高中数学-导数及其应用导学案

合集下载

高三数学 3.9导数及其应用复习导学案

高三数学 3.9导数及其应用复习导学案

山东省高密市第三中学高三数学 3.9导数及其应用复习导学案一、考纲要求:1.通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵。

2.通过函数图像直观地理解导数的几何意义。

3.能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数, 二、基础知识自测:1.求下列函数的导数:(1)常函数:y=c(c 为常数)(2)幂函数:3y x = ; y=1x ; y = (3)指数函数: 2x y =; x y e = ;(4)对数函数:2log y x =; y lnx = ;(5)正弦函数:y=sinx(6)余弦函数:y=cosx2.求下列函数的导数:(1)xe x y 2=; (2)x x y ln =; (3)x x y ln 2=3.如果某物体的运动方程是22(1)s t =-,则在 1.2t =秒时的瞬时速度是( )A .4B .4-C .4.8D .0.84.与直线042=+-y x 平行的抛物线2x y =的切线方程为( )A. 032=+-y xB. 032=--y xC. 012=+-y xD. 012=--y x5.(2011山东文)曲线311y x =+在点P(1,12)处的切线与y 轴交点的纵坐标是( )(A )-9 (B )-3 (C )9 (D )156.(2013江西文)若曲线1y x α=+(α∈R)在点(1,2)处的切线经过坐标原点,则α=_________7.已知抛物线y =ax 2+bx +c 通过点P (1,1),且在点Q (2,-1)处与直线y =x -3相切,求实数a 、b 、c 的值.课内探究案四、典型例题题型一 利用定义求函数的导数例1若函数y=f(x)在区间(a,b)内可导,且x0∈(a,b),则limh→0f x0+h -f x0-hh的值为( )A.f′(x0) B.2f′(x0) C.-2f′(x0) D.0题型二导数的几何意义例2 已知函数f(x)=x3-4x2+5x-4.(1)求曲线f(x)在点(2,f(2))处的切线方程;(2)求经过点A(2,-2)的曲线f(x)的切线方程.题型三利用导数研究函数的单调性例3已知函数f(x)=e x-ax-1.(1)求f(x)的单调增区间;(2)是否存在a,使f(x)在(-2,3)上为减函数,若存在,求出a的取值范围,若不存在,请说明理由.题型四 利用导数求函数的极值例4 设a >0,函数f (x )=12x 2-(a +1)x +a (1+ln x ). (1)求曲线y =f (x )在(2,f (2))处与直线y =-x +1垂直的切线方程;(2)求函数f (x )的极值.变式训练:1.曲线2x y x =+在点(-1,-1)处的切线方程为 2.设函数f (x )=13x 3-(1+a )x 2+4ax +24a ,其中常数a >1,则f (x )的单调减区间为________.3.若f (x )=-12x 2+b ln(x +2)在(-1,+∞)上是减函数,则b 的取值范围是________. 4.已知函数f (x )=x ln x .(1)求函数f (x )的极值点;(2)设函数()()(1)g x f x a x =-- ,其中a ∈R ,求函数g (x )在区间[1,e]上的最小值.当堂检测:1.曲线f (x )=x 3+x -2在0P 点处的切线平行于直线y =4x -1,则P 0点的坐标为( )A.(1,0)或(-1,-4)B.(0,1)C.(1,0)D.(-1,-4)2.已知函数()f x 的导函数为()f x ',且满足()2(1)ln f x xf x '=+,则(1)f '=( )A .e -B .1-C .1D .e课后拓展案A 组1. (2014广东理)曲线25+=-x e y 在点()0,3处的切线方程为 .2. (2014全国2理)设曲线y=a x-ln(x+1)在点(0,0)处的切线方程为y=2x ,则a = ( )A. 0B. 1C. 2D. 33.若42()f x ax bx c =++满足(1)2f '=,则(1)f '-=( )A .4-B .2-C .2D .4B 组4.(2012新课标)曲线y =x (3ln x +1)在点)1,1(处的切线方程为________5.(2011大纲)已知曲线()421128=y x ax a a =++-+在点,处切线的斜率为,()A .9 B .6 C .-9 D .-66.(2013 广东)若曲线2ln y ax x =-在点(1,)a 处的切线平行于x 轴,则a =______7. 设函数())ln 2(2x x k x e x f x +-=k 为常数, 2.71828e = 是自然对数的底数)(I )当0k ≤时,求函数()f x 的单调区间;(II )若函数()f x 在()0,2内存在两个极值点,求k 的取值范围.。

