关于三甘醇脱水工艺的分析
三甘醇天然气脱水装置技术改造及效果解析

三甘醇天然气脱水装置技术改造及效果解析一、前言随着能源资源的日益枯竭和环境保护意识的不断增强,天然气成为了当今社会最为重要的能源之一。
而天然气脱水装置作为天然气处理的关键环节,其技术改造对于提高天然气产量、降低生产成本、保护环境等方面都具有重要意义。
本文将以三甘醇天然气脱水装置技术改造及效果解析为主题,结合实际案例对该技术进行深入探讨。
二、技术改造的背景与意义1. 技术改造背景传统的天然气脱水装置主要采用三甘醇脱水工艺,其工艺流程相对复杂,操作成本高,存在能耗大、设备易堵塞、脱水效率低等问题。
随着能源技术的不断发展和创新,许多企业开始尝试对天然气脱水装置进行技术改造,以提高脱水效率、降低能耗、提升运行稳定性和安全性。
技术改造对于三甘醇天然气脱水装置有着重要的意义。
一方面,通过技术改造可以提高天然气的脱水效率,降低运行成本,提高生产效率;新型脱水技术可能会减少对环境的影响,减少二氧化碳排放,符合环保要求。
技术改造对企业提升核心竞争力、降低成本、保护环境等方面都有着积极的意义。
三、技术改造方案1. 新型吸附剂的应用在三甘醇天然气脱水工艺中,吸附剂的选择对脱水效果起着至关重要的作用。
传统的三甘醇脱水工艺中,通常采用的是硅胶作为吸附剂。
而在技术改造中,可以尝试采用新型的吸附剂,如分子筛、活性炭等,这些新型吸附剂具有更强的吸附能力和更高的表面活性,可以提高脱水效率。
2. 改进设备结构在技术改造中,还可以对天然气脱水装置的设备结构进行改进。
采用新型的填料结构,提高填料的利用率;采用更先进的脱水塔结构,提高气液接触效率等。
3. 优化工艺流程针对传统的三甘醇脱水工艺中存在的问题,可以通过优化工艺流程来提高效率。
改进脱水塔的进料和排气系统,优化吸附剂再生系统等。
四、技术改造效果解析1. 脱水效率提高通过引入新型吸附剂和改进设备结构,可以显著提高天然气脱水效率。
新型吸附剂具有更强的吸附能力和更高的表面活性,能够更有效地吸附天然气中的水分,提高脱水效率;而改进设备结构能够提高填料的利用率和气液接触效率,进一步提高脱水效率。
10三甘醇工艺分析

中 国 石 油 塔 里 木 油 田 公 司 PetroChina Tarim Oilfield Company
2.3 一般工艺流程
中 国 石 油 塔 里 木 油 田 公 司 PetroChina Tarim Oilfield Company
第二章 克拉2第二处理厂TEG脱水系统简介 1、建设规模 克拉2第二天然气处理厂共设4套TEG脱水装置, 单套装置的处理量为500×104 m3/d,最大处理 能力为550×104 m3/d。
中 国 石 油 塔 里 木 油 田 公 司 PetroChina Tarim Oilfield Company
2、 设计基础数据 2.1原料气条件 温度:40 ℃ 压力:9.5MPa 流量:2000×104 m3/d(正常) 2200×104 m3/d(最大) 2.2 产品气出装置条件 经脱水装置处理后干天然气输出条件为: 温度:41 ℃ 压力:9.3 MPa 流量:1997.4×104 m3/d(正常) 2197.1×104m3/d(最 大) 水露点≤-10 ℃(操作条件下) 干气出本装置通过外输管道输送至轮南末站。
中 国 石 油 塔 里 木 油 田 公 司 PetroChina Tarim Oilfield Company
2 . 冬季燃料气系统冻堵 2.1时间原因分析
燃料气各气源的水、烃露点
液液分离器闪 蒸汽1% 回收的排放 气20% 液液分离器闪蒸气 TEG闪蒸罐闪蒸气 压缩机出口排放气
水露点(℃)
中 国 石 油 塔 里 木 油 田 公 司 PetroChina Tarim Oilfield Company
3、 工艺方法及特点 本装置所采用的TEG脱水、火管直接加热再生工艺具有 以下特点: 1)TEG脱水工艺流程简单、技术成熟,与其它脱水法相 比具有可获得较大露点降、热稳定性好、易于再生、损失 小、投资和操作费用省等优点。 2)在富液管道上设置过滤器,以除去溶液系统中携带的 机械杂质和降解产物,保持溶液清洁,防止溶液起泡,有 利于装置长周期平稳运行。 3)TEG再生所采用的直接火管加热方法成熟、可靠、操 作方便。
三甘醇天然气脱水装置技术改造及效果解析

三甘醇天然气脱水装置技术改造及效果解析三甘醇脱水法,顾名思义,就是采用三甘醇作为脱水剂。
