简单事件的概率--课后作业
9上期末复习第25章《概率初步》课堂教学实录

第6课 概率初步课堂实录(复习课)【预习检查】师:同学们,这节课我们来共同复习《概率初步》,要求理解随机事件、概率的意义;掌握计算简单事件概率的方法;理解频率估计概率.〖评析〗教师要求语速较慢,之后停顿5秒,让学生明确本节课的目标.(板书:概率初步)师:请大家拿出自己的预习作业,请几个同学展示一下第7题的做法.(学生拿出自己的作业,教师分别请了4个学生上黑板板演)师:黑板上用了哪些方法?请你说说.(学生小声议论后,教师让一个学生点评)生:第一个用的是列举法,第二个用的树形图,第三个用的列表法,第四个用的也是树形图.(教师分别在学生所做的题前写上三个方法)〖评析〗教师及时对计算简单事件概率的方法进行归纳,突出本课的重点.师:你还有什么疑问?生:第8题.师:哪个同学讲一讲第8题做法?生:用树形图,其中只有3,4,5能组成直角三角形.(以下学生具体讲,教师适当板书)生:【知识梳理】第5题.师:填“频率”.试验的次数足够大,可用频率估计概率.〖评析〗教师及时关注学生普遍存在的问题加以解决.【课内探究】(教师出示探究一,读题(1)后让一学生口答)生:(教师让三个学生上黑板板演(2)(3)(4)题的解法,2分钟后)〖评析〗教师充分发挥学生的主体作用,以练带讲.师:请你说说黑板上的做法对吗?生:对的.师:你还有哪些方法?生:三个方法都能解出.师:请你认真思考一下,(2)(3)(4)题都是取的两个球,你能说出其中的不同吗?生:第(2)题中球不放回,第(3)题中的放回.师:第(4)题呢?生:是从两堆中取的.师:说的很好!(2)(3)题都是从一个袋中取的,要注意放回与不放回,而第(4)题是分别从两个袋中,可以看着是从两堆,两个组,两个不同部分,分块取等等.〖评析〗教师故意“混淆视听”,及时引导学生加以点评,理清学生思路.(教师出示探究二,分别让两个学生在黑板上解答,2分钟后)师:这两个题中出现的都是两个汽车,有什么不同吗?请小组讨论一下.(学生小组讨论,教师训示,且参与了其中一组,2分钟后)师:请哪位同学说说不同?生:哪个主动的话,就写在前面.生:是哪个选择哪个的事,有选择性的写到前面,被选择的写到后面.师:说得很好,有主动性的作为步骤(标题)写在前面,被动的被选择的写到步骤里.〖评析〗教师通过小组讨论,重点关注学生在活动中发表的个人见解以及学生能否找到解决问题的方法.师:探究三请大家课后探讨.【当堂检测】师:现在我们对本课知识来一个评价.(约十分钟后收交作业)(教师布置课外作业)。
初中简单事件概率教案

初中简单事件概率教案教学目标:1. 理解概率的定义,掌握必然事件、不可能事件、随机事件的概念。
2. 学会使用频率估计概率,了解大量实验中频率与概率的关系。
3. 能够运用概率公式计算简单事件的概率。
教学重点:1. 概率的定义及各类事件的概念。
2. 频率与概率的关系。
3. 概率公式的运用。
教学难点:1. 理解并掌握必然事件、不可能事件、随机事件的概念。
2. 运用频率估计概率。
3. 运用概率公式计算简单事件的概率。
教学过程:一、导入(5分钟)1. 引入话题:讨论日常生活中的一些随机现象,如抛硬币、抽奖等。
2. 提问:这些现象中,哪些是必然事件?哪些是不可能事件?哪些是随机事件?二、新课讲解(15分钟)1. 讲解必然事件、不可能事件、随机事件的概念。
2. 讲解概率的定义:某种事件在某一条件下可能发生,也可能不发生,但可以知道它发生的可能性的大小,我们把刻划(描述)事件发生的可能性的大小的量叫做概率。
3. 讲解频率与概率的关系:对一个随机事件做大量实验时会发现,随机事件发生的次数(也称为频数)与试验次数的比(也就是频率)总是接近于一个常数,这个常数就是事件发生的概率。