高二数学导数的应用教案

高二数学导数的应用教案

高二数学导数的应用教案
教学目标:
1. 理解导数的概念和性质;
2. 掌握导数的计算方法;
3. 熟练应用导数解决实际问题。

教学步骤:
一、导入(10分钟)
1. 引入导数的概念,与学生讨论导数的意义和应用;
2. 提出今天的学习目标:掌握导数的计算方法,并能够在实际问题中灵活应用。

二、理论讲解与示范(15分钟)
1. 介绍导数的定义:函数在某一点的切线斜率;
2. 解释导数的符号表示和计算方法,如使用极限的概念计算导数;
3. 给出一些导数计算的例题,并详细讲解解题思路和步骤。

三、练习与巩固(20分钟)
1. 给学生分发练习题,并要求他们独立完成;
2. 针对练习题中的难点和疑惑,进行答疑和解释;
3. 鼓励学生互相交流和讨论,加深对导数的理解和应用。

四、拓展应用(15分钟)
1. 引导学生思考导数在实际问题中的应用;
2. 分组讨论,找到不同领域中可以使用导数解决的问题,并汇报给全班;
3. 提出一些挑战性的导数应用问题,激发学生的思维和创造力。

五、综合评价(10分钟)
1. 进行简单的导数应用综合评价;
2. 针对学生的表现,给予及时的反馈和指导;
3. 总结本节课的重点内容和学习方法。

总结:
通过本节课的学习,学生应该对导数的概念和应用有了更深入的理解,能够熟练计算导数,并能够应用导数解决实际问题。

在后续的学习中,我们将进一步拓展导数的应用领域,并提高解题的灵活性和创造性。

导数及其应用教案

导数及其应用教案

导数及其应用教案一、引言在高中数学课程中,导数是一个非常重要的概念。

本教案旨在介绍导数及其应用,帮助学生理解导数的概念和基本性质,并学习如何在实际问题中运用导数进行分析和计算。

二、导数的概念1. 导数的定义:导数表示函数在某一点上的变化率,即函数值随自变量变化而变化的快慢程度。

2. 导数的几何意义:导数等于函数曲线在某一点切线的斜率。

3. 导数的符号表示:通常用f'(x)或dy/dx表示函数f(x)的导数。

三、导数的基本性质1. 常数的导数为0:若f(x) = a(a为常数),则f'(x) = 0。

2. 幂函数的导数:若f(x) = x^n(n为常数),则f'(x) = nx^(n-1)。

3. 和差的导数:若f(x) = u(x) ± v(x),则f'(x) = u'(x) ± v'(x)。

4. 乘积的导数:若f(x) = u(x)v(x),则f'(x) = u'(x)v(x) + u(x)v'(x)。

5. 商的导数:若f(x) = u(x)/v(x),则f'(x) = [u'(x)v(x) - u(x)v'(x)] /v(x)^2。

四、导数的应用1. 切线和法线:导数可以用于求函数曲线在某一点的切线和法线方程。

2. 极值问题:导数可以帮助我们判断函数的极值,并求出极值点和极值。

3. 函数图像的画法:导数可以提供函数图像的一些特征,如拐点、极值、单调性等。

4. 物理问题中的应用:导数可以帮助解决一些物理问题,如速度、加速度等。

五、教学活动1. 导数的计算练习:通过给出具体函数的表达式,让学生计算其导数。

2. 导数在几何中的应用:通过给出函数的图像,让学生判断函数的增减性、拐点、极值等。

3. 实际问题解析:将一些实际问题转化为数学模型,并运用导数进行分析和求解。

六、教学反思通过本教案的讲解和练习,学生应能掌握导数的概念和基本性质,具备运用导数进行实际问题分析和计算的能力。

人教版高中数学导数的求解与应用教案2023

人教版高中数学导数的求解与应用教案2023

人教版高中数学导数的求解与应用教案2023一、导数概念的引入在高中数学学科中,导数是一个重要的概念。

