天线尺寸的缩短
天线伸缩原理

天线伸缩原理
天线伸缩是指无线通信设备中的天线可以根据需要进行伸缩或调节长度的过程。
天线伸缩的原理依赖于电磁波在不同长度的导体上的传播特性。
一般来说,天线的长度是根据所要接收或发送的电磁波的频率来确定的。
天线长度的适配可以使天线与电磁波保持共振,从而实现更好的信号传输效果。
根据电磁波的频率,天线可以根据以下两种原理进行伸缩:
1. 四分之一波长原理(quarter-wavelength principle):在某个特定频率下,天线的长度等于四分之一波长,这是为了实现最佳的电磁波辐射或接收效果。
在其他频率下,天线需要相应地伸缩或缩短来调整长度以满足共振条件。
2. 等效电感原理(equivalent inductance principle):天线的长度可以通过调节天线上的绕组或可变电感元件来实现调节。
通过改变电感的大小,可以改变天线的共振频率,从而适应不同的频率要求。
天线伸缩的具体实现方式可以有多种形式,比如使用可伸缩的金属杆、可变电感器件或可调节的绕组等。
这些设计和技术可以用于不同类型的天线,例如折叠式天线、可变长度天线或可调节电感天线等。
总的来说,天线伸缩的原理是通过调整天线的长度或电感来实现对不同频率的电磁波信号的适配,以便实现更好的信号传输或接收效果。
GP天线的设计问题

GP天线的设计问题——加感线圈GP天线基本形式定型为 1/4 波长的加感天线(参看:1/2还是1/4?这是一个问题),相信大家当然和我一样不会满足于动手做一根6米波段或者10米波段的简单1/4波长的GP,我打算做的是一根可以覆盖20米以下的短波加感GP天线。
或者应该换成另外一种说法:14MHz以上的短波天线?呵呵,无论它应该叫什么名字,既然要工作在10米甚至更低波段,就不得不需要用到加感线圈了。
基本原则:一、加感天线的原则:加感线圈在整根天线中所处的相对位置越高,则效率越高。
依据这个原则,对天线结构进行了调整,原来线圈上方的拉杆天线是1米的,换成75CM;原来线圈下方支撑杆是120CM的,换成150CM的,以期得到线圈较高的相对位置。
二、使线圈的长度与直径一致:在全部其它条件相同的情况下,线圈的外貌比值(长度对直径的比值)影响它的的 Q 值。
长度与直径接近的时候有一个最佳点。
不要用很长(大于两倍直径)或很窄(小于一半直径)的线圈。
依据这个原则,线圈骨架直径从 10MM 增加到 20MM,以期望得到比较高的线圈Q值。
三、天线是一寸长、一寸强的依据这个原则,调整天线时保持线圈上方的拉杆天线处于最长状态,仅仅依靠增、减线圈匝数来使天线谐振。
四、线圈上方振子长度调整是非常敏感的(相对线圈和下方振子长度)。
问题:1、GP天线在中部加感时,线圈上、下方的振子哪个是天线功率的主要辐射部分?按照原则一来解释,应该是主要依靠线圈下方振子向外辐射电磁波。
因为在天线整体长度不发生变化的情况下,线圈位置提升所带来的变化就是下方振子长度增加。
这样理解是否正确?2、依照上述第四点来分析的话,在线圈上移之后,线圈上方振子缩短了,而对应的下方振子有所增加,但是由于线圈上、下振子的敏感程度不同,理论上线圈部分应该有所增加才能使天线重新谐振,这样是正确的吗?几点意见:1、线圈的Q值大些比小些肯定要好,10mm的直径有些小了。
ARRL天线手册上用的Loading Coil直径都在50mm左右;2、天线长度就做1/4波长的,不要考虑其他波长了。
半波对称振子与馈线的匹配

半波对称振子与馈线的匹配一般的接收设备(如电视机)其输入特性阻抗为75Ω(不平衡式)或300Ω平衡式,半波对称振子的输出是:阻抗为75Ω平衡式,如与300Ω平衡电缆连接则只需考虑阻抗匹配就可以了,我们可利用传输线上距终端λ/4奇数倍处的等效阻抗等于传输线特性阻抗的平方除以终端负载这一特殊性质来进行阻抗匹配,这一特性的数学表达式Zin=Z0*Z0/ZL,式中Z0是传输线(匹配电缆)的特性阻抗,Zin为天线的输出阻抗,ZL为负载(接收设备的输入阻抗)阻抗,半波对称振子与300Ω平行电缆的配接计算如下:先按上式计算出所需电缆的特性阻抗,也即要实现半波对称振子与300Ω平行电缆的配接它们之间必须要插入一条λ/4长,特性阻抗为150Ω的平行电缆,为此,我们利用两条λ/4长的300Ω平行电缆并联即可,接法如图x。