三、实例演示与练习(15分钟)1. 通过抛硬币、抽奖等实例,让学生观察并记录实验结果,引导学生运用频率估计概率。
2. 让学生分组讨论,总结频率与概率的关系。
3. 运用概率公式计算一些简单事件的概率,如抛硬币两次正面朝上的概率等。
四、课堂小结(5分钟)1. 回顾本节课所学内容,巩固必然事件、不可能事件、随机事件的概念。
2. 强调频率与概率的关系,以及如何运用频率估计概率。
3. 提醒学生掌握概率公式的运用。
五、课后作业(课后自主完成)1. 完成教材课后练习题。
2. 运用概率公式计算生活中的一些简单事件概率。
教学反思:本节课通过讨论日常生活中的随机现象,引导学生理解必然事件、不可能事件、随机事件的概念。
通过实例演示和练习,让学生掌握频率与概率的关系,以及如何运用频率估计概率。
8.3概率的简单性质

思考:
(2)在射击训练中,可以定义许多事件,例如:事件0 ={没有打中},
事件1 ={打中1环},事件2 ={打中2环},…;事件10 ={打中10环},事
件 ={打中的环数是偶数},事件 ={打中的环数大于8环}等.类比集合
之间的关系与集合的运算,这些事件之间有怎样的关系?
射击运动员进行一次射击训练中,事件9 ={打中9环}与事件
互斥事件的概率加法公式可以推广到多个互斥事件的情
形.以事件、事件与事件三个事件为例,如果事件、
事件与事件两两互斥,则
∪ ∪ = + + ().
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
例1 在不包含大、小王的52张扑克牌中随机抽取1张牌,事件
解
设事件 ={点数为偶数},事件 ={点数为1},
3
6
则 = =
1
,
2
=
1
.
6
1
1
2
所以 = + = 2 + 6 = 3.
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
在某个闹市区的一个角落里,一个人身边放着一个行李包,里面放着小镜
子、小梳子、圆珠笔等小物品,每个小物品的价值约1元.这个人手里托着一
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
一般地,当事件 发生则事件 与事件 中至少有一个发生时,
称事件为事件与事件的和事件,记作事件 = ∪ .
若事件和事件互斥,则
∪ = + .
——互斥事件的概率加法公式
情境导入 探索新知
例题辨析 巩固练习 归纳总结 布置作业
第4课时 概率简单应用

第4课时 概率简单应用——小结节与思考(教案)主备人:颜玫 左元凯 蔡学珍【学习目标】1、掌握概率的意义,运用列举法(包括列表、画树状图)计算简单事件发生的概率.2、通过实例进一步丰富对概率的认识,运用概率知识解决一些实际问题.【探索活动】问题一:如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.小亮和小颖利用它们做游戏,游戏规则是:同时转动两个转盘,当转盘停止后,指针所指区域内的数字之和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.(1)请你通过画树状图的方法求小颖获胜的概率. (2)你认为该游戏规则是否公平?若游戏规则公平, 请说明理由;若游戏规则不公平,请你设计出一种公 平的游戏规则.问题二:有两个可以自由转动的均匀转盘A 、B ,均被分成4等份,并在每份内都标有数字(如图所示).李明和王亮同学用这两个转盘做游戏.阅读下面的游戏规则,并回答下列问 题:(1)用树状图或列表法,求两数相加和为零的概率; (2)你认为这个游戏规则对双方公平吗?