导数的概念由数学家牛顿和莱布尼茨独立提出,是微积分的基础之一。

导数的计算和应用在物理、经济学等领域中具有广泛的应用。

本节课将向大家介绍导数的概念及其求解与应用方法。

二、导数的定义与性质1. 导数的定义导数可以理解为函数在某一点上的瞬时变化率。

设函数y=f(x),在点x=a处的导数记为f'(a),则导数的定义为:\[f'(a)=\lim_{\Delta x \to 0}\frac{\Delta y}{\Delta x}=\lim_{\Delta x \to 0}\frac{f(a+\Delta x)-f(a)}{\Delta x}\]2. 导数的几何意义导数可以表示函数曲线在某一点上的切线斜率。

当函数曲线逐渐平缓或陡峭时,导数也会相应地减小或增大。

3. 导数的性质(1)导数的存在性:对于一个函数在某一点处可导,则该点导数存在。

(2)导数代数运算法则:导数有加法、减法、乘法的运算性质。

(3)常见函数的导数公式:如常数函数、幂函数、指数函数、对数函数的导数等。

三、导数的求解方法1. 初等函数的导数求解(1)常数函数的导数:常数函数的导数为0。

(2)幂函数的导数:幂函数的导数为该函数的指数乘以底数的次数。

(3)三角函数的导数:三角函数的导数与三角函数本身有关。

如正弦函数的导数为余弦函数,余弦函数的导数为负的正弦函数。

2. 导数的四则运算法则(1)求和与差的导数:两个函数的和(差)的导数等于两个函数的导数的和(差)。

(2)求积的导数:两个函数的积的导数等于其中一个函数的导数乘以另一个函数,再加上另一个函数的导数乘以第一个函数。

(3)求商的导数:两个函数的商的导数等于分子函数的导数乘以分母函数,减去分母函数的导数乘以分子函数,再除以分母函数的平方。

3. 隐函数的导数求解当函数的表达式不能明确表示出y与x的关系时,可以通过隐函数求导公式求解。

高中数学导数应用问题教案

高中数学导数应用问题教案

高中数学导数应用问题教案
主题:导数的应用问题
教学目标:
1.了解导数的定义及其应用;
2.掌握常见的导数应用问题求解方法;
3.能够运用导数解决实际问题。

教学重点:
1.导数的定义及性质;
2.导数在实际问题中的应用。

教学难点:
1.如何将实际问题转化为导数问题求解;
2.如何运用导数解决各类应用问题。

教学准备:
1.教师准备相关教学资料和案例;
2.学生准备笔记和计算工具。

教学步骤:
一、导入(5分钟)
教师用一个实际问题引入导数的应用,引导学生思考导数在解决实际问题中的作用。

二、概念讲解(10分钟)
1.复习导数的定义及性质;
2.介绍导数在实际问题中的应用,如最速下降问题、最大最小问题等。

三、案例分析(15分钟)
教师以实际问题为例,分析导数应用问题的解题思路和方法,并带领学生一起解决一些简单的案例。

四、练习与讨论(15分钟)
1.学生进行导数应用问题的练习,教师提供帮助和指导;
2.学生分组讨论解题过程,分享解题方法和经验。

五、总结(5分钟)
教师总结本节课的重点内容,强调导数在实际问题中的应用重要性。

六、作业布置(5分钟)
布置相关的导数应用问题作业,希望学生能够独立完成并加强对应用问题的理解和掌握。

教学反思:
通过本节课的教学,学生对导数的应用有了更深入的了解,同时也能够更加灵活地应用导数解决各类实际问题。

希望学生能够在课下多加练习,进一步提高解题能力和运用能力。

导数及其应用导学案

导数及其应用导学案

导数及其应用导学案姓名: ;小组编号: ;自评: ;小组长评价: ;教师评价:【使用说明与学法指导】1.本导学案为导数复习学案,在做导学案之前需熟记导数的有关公式;2.自主高效完成导学案并总结规律方法;3.注意待定系数法在解题中的应用;4.带★的题C 层同学可选做。

