face surfaces of both sheets must be 100 % melted. Smallest common throat thickness sN ≥ tmin.t2Page 17 VW 011 06-1: 2004-075.3.8Plug weldFor plug weld see Figure 24. The values in Table 2 serve as reference values for the ratio of the sheet thickness to the hole diameter. Table 2 – Hole diameter and sheet thickness Sheet thickness used t (mm) up to 1.0 > 1.00 to 1.25 > 1.25 to 1.50 > 1.50 to 2.00 > 2.0 to 3.00 > 3.00 to 3.50 Hole diameter ∅ or L (mm) ≥6 ≥7 ≥8 ≥9 ≥ 10 ≥ 14 Optionally, long holes for narrow flanges W x L (mm) 6 x 10 6 x 12 8 x 12 -When there are gaps between the sheets, the length of the penetration fL must be equivalent to the length L or to the diameter of the hole, or exceed it. ∅ or L x Bt1 t2 fLf2fSt1,2 = face surface penetration of t1,2 fL = penetration length, width and/or diameter f2 = penetration depthfSt1,2 = 100 % melted fL ≥ ∅ or L or W f2 ≥ 0.2 mm Figure 24 – Plug weldThe face surfaces of the hole must be 100 % melted.Page 18 VW 011 06-1: 2004-075.4Special weld typesAdequate evaluation criteria shall be used to evaluate any special weld types that are not listed here. 5.4.1 Fillet weld on multiple lap jointS1t1 t2 t3 f3S2Figure 25 - Three-sheet lap weld The cross-sections of the upper sheets t1 and t2 must be 100 % melted and the throat thickness a of t1 and t2 must be met. If no specifications are made in the drawing, the following applies as reference value: a = 0.7 tmin2,3 The penetration depth f3 in sheet t3 shall be minimum 0.2 mm.Page 19 VW 011 06-1: 2004-075.4.2Multiple front weld sN2 sN1 sN3 F1 F2 Fi = joining plane i F3 *1) If it is clear that one sheet arrangement in a multiple-sheet arrangement is to be considered as a single sheet, then this sheet shall not be included in the overall evaluation when determining the throat thickness sN. t1 t2 t3 t4*1)Figure 26 – Four-sheet front weld In the case of multiple-sheet joints, the smallest common throat thickness sN of the relevant joining planes is used to determine the throat thickness s, as is the case for a multiple lap joint. Here the following applies: In the relevant joining plane (in Figure 26 - four-fold front weld with the joining planes F1, F2 and F3) the throat thickness sN must be ≥ Σ of the sheet thicknesses on the right and = Σ of the sheet thicknesses on the left of the joining plane. The following applies to Figure 26 as an example: sN1 ≥ t 1 sN2 ≥ ? t(3+4) sN3 ≥ ? t4 fSt = face surfaces t1 t4 < (t2 + t3 + t4 ) < (t1 + t2 + t3 ) t3 + t4 < (t1 + t2 ) fSt 1,2,3,4 = 100% meltedPage 20 VW 011 06-1: 2004-07sN4sN3sN 2 s N1t1 t t34t2Figure 27 – Multiple front weld For multiple front welds in exhaust systems (e.g., sheet layers on the exhaust pipe, Figure 27) the factor 0.7 applies in the determination of the smallest common throat thickness sN: sN1 ≥ 0.7 t1 sN2 ≥ 0.7 (t1 + t2) sN3 ≥ 0.7 (t1 + t2 + t3) sN4 ≥ 0.7 tpipe or or sN2 ≥ 0.7 (t3 + t4) sN3 ≥ 0.7 t4Page 21 VW 011 06-1: 2004-075.4.3Fillet welds on components with round cross sectionsf1 sNtaFigure 28 - Fillet weldt f1 = = t2 f2Figure 29 - Fillet weld with deep penetrationsFigure 30 – Concave fillet weld For Figures 28 and 30 determine the throat thickness s approximately: On workpieces with different geometrical shapes, the shortest distance of the median line between the two workpieces shall be selected as the dimension s. s = throat thickness s ≥ 0.7 tminFor fillet welds on components with a round cross section it is recommended to determine the smallest common throat thickness sN as shown in Figure 29. sN = smallest common throat thickness sN ≥ a. NOTE: In the event of imperfections, e.g. undercuts, DIN EN ISO 5817 shall apply.f2Page 22 VW 011 06-1: 2004-075.4.4Square butt weld on flanged jointf1 f2 t1 sN t2Figure 31 - Fillet weld on specially shaped workpieces sN = smallest common throat thickness f1,2 = penetration depth sN ≥ tmin. (see Figure 31) f1,2 ≥ 0.2 mmPage 23 VW 011 06-1: 2004-075.5 5.5.1Evaluation of imperfections Weld spatterWeld spatter must be avoided as far as possible. Any globules or welding residues that remain stuck to the parts and which could lead to an impairment of function are not permitted. Spatter-free areas shall be defined in the drawing or in a test specification. 