若公平,请说明理由;若不公平,请修改游戏规则中的赋分标准,使游戏变得公平.问题三:某野生动物园每天对游客正常开放.若游客被动物咬伤的概率是P=0.000005. 一家保险公司要为游客保险,若保险公司若收取保费1元,许诺一旦某游客被动物咬伤,要赔偿他10万元人民币.平均来说,保险公司是赔还是赚?甲问题四:口袋里有红、绿、黄三种颜色的球,除颜色外其余都相同.其中有红球4个,绿球5个,任意摸出1个球,做这个试验300次,其中摸出1个球是绿球的次数为100次.求:(1)口袋里黄球的个数; (2)任意摸出1个是红球的概率.课堂练习:1、小明和小亮做游戏,他们利用地上的图案(如图),蒙上眼在一定距离外向图案内掷小石子,掷中阴影小明赢,否则小亮赢,未掷中圈内不算.下表是进行中统计的一组数据。
最新整理初三数学简单事件的概率教学设计.docx

最新整理初三数学教案《简单事件的概率》教学设计《简单事件的概率》教学设计教学目标:1、了解事件A发生的概率为;2、掌握用树状图和列表法计算涉及两步实验的随机事件发生的概率。
3、通过实验提高学生学习数学的兴趣,让学生积极参与数学活动,在活动中发展学生的合作交流意识和能力。
教学重点:进一步经历用树状图、列表法计算随机事件发生的概率。
教学难点:正确地利用列表法计算随机事件发生的概率。
教学过程:一、创设故事情景国王和大臣的故事相传古代有个王国,国王非常阴险而多疑,一位正直的大臣得罪了国王,被叛死刑,这个国家世代沿袭着一条奇特的法规:凡是死囚,在临刑前都要抽一次“生死签”(写着“生”和“死”的两张纸条),犯人当众抽签,若抽到“死”签,则立即处死,若抽到“生”签,则当场赦免。
国王一心想处死大臣,与几个心腹密谋,想出一条毒计:暗中让执行官把“生死签”上都写成“死”。
问题:1、在国王的阴谋中,大臣被处死的可能性为多大?2、在法规中,大臣被处死的可能性为多大?3、大臣会想到什么计策?然而,在断头台前,聪明的大臣迅速抽出一张纸签塞进嘴里,等到执行官反应过来,纸签早已吞下,大臣故作叹息说:“我听天意,既将苦果吞下,只要看剩下的签是什么字就清楚了。
”剩下的当然写着“死”字,国王怕犯众怒,只好当众释放了大臣。
国王“机关算尽”,想把不确定事件变为确定事件,反而搬起石头砸自己脚,让机智的大臣死里逃生。
问题4、在大臣的计策中,大臣被处死的可能性为多大?二、搜索生活,数学就在我们身边1.从标有1-10的数字小片中,随机地抽出一张卡片,则抽出5的可能性多大?2.如图甲三色转盘,让转盘自由转动一次,“指针落在黄色区域”的可能性是多少?那乙呢?甲已三、新课教学。
1、问题5、事件发生的可能性大小是由什么来决定?如果几个事件的发生条件相同,那么这些事件发生的可能性相同.这样的事件称为等可能性事件.判断下列事件是否为等可能事件?(1)抛掷一枚均匀的硬币,正面朝上。
全程助学与评估数学9年级上册参考答案

第一部分!全程助学
九上
!"!!二次函数 当堂训练
第章!二次函数
!"#!$!$! %&!$!'!"(')!*#$ !+!,!&!-!,!!$( %$%(!$! $!$!.!!"($&%#$ !
$)"##$!&! '"($&%/+$!$!+
%'
#%
& ,
$*!$$&!
#(
& ,
)3:;(!$$&3$
!"+"$!二次函数的应用
当堂训练
槡 !!&!$!%!!$+!'! $!+!&!&!+!+!,!!"(+%#!)###+! $3( +%#0*)#!&/+ (
由 可得 当 取 时 有最大值即定价为 万元 %0#$*$+#*'$!' $ 3(%0#%!!&$*&)! # !!& 3
连线略 !!&!$!
$ &
!$!
!'!4!+!2!