三甘醇是一种有机化合物,具有极强的亲水性,能够与水形成氢键,从而将水分从天然气中吸附出来。
其脱水原理可归纳为以下三个步骤:1.吸附阶段:三甘醇和天然气在接触时,三甘醇会吸附气态中的水分子,水分子会在三甘醇分子的氢键作用下,吸附到三甘醇分子上。
3.回收阶段:将吹洗出来的含水干气再进行冷凝,将其中的水分子回收并排放,经过回收的三甘醇溶液再循环利用。
尽管三甘醇脱水法在天然气脱水方面具有明显的优势,但随着市场上天然气品质的变化和客户要求的提高,现有的天然气脱水设备已经难以满足要求,需要进行技术改造。
1.改进吸附塔结构吸附塔是三甘醇天然气脱水装置的核心部分,其结构和设计直接影响脱水效果。
目前,吸附塔多采用的是填充式结构,但其脱水效果并不理想。
因此,需要对其结构进行改进,采用新的填料,比如金属泡沫填料,在保证流速的前提下,提高吸附效果。
2.采用新型脱水剂近年来,随着化学工业的发展,出现了一些新型脱水剂,比如离子液体、有机硅材料等。
这些新型脱水剂具有更高的脱水效率和更强的亲水性,能够更好地满足市场的需求。
因此,将新型脱水剂引入三甘醇脱水法中,会提高脱水效率和质量,进一步降低成本。
3.优化脱水工艺在设计脱水装置时,还需要考虑合适的工艺参数,比如温度、压力、流量等。
不同的天然气成分和含水量,对脱水工艺会产生不同的影响。
因此,需要结合实际情况,选择合适的工艺参数,以提高三甘醇脱水法的效率和质量。
1.提高脱水效率和质量通过改进吸附塔结构、引入新型脱水剂和优化脱水工艺,可以提高三甘醇脱水法的脱水效率和脱水质量。
它可以更彻底地除去天然气中的水分,避免管道腐蚀、降低气体能量等问题,提高天然气的质量。
2.节约能源三甘醇脱水法能够有效地节约能源。
采用新型脱水剂和优化脱水工艺可以降低能耗,提高脱水效率。
另外,由于三甘醇可以循环利用,回收率也会提高,减少了资源的浪费。
三甘醇脱水装置工艺分析

三甘醇脱水装置工艺分析涩北气田作为国内四大主力气田之一,已成为西气东输的重要气源地,现拥有三甘醇脱水装置17座。
三甘醇脱水装置良好的脱水性能为气田的生产提供了有力保障,成为气田生产的核心设备。
随着气田的进一步开发,部分脱水装置出现了三甘醇损耗超标等问题,这些问题给气田的生产带来一定困难。
通过对脱水装置各单元运行参数以及脱水后水露点等进行现场测试,进一步摸索了脱水装置的工作情况,并优化运行参数、完善工艺,确保脱水装置平稳、经济运行。
标签:三甘醇;装置指标;天然气;涩北气田涩北气田在十几年的生产运行中,三甘醇脱水装置脱水深度基本能够满足生产要求,三甘醇损耗量、燃气量损耗、装置故障率低都在经济运行范围内。
但由于地层水、整体运行压力等原因,三甘醇脱水装置出现脱水后天然气露点不合格、重沸器火筒变形或者穿孔、换热盘管腐蚀、三甘醇损耗率超标等现象,经过深入分析,对以上问题有一定的认识。
1 三甘醇再生流程贫三甘醇经套管式气液换热器与出塔后的天然气换热,贫三甘醇由塔顶部进入吸收塔,由上而下与由下而上的湿天然气充分接触,吸收湿天然气中的部分水分。
吸收水分后成为富液的三甘醇溶液在塔底部流出,经甘醇循环泵进入精馏柱换热盘管,被蒸汽加热后进入闪蒸罐,闪蒸分离出溶解在富液中的烃气体。
甘醇由闪蒸罐底部流出,依次进入TEG机械过滤器和TEG活性炭过滤器。
通过TEG机械过滤器除去富甘醇中5μm 以上的固体杂质;通过TEG活性炭过滤器吸附掉富液中的部分重烃及三甘醇再生时的降解物质。
过滤器均设有旁通管路,在过滤器更换滤芯时,装置通过旁通管路继续运行。
经过滤后富甘醇进入三甘醇贫-富TEG换热器,与热贫甘醇换热升温后进入精馏柱。
在精馏柱中,通过精馏段、塔顶回流及塔底重沸的综合作用,使富甘醇中的水分及很小部分烃类分离出塔,塔底重沸温度为180~188℃。
在重沸器和缓冲罐之间设置有汽提柱,重沸器中的贫甘醇经贫液汽提柱,溢流至三甘醇缓冲罐。
在通入汽提气前,汽提柱内液相(甘醇)和气相(水蒸汽)之间存在两相平衡。
三甘醇脱水工艺风险分析及关键指标数值预测

三甘醇脱水工艺风险分析及关键指标数值预测摘要天然气生产运行因其介质的燃爆性和毒害性、生产工艺的连续性和复杂性,具有较高的风险,三甘醇脱水作为油气田开发与集输过程中不可缺少的环节之一,建立关键控制参数预警模型可为企业安全生产决策提供重要依据。