5.5.2 General imperfectionsImperfections such as cracks, pores, lack of fusion, gap sizes shall be evaluated, unless otherwise indicated in the drawing, according to DIN EN ISO 5817, quality level B “high”. Unequal weld leg lengths shall not be evaluated for fillet welds on lap joint. For exhaust systems the gap size must not exceed 1.0 mm. 6 Drawing entriesThe graphical representation (for example see Figure 32), dimensioning and symbols for the welding procedures named in Section 1 shall be carried out according to DIN EN 22553.s8a6n x l (e)131/ VW01106-1/h Legend: s8 = actual throat penetration) 8 mm thickness (with deepva6 = design throat thickness (without deep penetration) 6 mm n = number of welds l = minimum weld length; tolerance +5 mm, unless otherwise indicated e = distance between the welds v = initial dimensionExplanation: Weld produced by means of metal inert-gas welding (code number 131 according to DIN EN ISO 4063); evaluation according to VW 011 06-1; horizontal position h according to DIN EN ISO 6947. Figure 32 - Example of application for interrupted fillet weld with initial dimension; symbolic representationPage 24 VW 011 06-1: 2004-077Referenced standards1 Steel Flat Products; Cold Rolled Sheet and Strip; Technical Delivery Conditions; Mild Unalloyed Steels for Cold Forming Weldability; Metallic Materials, Definitions Steels for General Structural Purposes; Quality Standard Quality Requirements for Welding - Fusion Welding of Metallic Materials – Part 1: Guidelines for Selection and Use Quality Requirements for Welding - Fusion Welding of Metallic Materials – Part 2: Comprehensive Quality Requirements Hot Rolled Products of Non-Alloy Structural Steels; Technical Delivery Conditions Stainless Steels - Part 2: Technical Delivery Conditions for Sheet/Plate and Strip of Corrosion-Resisting Steels for General and Construction Purposes Cold Rolled Low Carbon Steel Flat Products for Cold Forming – Technical Delivery Conditions Cold Rolled Uncoated Mild Steel Narrow Steel Strip for Cold Forming Technical Delivery Conditions Hot Rolled Flat Products Made of High Yield Strength Steels for Cold Forming – Part 1: General Delivery Conditions Hot Rolled Flat Products Made of High Yield Strength Steels for Cold Forming – Part 2: Delivery Conditions for Thermomechanically Rolled Steels Cold-Rolled Flat Products Made of High Yield Strength Micro-Alloyed Steels for Cold Forming - General Delivery Conditions Continuously Hot-Dip Coated Strip and Sheet of Steels with Higher Yield Strength for Cold Forming – Technical Delivery Conditions Welding - Multilingual Terms for Welded Joints with Illustrations Welded, Brazed and Soldered Joints - Symbolic Representation on Drawings Welding – Fusion-Welded Joints in Steel, Nickel, Titanium and Their Alloys (Beam Welding Excluded) – Quality Levels for Imperfections Welding and Allied Processes - Nomenclature of Processes and Reference Numbers Welds - Working Positions - Definitions of Angles of Slope and Rotation Welding and Allied Processes – Recommendations for Joint Preparation Part 1: Manual Metal-Arc Welding, Gas-shielded Metal-Arc Welding, Gas Welding, TIG Welding and Beam Welding of Steels Welding and Allied Processes – Vocabulary - Part 1: Metal Welding Processes Recommendations for Selection of Acceptance Levels according to DIN EN 25 817; Butt Welds and Fillet Welds on Steel Notes on Design for MIG/MAG Welding using Industrial Robots Cold-Rolled Strip and Sheet of Micro-Alloyed Steels with Higher Yield Point for Cold Forming – Technical Supply SpecificationsThe last publication date of withdrawn standards is provided in parentheses. DIN 1623-1 (02.83) DIN 8528-1 DIN 17100 (01.80) DIN EN 729-1 DIN EN 729-2 DIN EN 10025 DIN EN 10088-2 DIN EN 10130 DIN EN 10139 DIN EN 10149-1 DIN EN 10149-2 DIN EN 10268 DIN EN 10292 DIN EN 12345 DIN EN 22553 DIN EN ISO 5817 DIN EN ISO 4063 DIN EN ISO 6947 DIN EN ISO 9692-1 DIN ISO 857-1 DVS 0705 DVS 0929 SEW 093 (03.87)1In this section terminological inconsistencies may occur as the original titles are used.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