思维稿半波折合振子折合振子天线在实际使用中,馈电振子一般都是采用折合振子的形式,其主要目的是增加天线的带宽,折合振子的结构形成如图jk所示,这种天线的频带特性可以这样来证明:折合振子作为一偶极天线来说,可看作是两个λ/4的短路线相串联,对于谐振频率波长L=λ/4,偶极天线与短路线都没有电抗成分,当加到折合振子上高频电流的频率在一定范围变化时,出现以下2种情况:当频率高于谐振频率时,相当于L>λ/4,偶极天线近似长于λ/4的短路线,其电抗是感性,而此时短路线的电抗是容性,当频率低于谐振频率时,相当于L<λ/4,偶极天线近似于λ/4的开路线,其电抗是容性,而此时短线上的电抗又是感性;故当工作频率了生偏移时,在一定频率范围内,折合振子上呈现的感抗与容抗可以互相补偿,使天线在较宽的频率范围内其阻抗特性的变化不大,这就是折合振子具有较宽频带的原理。
由于折合振子两平行导体具有相位相同,大小相等的电流(即I1=I2)所以其辐射电流为I=I1+I2=2I1,其辐射功率为P=I*I*Rr=(2I1)*(2I1)*Rr(Rr为半波振子的输入阻抗)在折合振子的馈电端的输入功率P =4*I1*I1*Rr= (Rin是折合振子的输入阻抗)由于在馈电端输入的电流实际上为I, 所I=I1,所以Rin=4Rr=4×73.1=300Ω这里我们得到了折合振子输入阻抗是300Ω.是对称半波振子输入阻抗的4倍。
天线工作原理与主要参数

天线工作原理与主要参数一、天线工作原理与主要参数<BR>天线是任何一个无线电通信系统都不可缺少的重要组成部分。
合理慎重地选用天线,可以获得较远的通信间隔和良好的通信效果。
(一)天线的作用<BR>各类无线电设备所要执行的任务虽然不同,但天线在设备中的作用却是根本一样的。
任何无线电设备都是通过无线电波来传递信息,因此就必须有能辐射或接收电磁波的装置。
所以,天线的第一个作用就是辐射和接收电磁波。
当然能辐射或接收电磁波的东西不一定都能用来作为天线。
例如任何高频电路,只要不是完全屏蔽起来的,都可以向周围空间或多或少地辐射电磁波,或者从周围空间或多或少地接收到电磁波。
但是,任意一个高频电路并不一定能作天线,因为它辐射和接收电磁波的效率很低。
只有可以有效地辐射和接收电磁波的设备才有可能作为天线使用。
天线的另一个作用是〞能量转换〞。
大家知道,发信机通过馈线送入天线的并不是无线电波,收信天线也不能直接把无线电波送入收信机,这里有一个能量的转换过程,即把发信机所产生的高频振荡电流经馈线送入天线输入端,天线要把高频电流转换为空间高频电磁波,以波的形式向周围空间辐射。
反之在接收时,也是通过收信天线把截获的高频电磁波的能量转换成高频电流的能量后,再送给收信机。
显然这里有一个转换效率问题。
天线增益越高,那么转换效率就越高。
(二)天线的分类<BR>天线的形式繁多,按其用途可以分为发信天线和收信天线;按使用波段可以分为长、中、短、超短波天线和微波天线、微带天线等。
此外,我们还可按其工作原理和构造来进展分类。
<BR>为便于分析和研究天线的性能,一般把天线按其构造形式分为两大类:一类是半径远小于波长的金属导线构成的线状天线,另一类是用尺寸大于波长的金属或介质面构成的面状天线。
线状天线主要用于长、中、短波频段,面状天线主要用于厘米或毫米波频段;甚高频段一般以线状天线为主,而特高频段那么线、面状天线兼用。
[手机技术资料]手机天线的分类
![[手机技术资料]手机天线的分类](https://img.taocdn.com/s3/m/3c58b047b307e87101f6967e.png)
(4)综述
单极天线由于其要求的长度长,一般不使用。 拉杆天线虽然有效增益高,电性能较好,但其结构 复杂,同时需要使用记忆金属作材料,因此价格较贵, 应用较少,我们不考虑使用。
螺旋天线以其良好的辐射特性、 小体积、频带扩展容易实现的特性 成为外置天线的的主流,但其体积 还是较大,同时形状固定,不适合 手机造形设计等特殊要求。 PCB形式的螺旋天线比普通螺旋 天线的体积更小,天线形状是扁平 特性的,同时此类天线的设计具有 较强的灵活性,应用渐多。 在外置天线的应用中螺旋天线还 是第一选择,其次是PCB形式的螺旋 天线。
三、内、外置天线比较
•
目前手机天线主要就内置及外置天线两种,内置天线客观上必然 比外置天线弱。天线的架设都是 尽量远离地面和建筑物的,天线接 近参考地的时候,大部分能量将集中在天线和参考地之间,而 无法 顺利发射,所以天线发射,需要一个“尽量开放”的空间。而手机电路 版就是手机天线的参 考地,让天线远离手机其他电路,是提高手机 天线发射效率的关键。
•
二、内置天线
特点: (1)可以做得非常小,不易损坏; 可以将其安放在手机中远离人脑 的一面,而在靠近人脑的部分贴 上反射层、保护层来减小天线对 人体的辐射伤害。 (2)可以安装多个,很方便组阵, 从而实现手机天线的智能化,这 一点对移动通信系统来说非常有 用。