【学习目标】1.熟练掌握导数有关的知识点。

2.掌握导数有关切线、极值、最值问题的应用。

【重点】 掌握导数有关切线、极值、最值问题的应用。

【知识点回顾】1.基本初等函数的导数公式:①='C ②=)'(n x ③=)'(sin x ④=)'(cos x⑤=')(x a ⑥=')(x e ⑦='][log x a ⑧=')(ln x2.导数的运算法则:①()()[]=±'x g x f ②()()[]='x g x f③()()=⎥⎦⎤⎢⎣⎡'x g x f ④ ()[]='x cf3.导数的应用:(1)切线斜率与导数的关系:(2)求极值的方法:(3)求最值得方法:【合作、探究、展示】例1、右图为)(x f y =的导函数的图像,则正确的判断是①()x f 在(-3,1)上是增函数。

②1-=x 是()x f 的极小值点。

③()x f 在(2,4)上是减函数,在(-1,2)上是增函数。

④2=x 是()x f 的极小值点。

规律方法总结:例2、设()bx ax x x f 3323+-=的图像与直线0112=-+y x 相切于点(1,-11) 求a,b 的值。

规律方法总结:例3、已知a 为实数,()()()a x x x f --=42(1)求()x f ' (2)若1-=x 是函数()x f 的一个极值点,求()x f 在[]2,2-上的最大值和最小值。

规律方法总结:★例4:已知函数()x x x f ln 22-=,求()x f 的单调区间与极值。

高中数学导数及其应用教案

高中数学导数及其应用教案

高中数学导数及其应用教案教学目标:1. 理解导数的定义和性质,能够计算常见函数的导数。

2. 掌握导数在函数求极限、判定函数的增减性和凹凸性等方面的应用。

3. 能够解决实际问题中的优化和相关性问题。

教学内容:1. 导数的定义和性质2. 基本函数的导数3. 高阶导数4. 函数的导数应用:求极限、判定增减性和凹凸性5. 优化问题和相关性问题的求解教学流程:1. 导数的定义和基本性质的介绍(15分钟)- 导数的定义- 导数的性质:线性性、乘积法则、商法则、链式法则2. 基本函数的导数计算(20分钟)- 常数函数、幂函数、指数函数、对数函数的导数计算- 三角函数的导数计算3. 高阶导数和导数的应用(25分钟)- 高阶导数的定义和计算- 导数在函数的极限、增减性和凹凸性判定中的应用4. 优化问题和相关性问题的解决(20分钟)- 优化问题的定义和解决方法- 相关性问题的建模和解决方法教学方法:1. 讲解导数的定义和性质,引导学生理解概念并掌握基本计算方法。

2. 练习基本函数的导数计算,帮助学生巩固知识。

3. 引导学生理解高阶导数和导数在函数中的应用,培养学生应用知识解决问题的能力。

4. 练习优化问题和相关性问题,让学生通过实际问题感受导数在解决问题中的作用。

教学评估:1. 布置作业,巩固学生对导数的理解和应用能力。

2. 定期组织小测验,检验学生对导数相关知识的掌握程度。

3. 课堂中提问和讨论,评估学生对导数的理解程度。

教学资源:1. PowerPoint课件:导数的定义和基本性质、基本函数的导数计算、高阶导数和导数的应用、优化问题和相关性问题的解决。

2. 习题册:导数相关习题,巩固学生对导数的掌握。

教学反思与总结:教师在教学导数及其应用过程中,要注意引导学生理解概念、掌握计算方法,并注重培养学生的问题解决能力。

通过多种教学方法,激发学生的学习兴趣,提高他们的学习效果。

及时总结分析教学过程中出现的问题和不足,不断完善教学内容和方法,提升教学质量。

人教版高中数学导数的应用教案2023

人教版高中数学导数的应用教案2023

人教版高中数学导数的应用教案2023教案:人教版高中数学导数的应用一、教学目标通过本节课的学习,使学生能够:1. 了解导数的概念及其在数学问题中的应用;2. 学习常见函数的导数求解方法;3. 掌握导数在函数图像的刻画中的应用;4. 运用导数解决实际问题。