本文对采用模糊层次分析法对三甘醇脱水工艺风险进行分析,得出了三甘醇脱水工艺系统主要风险影响因素,确定了三甘醇脱水生产运行安全预警指标,采用径向基函数神经网络(RBFNN)对关键预警指标进行了预测,为最终建立天然气生产运行全面安全预警系统打下基础。
得出以下结论:(1)三甘醇脱水工艺系统主要风险影响因素为以下四种:人的因素(队伍构成、履职能力等)、物的因素(运行参数、物料控制等)、管理因素(分级管理、应急措施等)及环境因素(季节变化、人口稠度等);(2)三甘醇脱水生产运行主要的事故的表征方式为火灾、爆炸、超压等,故选取系统压力、压差以及温度作为关键预警指标;(3)通过预测结果与实际值的散点图逼近效果可以得出RBF神经网络模型具有较高的三甘醇生产工艺关键预警指标预测精度,并通过误差计算进一步证明其优越性RMSE为0.012×104m3/天,MAPE为0.06%。
关键词三甘醇脱水风险分析预测模型模糊层次分析法径向基函数神经网络Risk Analysis and Numerical Prediction of Key Indicators of Triethylene Glycol Dehydration ProcessFu Lingdi1 Jiang Lu2 Jiang Changchun1 Chen Yibo1 Zhou Xiaoman1(1.PetroChina Southwest Oil & Gasfield Company Safety, Environment & Technology Supervision Research Institute 2.Chongqing kaiyuan oil & natural gas co. LTD )AbstractNatural gas production and operation have high risks due to the explosive and toxic nature of the medium and the continuity and complexity of the production process. Triethylene glycol dehydration is one of the indispensable links in the process of oil and gas field development and gathering and transportation. The establishment of early warning model of key control parameters can provide an important basis for enterprises to make safe production decisions.In this paper, the fuzzy analytic hierarchy process(Fuzzy-AHP)is used to analyze the TEG dehydration processrisk,the safety warning index of TEG dehydration production is determined and RBFNN is used to forecast the critical early warning index which lays the foundation of natural gas production operation comprehensive safety warning system. The following conclusions are drawned: (1) the main risk factors of TEG dehydration process are as follows : human factors (such as team structure, role and ability) and physical factors (running parameters, material control, etc.), management factors (classification management, emergency measures, etc.) and environmental factors (population consistency, seasonal changes, etc.);(2) the major accidents in the production and operation of triethylene glycol dehydration are characterized by fire, explosion, overpressure, etc. Therefore, system pressure, pressure difference and temperatureare selected as the key warning indicators.