大众
集团标准TL 52440
版本:2009.04
类别编号:55121
描述:聚酰胺6-GF,PA6,玻璃纤维增强,注射成型,吸管,PA6-GF30,PA6-GF35
PA6,玻璃纤维增强,已完成部分
材料要求2011年9月
2种类型:没有附录,A 以下内容增加到2009年4月的版本中
注意增加的使用限制。

不适用新设计和
图纸改变
之前版本由以下代替:
TL 52440::1996-01,2002-10 VW50134-PA6-7-A
VW50134-PA6-8-A
标准部门EKDV,1733
改动
与TL 52440:2002-10比较,以下内容有改动:
--粘度测量取消
--延伸裂缝敏感度增加
--抗老化测试修改
1 范围
该供货技术规范(TL-德语缩写)规定了组成PA6-GF30或PA6-GF35等部件的吸管的材料要求。

2 描述
关于35%玻璃纤维增强的描述例子:
PA6-GF35按TL 52440-A
3 要求
3.1 主要要求
首次供货和更改的批准按VW011 55.
放射性按VW 501 80(如果图纸中有要求)
抗大气腐蚀性能按VW 501 85(如果图纸中有要求)
避免有害物质按VW 911 01
为了全面、彻底地检验,需用5个成品部件
3.2 物理特性
这些成品部件的内里、外表都不得有诸如流淌线、收缩孔、裂纹之类的缺陷和加工上的
缺点。

在肋条和加强处如果有缩孔,也只有在成品部件的功能未受其损害时才是容许的。

成品部件必须可以实现完美无缺的装配。

玻璃纤维受其损害时才是容许的。

成品部件必须可以实现完美无缺的装配。

玻璃纤维在材料中的分布必须十分均匀,使得成品部件在其三个不同部位上取出的试样中,相互之间玻璃纤维含量之差不大于1.0%
3.3制造方法
注射成型法
3.4规格
—TL 524 40聚酰6含增强玻璃纤维30%
—TL 524 40-A 聚酰胺6含增强玻璃纤维35%
3.5标记法按VDA260
—TL 524 40 >PA6-GF30<
—TL 524 40-A >PA6-GF35<
3.6预处理
单项试验所需要的试样,在试验之前,至少要在ISO554-23/50规定的标准气候中预处理72h
3.7测试结果的评估
所取得的数值要适用于成品部件每次单项测试和成品部件的任何部件。

4材料要求
4.1材料
见6.1,聚酰胺6,热稳定化的,玻璃纤维增强
4.2玻璃纤维含量按DIN EN ISO 1172
—TL 524 40(30±2)%
—TL 524 40-A(35±2)%
4.3颜色
按图纸
5性能要求
见表1
表1
6试验说明
6.1原材料
鉴别性的测试用红外线光谱仪来完成。

6.2含水量
从成品件不同的部位上取出试样,至少至少3个,每个大小(20×20)mm,重0.01g,置于真空中干燥,直至达到在100 °C情况下的重量稳定性。

试样在回返天平之前,必须在干燥器中冷却到(23±2)°C。

6.3熔化温度
如果使用微分扫描式量热法(DSC)来测试熔化温度,必须用以下程序:充作试样的是一个平行平面的成品件量热仪。

充作试样的是一个平行平面的成品件量,重量约10 mg。

测试参数:试样以10°C/min的加热率从50°C开始到230°C。

试验宜在室内环境下进行。

6.4球压痕硬度
测试至少用3件样品,其尺寸为(20×20) mm,每件试样测试2次。

测试之前,塑造的成品件有花纹的那一面上的点蚀要用平磨工具加以清除。

把磨平的这个平面做支承面。

在未加工的背面上进行测试。

6.5抗弯强度
最大强力的抗弯强度测量按DIN EN ISO 178。

除了试样脱离以下情况:长度为(50±1) mm;宽(6±0.2)mm;厚度相当于产品厚度(最大为;厚度相当于产品厚度(最大为;厚度相当于产品厚度(最大为;厚度相当于产品厚度(最大为4 mm);跨距40 mm;支架半径为(1.0~1.2)mm。