"2'
得 顶点为 0()! #!(+#$(%$,+)*%$)
!%2!)&,*2 ($.
!"'!二次函数的性质
当堂训练
!!!"(&#$*$#*%&%)!$"(&#*'$*-&%)! '"(&#%#!#%#$&%)!$!(!!
浙教版数学九年级上册《2.2简单事件的概率》说课稿

浙教版数学九年级上册《2.2 简单事件的概率》说课稿一. 教材分析浙教版数学九年级上册《2.2 简单事件的概率》这一节,是在学生已经掌握了概率的定义和一些基本概念的基础上进行讲解的。
本节课的主要内容是让学生理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。
教材通过大量的实例,使学生体会事件的随机性,培养学生的概率观念,提高学生运用概率知识分析和解决问题的能力。
二. 学情分析九年级的学生已经具备了一定的逻辑思维能力和抽象思维能力,对于概率的基本概念和定义已经有所了解。
但是,学生在学习过程中,对于事件的分类和概率的计算方法可能还存在一定的困难。
因此,在教学过程中,我将会注重引导学生理解事件之间的关系,掌握概率的计算方法,并能够将概率知识应用到实际问题中。
三. 说教学目标1.知识与技能:使学生理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。
2.过程与方法:通过大量的实例,让学生体会事件的随机性,培养学生的概率观念,提高学生运用概率知识分析和解决问题的能力。
3.情感态度与价值观:激发学生学习概率的兴趣,培养学生积极思考、合作交流的学习态度,使学生感受到数学与生活的紧密联系。
四. 说教学重难点1.教学重点:理解并掌握简单事件的概率计算方法,能够运用概率知识解决实际问题。
2.教学难点:事件的分类和概率的计算方法。
五. 说教学方法与手段在教学过程中,我将采用讲授法、案例分析法、讨论法等多种教学方法,引导学生通过观察、思考、交流、实践等方式,掌握概率知识。
同时,利用多媒体教学手段,展示实例和计算过程,提高学生的学习兴趣和效果。
六. 说教学过程1.导入:通过一个简单的实例,引出本节课的主题,激发学生的学习兴趣。
2.基本概念:讲解事件的分类和概率的定义,让学生理解并掌握基本概念。
3.实例分析:分析多个实例,让学生体会事件的随机性,引导学生掌握概率的计算方法。
4.方法讲解:讲解如何将概率知识应用到实际问题中,让学生学会运用概率知识解决问题。
简单事件的概率

XXXX教育______学科个性化教学教案授课时间:年月日备课时间年月日年级九课程类别课时学生姓名授课主题简单事件的概率授课教师教学目标理解等可能事件的概念,并准确判断某些随机事件是否等可能;教学重难点等可能事件和利用概率公式求事件的概率教学方法讲练结合教学过程1、课程导入/错题讲解:(1)1998年,在美国密歇根州的一个农场里出生了一头白色奶牛。
据统计平均出生1千万头牛才会有一头是白色的。
你认为出生一头白色奶牛的概率是多少?(2)设置一只密码箱的密码,若要使不知道秘密的人拨对密码的概率小于,则密码的位数至少需要多少位?这些问题都需要我们进一步学习概率的知识来解决。
本章我们将进一步学习简单事件的概率的计算、概率的估计和概率的实际应用。
点拨教学过程2.知识点讲解1、在一定条件下一定发生的事件叫作必然事件;在一定条件下一定不会发生的事件叫作不可能事件;在一定条件下可能发生,也可能不发生的事件叫作不确定事件或随机事件。
2、为了确定简单事件发生的各种可能的结果,通常用列表、画树状图法。
当实验包含两步时,用列表法与画树状图法求发生的结果数均比较方便;但当实验存在三步或三步以上时,用画树状图的方法求事件发生的结果数较为方便。
3、我们把事件发生的可能性的大小也称为事件发生的概率。