(3) based on the scatter plot approximation effect between the predicted results and the actual values, it can be concluded thatthe RBF neural network model has a high prediction accuracy of key early warning indicators of TEG production process, RMSE is 0.012×104m3/ day, MAPE is 0.06%, soits advantages are further proved by error calculation.Keywords: TEG dehydration;risk analysis prediction model fuzzy analytic hierarchy process; radial basis function neural network1 序言目前,天然气行业正进入快速发展的新阶段,据预测至2050年我国天然气消费量均呈稳步增长趋势,因此如何安全高效开发利用天然气是必须重视的课题。
三甘醇脱水的工艺流程

三甘醇脱水的工艺流程
1.原料准备:首先需要准备优质的三甘醇作为原料。
确保原料三甘醇的纯度和质量对最终产品的品质至关重要。
2.预处理:将原料三甘醇先进行预处理,目的是去除杂质和颜色。
这一步骤通常包括热解、蒸馏、除杂、脱色等工艺。
3. 脱水设备:三甘醇脱水通常使用一种叫做“分子筛”(Molecular Sieve)的特殊材料进行。
分子筛可以吸附水分子,并将其去除,从而实现脱水的目的。
4.加热:将预处理过的三甘醇加热至适当的温度。
较高的温度有利于脱水过程的进行,但需要注意控制加热温度,以避免过高温度对产品造成不良影响。
5.脱水反应:将加热后的三甘醇通过脱水设备,与分子筛接触。
分子筛中的孔隙结构能够选择吸附水分子,将其捕获并去除。
同时,经过分子筛的三甘醇也更纯净。
6.冷却:经过脱水反应后的三甘醇需要进行冷却处理,以降低其温度并稳定产物。
冷却过程可通过冷凝器或其他冷却设备实现。
7.过滤和检验:冷却后的脱水三甘醇需要经过过滤,去除悬浮物和杂质。
接下来,对产出进行检验,包括测试纯度、色泽、酸值等指标,以确保产品质量符合要求。
8.储存和包装:脱水三甘醇产物通常储存在特殊的容器中,以防止其受潮和受污染。
采用密封包装方式有助于保持产品的质量和纯度。
值得注意的是,三甘醇脱水工艺流程中需要注意控制温度、时间和流速等参数。
过高或过低的温度、过短或过长的时间以及过快或过慢的流速都会对产品质量造成不利影响。
因此,在整个过程中要进行严密的监控和控制,以保证产品的稳定性和质量。
天然气三甘醇脱水工艺

天然气三甘醇脱水工艺摘要:天然气必须经过脱水处理,达到GB17820—2018《天然气》规定的管输天然气指标后,方可进行管输。
常用的天然气脱水工艺主要有三种:溶剂吸收法脱水、吸附法脱水和低温法脱水。
海洋平台多采用甘醇吸收法脱水和低温法脱水来控制海底管道中天然气的水露点。
其中,三甘醇吸收脱水因具有能耗小、操作费用低、占地面积小等优点,在海上平台应用比较广泛。
三甘醇脱水工艺作为一种成熟且常用的天然气处理工艺,其流程及设备基本已经固化。
对目前渤海油田某海上平台所使用的三甘醇脱水装置进行分析后,发现三甘醇脱水装置仍有进一步优化的可行性。
通过优化工艺流程和设计参数,替代高投资的板壳式换热器,可实现降本增效。