内置天线的形式特别多,包括微带贴片天线、缝隙 天线 、IFA天线和倒L天线、PIFA、陶瓷天线等等。 但目前的主流天线主要有两种:PIFA天线、 MONOPOLE单极天线。
(2) MONOPOLE单极天线
辐射体面积300~350mm2,与PCB主板TOP面的距 离(高度)3~4mm,天线辐射体与PCB的相对距离应 大于2mm以上。天线与主板只有一个馈电点,是模块 输出。天线的位置在手机顶部或底部。
天线伸缩的原理

天线伸缩的原理
天线伸缩的原理是通过改变天线的长度来调节天线的工作频率。
一般来说,较短的天线适用于高频率信号的收发,而较长的天线则适用于低频率信号的收发。
天线的长度与信号的波长有直接关系,即天线的长度应为信号波长的1/4或者1/2倍。
当天线的长度与信号波长相匹配时,
天线会更好地接收和辐射相应频率的信号,从而提高通信质量。
在天线伸缩的过程中,需要调节天线的长度以实现与不同频率信号的匹配。
一种常见的实现方式是使用可伸缩式天线杆。
这种杆可以根据需要延长或缩短,使天线的长度适应不同的频率。
另一种实现方式是使用可变电容器或电感器来调节天线的电感或电容,进而改变天线电路的谐振频率。
通过调节合适的电感或电容值,可以使天线适应不同频率的信号。
无论是使用可伸缩式天线杆还是可变电容器/电感器,都需要
根据实际需求进行调节以达到最佳匹配效果。
这种方式可以使天线在不同频段上具有较好的工作效果,并适应不同的通信需求。
第3章 天线基本原理与技术
第三章 加载天线
第一部分
常见的加载天线
20:31
电子科技大学电子工程学院
近代天线理论
第三章 加载天线
天线加载: 顾名思义就是对天线加一种负载。天线加载可以改变天线 上电流分布,使得天线的输入阻抗能按照一种规律分布。 通过天线加载可以缩短天线的尺寸,改变天线的输入带宽 ,这也是天线小型化必不可少的一种方法。 常见的天线加载方式有: 1.顶部加载:这样的加载时可以在顶部加个盘子或者几根线 。这类代表天线是T型或者倒V型。 2.介质加载:它是通过在天线周围加入一种介质来相对缩短 天线长度,缩短长度的效果与介质的相对介电常数及相对 磁导率有关。 3.分布加载:对天线按一定位置函数加载,输入阻抗也会呈 一定规律变化。 4.集总加载:在天线上一个或几个位置加入集总参数元件, 包括电感电容,通过这样的方式来改变天线上电流分布。
第三章 加载天线
集总加载
Loop 1
Loop 2
Loop 3
balun 1 balun 2
CMRR:-14.8 dB
20:31
CMRR:-27.5 dB
CMRR:-36.8 dB
电子科技大学电子工程学院
近代天线理论
第三章 加载天线
Current Distribution (Loop 1)
20:31
近代天线理论
第三章 加载天线
理论推导-短电偶极子
引入电赫兹矢量表示电磁场:
e A t 2 E e e H ( jw ) e 式中:
2 w2 jw
20 20:31
电子科技大学电子工程学院
第三章 加载天线
第三部分
探地雷达
短波天线尺寸计算
短波天线尺寸计算计算方法:用电磁波的速度(光速)30万公里除以频率等于该频率的波长,再除以4就是1/4波长为单边振子长度,再去93--97%的缩短率:比如:频率7.05兆的单边振子长度为:10.64米,加上0.3米作为修剪余量;频率14.22兆的单边振子长度为:5.3米,加上0.3米的修剪余量;频率21.26兆的单边振子长度为:3.53米,加上0.2米的修剪余量即可;再用天线测试仪测定每对振子的谐振频率,开始频率低,慢慢修剪到相应谐振频率为止。
主干高度如果在8米,阻抗应该差不多50欧姆,驻波会低于1.3。
倒V天线单边振子长度数据及计算方式如下:水平、倒V天线计算公式/4波长水平、倒V天线长度的计算公式:光速/频率/4*95%=(单臂)长度21.400MHz天线的计算长度300000/21.4/4*95%=3330mm14.270MHz天线的计算长度300000/14.27/4*95%=4993mm7.05MHz天线的计算长度300000/7.05/4*95%=10107mm29.60MHz天线的计算长度300000/29.60/4*95%=2667mm以上仅仅是按照公式计算所得的长度,每个波段的天线最好是预长300mm左右,固定好位置后,用驻波表监测着逐步裁剪到最理想驻波的长度。
或者使用发信机结合驻波表,监测每对振子的谐振频率(驻波低于1.2的频点),边测边剪(随着谐振频率的升高,振子也在缩短,直到达到您所要的中心频点都低于等于1.2即可)。