二、教学重难点1. 重点:导数的概念及其应用;2. 难点:运用导数解决实际问题。

三、教学过程1. 导入(5分钟)通过引入一个简单的实际问题,激发学生对导数的兴趣和应用价值。

2. 提出问题(10分钟)通过一系列问题的提出与讨论,引出导数的概念,激发学生的思考。

3. 导数的定义与求解(20分钟)讲解导数的定义及其求解方法,并通过一些例题进行说明和练习。

4. 导数与函数图像(15分钟)介绍导数与函数图像的关系,如导数的正负值与函数的增减性、导数为零点与函数的极值等,并通过相关例题加深理解。

5. 导数的应用(30分钟)a. 最值问题:讲解如何通过导数求解函数的最值问题,并结合实际问题引导学生运用所学方法。

b. 曲线的切线与法线:引入曲线的切线与法线的概念,介绍切线斜率等于导数的方法,并通过例题进行演示和练习。

c. 变率问题:引导学生思考变率的概念与导数的联系,并通过具体问题引导学生应用导数解决变率问题。

6. 小结与拓展(5分钟)对本节课的内容进行小结,并提供一些延伸问题供学生进一步思考和拓展。

四、教学手段1. 板书:概念定义、例题解析、解题思路等重点内容;2. 图片展示:通过图示形象化地表达导数与函数图像的关系,激发学生的视觉感受;3. 实例演练:通过一些实际问题的演示和讨论,引导学生运用所学知识解决问题。

五、教学评价1. 课堂练习:针对每个环节,设置相应的练习题,检验学生对所学知识的掌握情况;2. 课堂互动:通过提问、讨论等方式,了解学生对导数概念的理解和应用能力。