关键词:天然气;三甘醇;脱水系统;工艺;技术引言我国是能源消费大国,能源消费较低,石油和天然气严重依赖于外部,现有能源结构面临着巨大的环境压力,迫切需要能源转换和能源优化,未来30年,天然气和非再生能源的状况将大幅改善,中国的能源消费正在发生质的变化,因为天然气是丰富、清洁、高效、可获得、可接受的良好能源,支持天然气开发和天然气改革是推动我国生产和燃料消费革命的关键步骤。
1三甘醇脱水系统工艺技术的主要内容目前,最常用的方法仍是溶剂吸收法脱水,其吸收原理是采用一种亲水的溶剂与天然气充分接触,使水传递到溶剂中从而达到脱水的目的。
利用甘醇进行吸收脱水,投资少,压降小,可连续操作,且补充甘醇容易,再生脱水需要的热量少,脱水效果好.迄今为止,在天然气脱水工业中已经有四种甘醇被成功应用,分别是乙二醇(EG)、二甘醇(DEG)、三甘醇(TEG)和四甘醇(TREG)。
其中三甘醇脱水具有再生容易,贫液质量分数高(可达98%-99%),露点降大,运行成本低等特点,因此得到了广泛应用。
2存在问题三甘醇富液在流出吸收塔时,需经过调节阀降压,使三甘醇富液压力控制在400kPa左右。
虽然操作压力很低,但为了保证设备及管道的安全性,仍然将吸收塔三甘醇富液出口至闪蒸罐间设备的设计压力与吸收塔的设计压力保持一致,设计压力为8100kPa。
三甘醇天然气脱水装置技术改造及效果解析

三甘醇天然气脱水装置技术改造及效果解析随着天然气资源日益紧张,提高天然气利用率已成为全球能源行业的共同使命。
而天然气脱水作为天然气处理的重要环节,其处理效率直接影响着天然气质量和利用率。
近年来,人们对于三甘醇脱水水合物法进行了大量的研究和探索,通过技术改造可以提高天然气脱水处理效率,进一步提高天然气的利用率。
本文结合实际案例,对三甘醇天然气脱水装置技术改造及其效果进行解析。
一、三甘醇水合物法的脱水原理及其优势三甘醇水合物法是常用的天然气脱水工艺,其基本原理是利用二甲醚、丙酮、甲醇等有机物与天然气中的水分进行反应生成三甘醇水合物复合物,从而达到脱水的效果。
与其他脱水法相比,三甘醇水合物法具有以下优点:1、脱水效果好。
三甘醇水合物法通过与天然气中的水进行物理吸附和化学吸附,因此脱水效果远远优于传统的物理吸附法和冷凝法。
3、换热效率高。
三甘醇在水合物反应过程中产生大量的热量,因此其能够在脱水过程中起到良好的换热作用。
针对现有的三甘醇天然气脱水装置,其处理效果受到各种因素的制约,包括设备原有结构不合理、能耗较高等。
因此,针对上述问题,可以考虑以下技术改造方案:1、设备结构优化。
通过改善原有的设备结构,增加设备的传热面积和换热效率,提高脱水装置的处理效率和稳定性。
2、节能降耗。
通过优化设备的操作方式和设备的布局,尽可能减小能耗,提高经济效益。
3、操作自动化。
通过采用现代化的监控系统和PLC自动控制技术,实现设备的自动化操作,提高了操作的安全性和稳定性。
三、改造效果分析经过技术改造后,三甘醇天然气脱水装置的处理效果得到了显著的提高。
改造前,设备的脱水效率较低,每吨天然气的三甘醇消耗量较高,且设备操作难度大,稳定性差。
改造后,设备的脱水效率得到了大幅度提高,三甘醇消耗量减少了40%以上,设备的操作自动化程度得到了提高,设备稳定性和安全性也得到了提高。
综合来看,改造后的三甘醇天然气脱水装置处理效率得到明显提高,经济效益和社会效益都得到了较为显著的提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
关于三甘醇脱水工艺的分析
为了满足油气田工作的需要,进行三甘醇脱水系统的建立是必要的,因为天然气的内部存在水蒸气,在天然气的压力及其温度影响下,其会形成水化物,如果任由这种水化物的存在,其不利于天然气的有效集输及其深加工。
因此,有必要进行天然气的水蒸气脱除工作。
保证油气田的天然气脱水技术的应用,保证溶剂吸收法及其固体干燥剂吸附法的应用。
目前来说,天然气的脱水方法是非常的多,比如溶液吸收法、直接冷却法、化学反应法等。
标签:天然气;工艺计算;工艺流程;三甘醇;脱水系统
前言
在天然气脱水的应用实践中,水蒸气的脱水方法非常多,比较常见的就是固體干燥吸附法及其溶剂吸收法,在溶剂吸收法应用过程中,其需要进行甘醇化合物的应用,这涉及到二甘醇、三甘醇等的应用。
通过对天然气三甘醇脱水系统工艺技术的优化,更有利于实现三甘醇脱水系统内部工艺体系的建立,实现其内部各个环节的协调。
这就需要我们进行三甘醇脱水工艺设备的应用,进行脱水注意事项的分析,进行工艺计算步骤的应用,保证现实脱水系统方案的优化,满足实际工作的要求。