例如:假设我们的目标频率是21.400MHz上述天线SWR最小值时候的频率读数是19.896MHz。
读数差=21.400MHz-19.896MHz=1.504MHz=1504KHz计算得知15米波段每KHz对应修剪长度为0.025cm:15米波段半波振子总修剪值=1504X0.025=37.6(cm)振子两边对称剪去37.6/2=18.8(cm)修剪振子要留有余地,差别越小越要细心,防止修剪过多。
天线尺寸的缩短
A为底部加载天线,这种天线的优点是机械性能较好,缺点是这种加载方式的辐射电阻很低,而且由于大多数能量从加载线圈辐射出来的,因此其辐射效率较低。 C是顶部加载天线,因其机械性能差,所以在实际中很小应用到。 B为中部加载天线,这种天线尽管其辐射电阻仍较低,但沿着天线的电流分布较均匀,辐射效率较高所以被广泛使用。
1/4波长天线
天线的发射基本原理是:电以接近光的速度在导体中传播,当遇到导体中的不连续点时,它就会被反射回信号源。如果电流是交变的,并且反射电流在恰当的时刻返回原点或馈电点,那么电流就会受到后面各周期的强化,从而只需要很小的能量就可维持天线内的驻波。即由于驻波的存在使天线处于谐振状态。从而向空间发射电波。在谐振状态下,电压在电流为最大值的中点(振子的中点)是很少,在两端却有极大值,欧姆定律适用于天线,在中点由于电流大,电压低,所以电阻较小,在两端情形恰好相反,因而阻抗较高。
通常我们称1/4波长的天线为鞭状天线。这种天线也是一些小型的无线收发设备用得最多的一种天线。在实际应用中由于受到体积的限制,往往天线的长度总是做成小于1/4波长的,所以要在天线上加电感,电感的加载方式有三种:1、底部加载,2、中部加载,3、顶部加载,如图2所示。每一种加载方式都有其优点和缺点,从机械的角度看,底部加载最为理想,但是这种加载方式的辐射电阻很低而且由于大多数能量是从加载线圈辐射出来,因此效率比较低。中部加载的辐射电阻会增加,但在这种情况下要产生谐振就得有更大的电感,加载的位置越向上,所需的电感就越大。顶部加载的天线较少见,这是因为沉重的电感线圈会使整个结构变得笨重,天线的机械强度难以得到保证。从各个因素来考虑,中部加载的天线是最好的。 垂直架设的鞭状天线只能接收垂直极化波,但有时我们可把1/4播长天线制成垂直和水平相结合的组合结构天线。即既可接收垂直极化波又可以接收水平极化波,在这种情况下,我们可将垂直部分的长度做成大于1/4波长,使天线呈电感性,然后在天线的顶部用一个十字形导线与垂直部分形成一个电容而使天线发生谐振,这种天线的结构如图3所示。
论文大纲
摘要:天线加载,顾名思义就是对天线加一种负载。
天线加载可以改变天线上电流分布,使得天线的输入阻抗能按照一种规律分布。
通过天线加载可以缩短天线的尺寸,改变天线的输入宽带,这也是天线小型化必不可少的一种方法,加载的元件可以是无源器件也可以是有源网络,可以是线性元件也可以是非线性的,实际工程中最常用的是无源加载,如:顶部加载、介质加载、串联分布加载、集中加载等。
对于工作频率不高的情况常采用集中加载,而工作频率较高时采用分布加载。
而天线加载技术的重要应用之一就是平面倒F天线(PIFA) 。
PIFA天线由金属地板、辐射贴片和馈电系统组成,其结构紧凑、成本低、制作容易,得到了广泛应用。
论文在前人的基础上,利用Ansoft HFSS10 软件仿真了端口的特性阻抗50欧姆,中心频率2.4GHZ,电压驻波比<2,频带宽度2.4 GHZ 至2.5GHZ的PIFA天线,并分析其性能指标。
进而很好的理解和掌握电磁波的传播、天线加载技术等相关内容。
英文摘要:Antenna loading, as the name suggests is the antenna with a load. Antenna loading can change the antenna current distribution, so that the antenna input impedance in accordance with a distribution. Through the loaded antenna can reduce the antenna size, changing the antenna input wideband antenna miniaturization, this is an essential method.Loading element can be a passive devices can also be active network, can be a linear element also is