六、教学反思本节课通过问题引入、理论讲解、例题练习等多种教学手段,使学生在掌握导数的概念的同时,能够将其应用于实际问题的解决中。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学-导数及其应用导学案[体系构建][题型探究]利用导数的几何意义求曲线的切线方程运用导数的几何意义,可以求过曲线上任一点的切线的斜率,从而进一步求出过此点的切线方程.还可以结合几何的有关知识,求解某些点的坐标、三角形面积等.导数的几何意义是近几年高考的要点和热点之一,常结合导数的运算进行考查,常以选择题、填空题的形式出现.对于较为复杂的此类问题,一般要利用k =f ′(x 0)((x 0,f (x 0))为切点)及切点的坐标满足切线方程和曲线方程列方程组求解.求过曲线y =x 3-2x 上的点(1,-1)的切线方程.[思路探究] 切线过曲线上一点(1,-1),并不代表(1,-1)就是切点,故需先设出切点,再求解.【规范解答】 设切点为P (x 0,y 0),则y 0=x 30-2x 0.∵y ′=3x 2-2,则切线的斜率k =f ′(x 0)=3x 20-2,∴切线方程为y -(x 30-2x 0)=(3x 20-2)(x -x 0).又∵切线过点(1,-1),∴-1-(x 30-2x 0)=(3x 20-2)(1-x 0),整理,得(x 0-1)2(2x 0+1)=0,解得x 0=1或x 0=-12.∴切点为(1,-1)或⎝ ⎛⎭⎪⎫-12,78,相应的切线斜率为k =1或k =-54.故所求切线方程为y -(-1)=x -1或y -78=-54·⎝ ⎛⎭⎪⎫x +12,即x -y -2=0或5x +4y-1=0.[跟踪训练]1.已知函数f (x )=x 3+ax 2+bx +c 在x =2处取得极值,并且它的图象与直线y =-3x +3在点(1,0)处相切,则函数f (x )的表达式为________.【导学号:95902257】【解析】 f ′(x )=3x 2+2ax +b .∵f (x )与直线y =-3x +3在点(1,0)处相切,∴⎩⎪⎨⎪⎧f ′1=-3,f 1=0.即⎩⎪⎨⎪⎧3+2a +b =-3,①1+a +b +c =0.②∵f (x )在x =2处取得极值,∴f ′(2)=12+4a +b =0.③由①②③解得⎩⎪⎨⎪⎧a =-3,b =0,c =2.∴f (x )=x 3-3x 2+2.【答案】 f (x )=x 3-3x 2+2利用导数研究函数的单调性1x )>0,f ′(x )<0的解集确定单调区间,这是函数中常见问题,是考查的重点.2.求含参数的函数的单调区间讨论时要注意的三个方面:(1)f ′(x )=0有无根,(2)f ′(x )=0根的大小,(3)f ′(x )=0的根是否在定义域内.另外当f ′(x )=0的最高次项系数含有字母时,则要讨论系数是否为0.3.已知函数的单调性求参数的取值范围有两种思路:①转化为不等式在某区间上恒成立问题,即f ′(x )≥0(或≤0)恒成立,用分离参数求最值或函数的性质求解,注意验证使f ′(x )=0的参数是否符合题意,②构造关于参数的不等式求解,即令f ′(x )>0(或<0)求得用参数表示的单调区间,结合所给区间,利用区间端点列不等式求参数的范围.已知函数f (x )=x 3-ax -1. (1)讨论f (x )的单调性;(2)若f (x )在R 上为增函数,求实数a 的取值范围.[思路探究] (1)求出f ′(x ),讨论f ′(x )=0的根是否存在,求函数的单调区间; (2)根据题意有f ′(x )≥0在(-∞,+∞)上恒成立,分离参数后可求实数a 的取值范围.【规范解答】 (1)f ′(x )=3x 2-a .①当a ≤0时,f ′(x )≥0,所以f (x )在(-∞,+∞)上为增函数. ②当a >0时,令3x 2-a =0得x =±3a 3;当x >3a 3或x <-3a3时,f ′(x )>0;当-3a 3<x <3a 3时,f ′(x )<0. 因此f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数.综上可知,当a ≤0时,f (x )在R 上为增函数; 当a >0时,f (x )在⎝ ⎛⎭⎪⎫-∞,-3a 3,⎝ ⎛⎭⎪⎫3a 3,+∞上为增函数,在⎝ ⎛⎭⎪⎫-3a 3,3a 3上为减函数.(2)因为f (x )在(-∞,+∞)上是增函数,所以f ′(x )=3x 2-a ≥0在(-∞,+∞)上恒成立,即a ≤3x 2对x ∈R 恒成立.因为3x 2≥0,所以只需a ≤0.又因为a =0时,f ′(x )=3x 2≥0,f (x )=x 3-1在R 上是增函数, 所以a ≤0,即a 的取值范围为(-∞,0].[跟踪训练]2.设函数f (x )=12x 2+e x -x e x.(1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围.【导学号:95902258】【解】 (1)函数f (x )的定义域为(-∞,+∞),f ′(x )=x +e x -(e x +x e x )=x (1-e x). 若x <0,则1-e x>0,所以f ′(x )<0; 若x >0,则1-e x<0,所以f ′(x )<0; 若x =0,则f ′(x )=0.