事件A发生的概率记作P(A),概率的计算公式为:P(A)=nm(m≤n)M为事件A发生的可能出现的结果数;n为事件发生的所有可能结果数必须事件发生的概率是1;不可能事件的概率为0;随机事件A发生的概率范围是0<P(A)<14、简单事件的分类及其概率的求法①、只涉及一步实验的随机事件发生的概率当事件发生的各种结果的可能性相同时,直接找出事件A发生的可能的结果数与所有可能出现的结果总数,再运用概率公式求解②、涉及两步实验的随机事件发生的概率利用图表法或树状图求出事件发生的可能的结果数与所有可能出现的结果总数,再运用概率公式求解。
③、涉及三步或三步以上的实验的随机事件发生的概率利用树状图求出事件发生的可能的结果数与所有可能出现的结果总数,再运用概率公式求解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章简单事件的概率A卷:基础知识部分一、细心填一填1.抛掷一枚各面分别标有1,2,3,4,5,6的普通骰子,写出这个实验中的一个可能事件:。
2.随意地抛掷一只纸可乐杯,杯口朝上的概率约是0.22,杯底朝下的概率约是0.38,则横卧的概率是;3.在中考体育达标跳绳项目测试中,1分钟跳160次为达标,小敏记录了他预测时1分钟跳的次数分别为145,155,140,162,164,则他在该次预测中达标的概率是__________ 4.十字路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当你抬头看信号灯时,是黄灯的概率为_______________5.从装有5个红球和3个白球的袋中任意取4个,那么取道的“至少有1个是红球”与“没有红球”的概率分别为和;二、精心选一选6.以下说法正确的是( )A.在同一年出生的400人中至少有两人的生日相同B.一个游戏的中奖率是1%,买100张奖券,一定会中奖C.一副扑克牌中,随意抽取一张是红桃K,这是必然事件D.一个袋中装有3个红球、5个白球,任意摸出一个球是红球的概率是7.从一副扑克牌中抽出5张红桃、4张梅花、3张黑桃放在一起洗匀后,从中一次随机抽出10张,恰好红桃、梅花、黑桃3种牌都抽到,这件事件()A.可能发生 B.不可能发生 C.很有可能发生 D.必然发生8.设有12只型号相同的杯子,其中一等品7只,二等品3只,三等品2只。
则从中任意取一只,是二等品的概率等于()A.112B.16C.14D.7129.(2005年杭州市)有一对酷爱运动的年轻夫妇给他们12个月大的婴儿拼排3块分别写有”20”,”08”和”北京”的字块,如果婴儿能够排成”2008北京”或者”北京2008”,则他们就给婴儿奖励.假设婴儿能将字块横着正排,那么这个婴儿能得到奖励的概率是 ( )A.16B.14C.13D.1210.下图的转盘被划分成六个相同大小的扇形,并分别标上1,2,3,4,5,6这六个数字,指针停在每个扇形的可能性相等。
四位同学各自发表了下述见解:甲:如果指针前三次都停在了3号扇形,下次就一定不会停在3号扇形; 乙:只要指针连续转六次,一定会有一次停在6号扇形; 丙:指针停在奇数号扇形的概率与停在偶数号扇形的概率相等;丁:运气好的时候,只要在转动前默默想好让指针停在6号扇形,指针停在6号扇形的可能性就会加大。
其中,你认为正确的见解有( )A .1个B .2个C .3个D .4个三、耐心解一解11.一张圆桌旁有四个座位,A 先坐在如图所示的座位上,B 、C 、D 三人随机坐到其他三个座位上。
求A 与B 不相邻而坐的概率。
12.某电脑公司现有A ,B ,C 三种型号的甲品牌电脑和D ,E 两种型号的乙品牌电脑.希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1) 写出所有选购方案(利用树状图或列表方法表示);(2) 如果(1)中各种选购方案被选中的可能性相同,那么A 型号电脑被选中的概率是多少?(3) 现知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示),恰好用了10万元人民币,其中甲品牌电脑为A 型号电脑,求购买的A 型号电脑有几台.123456A 圆桌13.苏州市区某居民小区共有800户家庭,有关部门准备对该小区的自来水管网系统进行改造,为此,需了解该小区的自来水用水的情况。