试验速度为(14±1)mm/min。

试样由一边有花纹的模件做成。

置于试验机支架上的试样,要使其有花纹的一面对准锤头。

6.6冲击韧性
冲击抗弯试验(宽边冲击)按DIN EN ISO 179-1。

除了试样脱离以下情况:长度为(50±1)mm,宽(6±0.2)mm,厚度相当于产品的厚度(最大达到4 mm);跨距为40 mm。

试验仪器是:4J型摆式冲击试验机。

试样置于摆式冲击试验机时,要使其有花纹的那面对准锤刃。

6.7缺口冲击韧性
冲击抗弯试验(宽边冲击)按DIN EN ISO 179-1进行。

除了试样脱离以下情况:长度为(50±1)mm,宽(6±0.2)mm,厚度相当于产品的厚度(最大达到4 mm);跨距为40 mm。

试验仪器是4J 型摆式冲击试验机。

试样宽边上的U形切口宽度为0.8 mm。

该切口的深度为试样厚度的1/3。

切口底面由于受到边缘的局限,其曲率半径只有<0.1 mm。

若用一边有花纹的成品件做试样,则在有花纹的那边上刻出凹痕(缺口)。

6.8工艺
至少要有3个完整的成品放置于纯丙酮里,在室温下48h。

试样在经过老化后必须漂洗
6.9耐老化性
把完整的成品件或成品的截断存放在(150±1)℃的干燥箱中放置1000 h。

待冷却到(23±2)℃和老化时间168h,在ISO 554-23/50的标准环境下,抗弯强度测试和缺口冲击韧性测试必须重复试验。

6.10热性能
老化试验按DIN 53 497的B法进行,至少要有1个完整的成品件进行试验。

老化时间:(22+2)h;老化温度:(160±2)℃。

6.11低温性能
老化试验至少要有1个完整的成品件在(-40±1)℃的空气条件下进行(22+2)h
6.12耐光照性
如果光照周期数在图纸上没有明确规定,则可用下面三条来控制:
—结构件在间接日照情况下完成3个光照周期。

—结构件(如门饰条)在直接日照情况下完成5个光照周期。

—结构件(例如后隔板)在强裂日照情况下完成10个光照周期。

7相关参考文献
TL1010 汽车内部装饰材料,燃烧性状;材料要求。

PV1303 非金属材料;汽车室内构件的光照试验
VW 011 55 汽车外购件概述,首次供货和更改的批准
VW 501 80 汽车室内构件;放射特性
VW 501 85 汽车构件;耐风化性
VW 911 01 汽车的环境标准,汽车零件,材料,燃料,避免有害物质DIN 53 479 塑料试验;由热塑性模塑材料在无外加机械负荷情况下完
成的模制件。

DIN EN 20105-A02 纺织品;颜色牢度试验,A02部分:颜色变化评估时用的
灰色尺度
DIN EN ISO 1172 纺织玻璃纤维增强的合成材料,预浸树脂带,模塑材料和层
压塑料,纺织玻璃纤维含量和矿物填料含量。

DIN EN ISO 1183 塑料—测定无分子塑料的密度方法;第一部分,浸没法,液
体比重计法和滴定法
DIN EN ISO 178 塑料;弯曲性能测定
DIN EN ISO 179-1 塑料,夏皮冲击性能塑料,夏皮冲击性能;第一部分:非仪
表化冲击韧性试验第一部分:非仪表化冲击韧性试验
DIN EN ISO 2039-1 塑料--,硬度测量,第1部分:球压试验
DIN EN ISO 3146 塑料—毛细管和偏光显微镜术的部分结晶聚合物的熔化性状
测试(熔化温度和熔化范围)
ISO 554 预处理和/或测试的标准环境;说明
VDA 260 汽车结构件;材料标记法。

相关文档
最新文档