∴f (x )在(-∞,+∞)上为减函数,即f (x )的单调减区间为(-∞,+∞). (2)由(1)知f (x )在[-2,2]上单调递减, ∴f (x )min =f (2)=2-e 2.∴当m <2-e 2时,不等式f (x )>m 恒成立.即实数m 的取值范围是(-∞,2-e 2).利用导数研究函数的极值和最值1.2.求函数f (x )在[a ,b ]上的最大值和最小值的步骤: (1)求函数在(a ,b )内的极值;(2)求函数在区间端点的函数值f (a ),f (b );(3)将函数f (x )的极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.3.注意事项:(1)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论. (2)解题时要注意区分求单调性和已知单调性的问题,处理好f ′(x )=0时的情况;区分极值点和导数为0的点.已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y+1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.[思路探究] (1)利用f ′(1)=3、f ′⎝ ⎛⎭⎪⎫23=0、f (1)=4构建方程组求解; (2)令f ′x =0→列表→求极值和区间端点的函数值→比较大小→得最大值和最小值【规范解答】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b . 当x =1时,切线l 的斜率为3,可得2a +b =0,①当x =23时,y =f (x )有极值,则f ′⎝ ⎛⎭⎪⎫23=0,可得4a +3b +4=0,② 由①②,解得a =2,b =-4.由于切点的横坐标为1,所以f (1)=4. 所以1+a +b +c =4,得c =5.(2)由(1)可得f (x )=x 3+2x 2-4x +5,f ′(x )=3x 2+4x -4.令f ′(x )=0,解得x 1=-2,x 2=23.当x 变化时,f ′(x ),f (x )的取值及变化情况如下表所示:x -3 (-3,-2) -2⎝ ⎛⎭⎪⎫-2,23 23 ⎝ ⎛⎭⎪⎫23,1 1f ′(x)+ 0 -0 +f (x ) 8↗ 13 ↙ 9527↗ 4由表可知,函数y =f (x )在[-3,1]上的最大值为13,最小值为9527.[跟踪训练]3.已知函数f (x )=13x 3-12x 2+cx +d 有极值.(1)求c 的取值范围;(2)若f (x )在x =2处取得极值,且当x <0时,f (x )<16d 2+2d 恒成立,求d 的取值范围.【导学号:95902259】【解】 (1)∵f (x )=13x 3-12x 2+cx +d ,∴f ′(x )=x 2-x +c ,要使f (x )有极值,则方程f ′(x )=x 2-x +c =0有两个实数解,从而Δ=1-4c >0,∴c <14.(2)∵f (x )在x =2处取得极值,∴f ′(2)=4-2+c =0,∴c =-2.∴ f (x )=13x 3-12x2-2x +d .∵f ′(x )=x 2-x -2=(x -2)(x +1),∴当x ∈(-∞,-1)时,f ′(x )>0,函数单调递增,当x ∈(-1,2]时,f ′(x )<0,函数单调递减.∴x <0时,f (x )在x =-1处取得最大值76+d , ∵x <0时,f (x )<16d 2+2d 恒成立,∴ 76+d <16d 2+2d ,即(d +7)(d -1)>0,∴d <-7或d >1,即d 的取值范围是(-∞,-7)∪(1,+∞).分类讨论思想在含参数的问题中,无论是研究单调性,还是极值、最值,一般都需要分类讨论.已知函数f (x )=x -ln(x +a )的最小值为0,其中a >0.(1)求a 的值;(2)若对任意的x ∈[0,+∞),有f (x )≤kx 2成立,求实数k 的最小值. [思路探究] (1)求出函数f (x )的最小值用a 表示解方程可得a 的值;(2)构造函数g (x )=f (x )-kx 2,分类讨论求其在[0,+∞)的最大值,使其最大值≤0可得k 的取值范围,即得其最小值.【规范解答】 (1)f (x )的定义域为(-a ,+∞).f ′(x )=1-1x +a =x +a -1x +a. 由f ′(x )=0,得x =1-a >-a .当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-a,1-a )1-a (1-a ,+∞)f ′(x ) - 0 + f (x )↘极小值↗因此,f (x )a =1. (2)当k ≤0时,取x =1,有f (1)=1-ln 2>0,故k ≤0不合题意. 当k >0时,令g (x )=f (x )-kx 2,即g (x )=x -ln(x +1)-kx 2.g ′(x )=x x +1-2kx =-x [2kx -1-2k ]x +1.令g ′(x )=0,得x 1=0,x 2=1-2k2k>-1.①当k ≥12时,1-2k2k≤0,g ′(x )<0在(0,+∞)上恒成立,因此g (x )在[0,+∞)上单调递减.