该部门通过随机抽样,调查了其中的30户家庭,已知这30户家庭共有87人。
(1)这30户家庭平均每户__________人;(精确到人) (2)这30户家庭的月用水量见下表:月用水量()4 6 7 12 14 15 16 18 20 25 28 户数12332534 42 1求这30户家庭的人均日用水量;(一个月按30天计算,精确到) (3)根据上述数据,试估计该小区的日用水量?(精确到)14.(2005年泰州市)学校门口经常有小贩搞摸奖活动.某小贩在一只黑色的口袋里装有只有颜色不同的50只小球,其中红球1只,黄球2只,绿球10只,其余为白球.搅拌均匀后,每2元摸1个球.奖品的情况标注在球上(如下图)(1)如果花2元摸1个球,那么摸不到奖的概率是多少?(4分)(2)如果花4元同时摸2个球,那么获得10元奖品的概率是多少?(5分)1.03m 3001.0m 31m 8元的奖5元的奖1元的奖无 奖品B 卷(激活训练部分)一、细心填一填15.小红、小明、小芳在一起做游戏的先后顺序。
他们约定用“剪子、包袱、锤子”的方式确定。
问在一个回合中三个人都出包袱的概率是___________。
16.如果甲邀请乙玩一个同时抛掷两枚硬币的游戏,游戏的规则如下:同时抛出两个正面,乙得1分;抛出其他结果,甲得1分. 谁先累积到10分,谁就获胜.你认为 17.某射手在同一条件下进行射击,结果如下表所示: 射击次数(n ) 10 20 50 100 200 500 … 击中靶心次数(m) 8 19 44 92 178 455 … 击中靶心频率(m n)…请填好最后一行的各个频率,由此表推断这个射手射击1次,击中靶心的概率的是 ;18.对某名牌衬衫抽检结果如下表: 抽检件数 10 20 100 150 200 300 不合格件数13469如果销售1000件该名牌衬衫,至少要准备 件合格品,供顾客更换19.一只不透明的布袋中有三种小球(除颜色以外没有任何区别),分别是2个红球,3个白球和5个黑球,每次只摸出一只小球,观察后均放回搅匀.在连续9次摸出的都是黑球的情况下,第10次摸出红球的概率是 .二、精心选一选20.一个均匀的立方体六个面上分别标有数1,2,3,4,5,6.右图是这个立方体表面的展开图.抛掷这个立方体,则朝上一面上的数恰好等于朝下一面上的数的21的概率是( ) A 、61 B 、31C 、21D 、3221.把标有号码1,2,3,……,10的10个乒乓球放在一个箱子中,摇匀后,从中任意取一个,号码为小于7的奇数的概率是( ) A .310 B .710 C .25D .3522.中央电视台“幸运52”栏目中的“百宝箱”互动环节,是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标牌的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到它就不得奖。
参加这个游戏的观众有三次翻牌的机会。
某观众前两次翻牌均得若干奖金,如果翻过的牌不能再翻,那么这位观众第三次翻牌获奖的概率是 A .41 B .61 C .51 D .203 23.两道单选题都含有A 、B 、C 、D 四个选择支,瞎猜这两道题恰好全部猜对的概率有( ) A .14 B .12 C .18 D .11624.一只小鸟自由自在地在空中飞行,然后随意落在图中所示的某个方格中(每个方格除颜色外完全一样),那么小鸟停在某个黑色方格中的概率是( ) A.12 B.13 C.14D.51三、耐心解一解 25.(2005年无锡市)四张大小、质地均相同的卡片上分别标有数字1,2,3,4,现将标有数字的一面朝下扣在桌子上,从中随机抽取一张(不放回),再从桌子上剩下的3张中随机抽取第二张.