nonlinear, the actual engineering is the most commonly used passive loading, such as: top loading, dielectric loading, load, concentrated load and other series distribution. To work under the low frequency is mainly used to load, and high working frequency by distributed loading. And one of the important applications of the antenna loading technology is the planar inverted F antenna (PIFA).PIFA consists of metal ground with slots, radiating patch, short circuit patch and feeding line. PIFA, which has the features of compact size, low cost, easy to fabricate and has been applied widely. Based on existed studies, Using Ansoft HFSS10 software simulation of port characteristic impedance of50 ohms, center frequency 2.4GHZ, voltage standing wave ratio < 2, band width of 2.4 GHZ to 2.5GHZ PIFA antenna,,and analyze its performance.And thus a good understanding and grasp of the propagation of electromagnetic wave, antenna loading technology and other related content.1.前言本人的论文题目是“天线加载技术的仿真设计”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
天线尺寸的缩短
在很多时候,为了减少天线的占用空间,我们常常需要将天线的尺寸减少。
那么怎样在天线尺寸减少的情况下,天线仍然能准确地产生谐振呢?这是我们下面讨论的问题。
一根短于1/4波长倍数的天线是呈容性的。
这是由于它不产生谐振而且其电流和电压的合成相位关系与电容性电路的相位关系很相似的缘故。
那么,我们可在天线上加一个电感来使天线产生谐振。
图1是一个偶极子天线,天线的两臂小于1/4波长,这时我们可在两臂上分别接入一个电感使天线产生谐振。
这两个电感装在离天线的接线端约几公分位置比装在臂的两端效果更好,电感的大少可通过实验的方法获得。
例如,我们可通过测试天线的驻波比来获得合适的加装电感量的大少。
将一条长度为半波长的导线绕成螺旋形式,其效果和一条四分之一波长的天线相差无几,这种设计称为螺旋天线。
由于这种天线很少能找到与之匹配的传输电缆,所以这种天线多用在不需要传输电缆的设备中,如手提电话、手持式无线对讲机等。
通常我们称1/4波长的天线为鞭状天线。
这种天线也是一些小型的无线收发设备用得最多的一种天线。
在实际应用中由于受到体积的限制,往往天线的长度总是做成小于1/4波长的,所以要在天线上加电感,电感的加载方式有三种:1、底部加载,2、中部加载,3、顶部加载,如图2所示。
每一种加载方式都有其优点和缺点,从机械的角度看,底部加载最为理想,但是这种加载方式的辐射电阻很低而且由于大多数能量是从加载线圈辐射出来,因此效率比较低。
中部加载的辐射电阻会增加,但在这种情况下要产生谐振就得有更大的电感,加载的位置越向上,所需的电感就越大。
顶部加载的天线较少见,这是因为沉重的电感线圈会使整个结构变得笨重,天线的机械强度难以得到保证。
从各个因素来考虑,中部加载的天线是最好的。
垂直架设的鞭状天线只能接收垂直极化波,但有时我们可把1/4播长天线制成垂直和水平相结合的组合结构天线。
即既可接收垂直极化波又可以接收水平极化波,在这种情况下,我们可将垂直部分的长度做成大于1/4波长,使天线呈电感性,然后在天线的顶部用一个十字形导线与垂直部分形成一个电容而使天线发生谐振,这种天线的结构如图3所示。
思维稿。