从而对于任意的x ∈[0,+∞),总有g (x )≤g (0)=0,即f (x )≤kx 2在[0,+∞)上恒成立.故k ≥12符合题意.②当0<k <12时,1-2k 2k >0,对于x ∈⎝⎛⎭⎪⎫0,1-2k 2k ,g ′(x )>0,故g (x )在⎝ ⎛⎭⎪⎫0,1-2k 2k 内单调递增,因此当取x 0∈⎝⎛⎭⎪⎫0,1-2k 2k 时, g (x 0)>g (0)=0,即f (x 0)≤kx 20不成立.故0<k <12不合题意.综上,k 的最小值为12.[跟踪训练]4.设函数f (x )=a e x+1a e x+b (a >0). (1)求f (x )在[0,+∞)内的最小值;(2)设曲线y = f (x )在点(2,f (2))处的切线方程为y =32x ,求a ,b 的值.【解】 (1)f ′(x )=a e x-1a e x, 当f ′(x )>0,即x >-ln a 时,f (x )在(-ln a ,+∞)上单调递增; 当f ′(x )<0,即x <-ln a 时,f (x )在(-∞,-ln a )上单调递减.①当0<a <1时,-ln a >0,f (x )在(0,-ln a )上单调递减,在(-ln a ,+∞)上单调递增,从而f (x )在[0,+∞)上的最小值为f (-ln a )=2+b;②当a ≥1时,-ln a ≤0,f (x )在[0,+∞)上单调递增, 从而f (x )在[0,+∞)上的最小值为f (0)=a +1a+b .(2)依题意f ′(2)=a e 2-1a e 2=32,解得a e 2=2或a e 2=-12(舍去),所以a =2e2,代入原函数可得2+12+b =3,即b =12,故a =2e 2,b =12.[链接高考]1.曲线y =x 2+1x在点(1,2)处的切线方程是__________.【导学号:95902260】【解析】 因为y ′=2x -1x 2,所以在点(1,2)处的切线方程的斜率k =2×1-112=1,所以切线方程为y -2=x -1,即y =x +1.【答案】 y =x +12.已知a ∈R ,设函数f (x )=ax -ln x 的图象在点(1,f (1))处的切线为l ,则l 在y 轴上的截距为________.【解析】 ∵f ′(x )=a -1x,∴f ′(1)=a -1.又∵f (1)=a ,∴切线l 的斜率为a -1,且过点(1,a ), ∴切线l 的方程为y -a =(a -1)(x -1). 令x =0,得y =1,故l 在y 轴上的截距为1. 【答案】 1 3.函数f (x )=xx -1(x ≥2)的最大值为________.【解析】 f ′(x )=x -1-x x -12=-1x -12,当x ≥2时,f ′(x )<0,所以f (x )在[2,+∞)上是减函数,故f (x )max =f (2)=22-1=2.【答案】 24.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.【导学号:95902261】【解析】 因为f (-x )=(-x )3-2(-x )+e -x-1e-x =-x 3+2x -e x+1e x =-f (x ),所以f (x )=x 3-2x +e x-1e x 是奇函数.因为f (a -1)+f (2a 2)≤0,所以f (2a 2)≤-f (a -1),即f (2a 2)≤f (1-a ).因为f ′(x )=3x 2-2+e x +e -x ≥3x 2-2+2e x ·e -x =3x 2≥0, 所以f (x )在R 上单调递增, 所以2a 2≤1-a ,即2a 2+a -1≤0, 所以-1≤a ≤12.【答案】 ⎣⎢⎡⎦⎥⎤-1,12 5.已知函数f (x )=x 3+ax 2+bx +1(a >0,b ∈R )有极值,且导函数f ′(x )的极值点是f (x )的零点.(极值点是指函数取极值时对应的自变量的值)(1)求b 关于a 的函数关系式,并写出定义域; (2)证明:b 2>3a .【解】 (1)由f (x )=x 3+ax 2+bx +1,得f ′(x )=3x 2+2ax +b =3⎝ ⎛⎭⎪⎫x +a 32+b -a 23. 当x =-a 3时,f ′(x )有极小值b -a 23.因为f ′(x )的极值点是f (x )的零点,所以f ⎝ ⎛⎭⎪⎫-a 3=-a 327+a 39-ab 3+1=0.又a >0,故b =2a 29+3a.因为f (x )有极值,故f ′(x )=0有实根,从而b -a 23=19a (27-a 3)≤0,即a ≥3.当a =3时,f ′(x )>0(x ≠-1), 故f (x )在R 上是增函数,f (x )没有极值; 当a >3时,f ′(x )=0有两个相异的实根 x 1=-a -a 2-3b 3,x 2=-a +a 2-3b 3.列表如下:12从而a >3.因此b =2a 29+3a ,定义域为(3,+∞).(2)证明:由(1)知,b a =2a a 9+3a a.设g (t )=2t 9+3t ,则g ′(t )=29-3t 2=2t 2-279t 2. 当t ∈⎝⎛⎭⎪⎫362,+∞时,g ′(t )>0, 从而g (t )在⎝⎛⎭⎪⎫362,+∞上单调递增. 因为a >3,所以a a >33, 故g (a a )>g (33)=3,即ba> 3. 因此b 2>3a .。

相关文档
最新文档