(1)用画树状图的方法,列出前后两次抽得的卡片上所标数字的所有可能情况; (2)计算抽得的两张卡片上的数字之积为奇数的概率是多少?26.(泸州市2005年)某篮球队在平时训练中,运动员甲的3分球命中率是70%,运动员乙的3分球命中率是50%. 在一场比赛中,甲投3分球4次,命中一次;乙投3分球4次,全部命中. 全场比赛即将结束,甲、乙两人所在球队还落后对方球队2分,但只有最后一次进攻机会了,若你是这个球队的教练,问:(1)最后一个3分球由甲、乙中谁来投,获胜的机会更大?(2)请简要说说你的理由27.根据上表解下列各题:(1)某人今年50岁,他当年去世的概率是多少?他活到80岁的概率是多少?(保留三个有效数字)(2)如果有20000个50岁的人参加人寿保险,当年死亡的人均赔偿金为10万元,预计保险公司需付赔偿的总额为多少?28.质量检查员准备从一批产品中抽取10件进行检查,如果是随机抽取,为了保证每件产品被检的机会均等;(1)请采用计算器模拟实验的方法,帮质量检查员抽取被检产品;(2)如果没有计算器,你能用什么方法抽取被检产品?29.A、B两人做游戏,掷一枚硬币,若正面出现则A得1分,反面出现则B得1分,先得10分者获胜,胜者获得全部赌金。
现在A已得8分,B已得7分,而游戏因故中断,问赌金应如何分配才合理?C组(能力提升部分,)30.一堆彩球有红、黄两种颜色,首先数出的50个球中有49个红球,以后每数出8个球中都有7个红球,一直数到最后8个球,正好数完,在已经数出的球中红球的数目不少于90%。
(1)这堆球的数目最多有多少个?(2)在(1)的情况下,从这堆彩球中任取两个球,恰好为一红一黄的概率有多大?参考答案:A 卷(基础知识部分)一、细心填一填1.数字6朝上 2.0.4 3.0.4 4.112 5.1 0二、精心选一选6.A 7.D 8.C 9.C 10.A三、耐心解一解(第11~13题各6分,第14题7分,共25分) 11.3112.解:(1) 树状图如下: 列表如下:有6种可能结果:(A ,D),(A ,E ),(B ,D ),(B ,E ),(C ,D ),(C ,E ).(2) 因为选中A 型号电脑有2种方案,即(A ,D)(A ,E ),所以A 型号电脑被选中的概率是31(3) 由(2)可知,当选用方案(A ,D )时,设购买A 型号、D 型号电脑分别为x ,y 台,根据题意,得⎩⎨⎧=+=+.10000050006000,36y x y x解得⎩⎨⎧=-=.116,80y x 经检验不符合题意,舍去;当选用方案(A ,E)时,设购买A 型号、E型号电脑分别为x ,y 台,根据题意,得 ⎩⎨⎧=+=+.10000020006000,36y x y x解得⎩⎨⎧==.29,7y x所以希望中学购买了7台A 型号电脑. 13.(1)2.9(2)0.174m 3 (3)404m 314.(1)∵白球的个数为50-1-2-10=37∴摸不到奖的概率是:3750(2)获得10元的奖品只有一种可能即同时摸出两个黄球 ∴获得10元奖品的概率是:12549 =11225B 卷(激活训练部分)一、细心填一填 15.12716.甲获胜的可能性大 17.0.895 18. 30 19.15二、精心选一选(每题3分,共15分) 20.B 21.A 22.B 23.D 24.B三、耐心解一解(第25~27题各6分,第28题7分,共25分) 25、(1)(2)P (积为奇数)=61 26.解法一:(1)最后一个三分球由甲来投(2)因甲在平时训练中3分球的命中率较高 解法二:(1)最后一个3分球由乙来投(2)因运动员乙在本场中3分球的命中率较高27.(1)0.0122、0.206 (2)951÷78009×20000×10≈2438.18万 28.答案:(1)利用计算器模拟产生随机数与这批产品编号相对应,产生10个号码即可。