1 三甘醇脱水系统应用策略分析
(1)通过对天然气脱水环节的优化,更有利于进行天然气集输效益的提升,避免其液态水的渗出,避免其水合物的形成,从而进行管道及其设备腐蚀的控制。
甘醇脱水技术具备良好的应用,其在世界上的应用范围也是比较大的。
通过对甘醇脱水法的应用,可以保证其良好的净化效果,其处理量比较大,其自动化程度非常高,在进行脱水的同时也进行脱油。
三甘醇的获取需要进行乙二醇及其环氧乙烷的共同作用。
在天然气三甘醇脱水系统应用过程中,进行三甘醇加热炉、三甘醇吸收塔、水冷器等的应用,从而提升天然气的脱水效益,满足现实工作的要求,从而保证油气田工作的良好作业。
这就需要我们重视到天然气三甘醇脱水系统的主要应用设备,比如三甘醇循环泵等。
对待那些湿净化天然气需要进行三甘醇吸收塔的进入,这里涉及到吸收塔设备的应用,将其三甘醇贫液进行塔内的逆流接触,从而保证天然气的饱和水三甘醇贫液的吸收应用,保证天然气的良好脱水性,保证其干净,这需要做好三甘醇的吸收塔应用分析工作,进行重力分离、调压、计量等分析工作,保证吸收塔的三甘醇富液的排出,这个过程中需要进行分离器的应用。
在上述项目进行完毕后,需要进行液位控制阀的应用,保证其三甘醇再生器富液精馏柱的应用,做好相关的换热工作,保证其进入三甘醇闪蒸罐内,做好闪
蒸工作,保证其水及其部分烃类的排出,为了实现这个工作步骤,进行三甘醇富液的闪蒸,保证其进入三甘醇机械过滤器内部。
通过对该过滤器的应用,将其转入活性炭过滤器中,再实现活性炭过滤器及其机械过滤器的结合,做好相关的三级过滤应用,保证其中间杂质的去除,做好相关的降解工作。
(2)通过对上述工作步骤的实现,我们可以保证机械过滤器中的三甘醇富液的提取,保证其进入三甘醇贫富液的换热器中,进行三甘醇内部三甘醇贫液的换热,保证换热效益的提升。
保证三甘醇富液的三甘醇缓冲罐的进入换热盘管中,在这个步骤中,其需要进行三甘醇贫液的进一步换热,保证其进入富液精馏柱中,通过对三甘醇富液的应用,保证三甘醇再生器工作效益的提升,保证吸收水分的有效分解,保证其再生器顶端的排出。
上述工作步骤实现后,需要进行排出气体分析,比如进行水蒸气、二氧化碳、烃类气体等分析,其排出的气体需要进入废气分液罐中,分液完毕后,气相需要进入灼烧炉进行灼烧,保证灼烧后的大气层排入。
这也需要针对再生贫液进行分析,进行三甘醇缓冲罐及其三甘醇富液换热程序分析,做好换热的再分析工作,在换热完毕后,贫液会回到三甘醇贫富液换热器中,进行三甘醇富液的再一次换热,这就需要做好三甘醇的贫液降温工作,做好三甘醇循环泵的应用工作,提升其增压效益,这就需要对三甘醇冷却器的冷却性进行分析,保证其进入吸收塔的上端,做好三甘醇吸收及其解吸应用,保证该循环体系的顺利进行,实现其内部各个环节的协调。
2 三甘醇脱水工艺设备在脱水工艺中的优化
(1)为了提升油气田的应用效益,需要进行三甘醇脱水工艺设备的优化,保证脱水工艺体系的完善,实现其内部各个环节的协调,进行甘醇加热炉的应用,比如天然气明火加热炉的应用,进行加热炉设备的维护及其保养。
在加热炉系统应用过程中,加热炉燃烧器是核心应用部件。
通过对燃烧器性能的提升,更有利于保证加热炉热效率的优化。
受到三甘醇自身分解温度的影响,如果不能进行加热炉燃烧器性能的有效控制,就会导致炉管的局部温度过高,从而出现一系列的三甘醇变质情况,从而不利于炉管的有效维护。
目前来说,我国的主流燃烧器是负压引风式燃烧器,这些燃烧器具备自身的局限性,也就是难以进行燃气及其空气比例的调节,就容易出现火焰温度较低的情况,从而导致其加热效率的降低,为了保证其综合效益,需要进行安全性能高的全自动正压鼓风式燃烧器的应用,保证空气及其燃气比例的调节,进行火焰温度的控制,从而保证加热炉应用热效率的提升。
在三甘醇再生塔应用过程中,需要针对排出的水蒸气进行分析,进行天然气的重组含量的分析,进行轻烃所占比例的分析,针对一部分烃来说,其需要进行大气的直接排入,从而污染到周边的环境,还容易出现火灾,为了避免这种情况的发生,我们需要进行三甘醇的再生塔顶端的冷凝器设置,进行塔所排出的三甘醇富液的吸收,并且将其作为冷源,进行水蒸气及其轻烃的有效冷凝,做好相关的分离处理,保证大气污染降低,满足生态效益的需要。
(2)通过对三甘醇循环泵的应用,可以做好三甘醇贫液的增压工作,保证其进行天然气脱水塔的进入,这就需要进行能耗水平的控制,进行热量回收程度的分析,进行换热器面积的增加,保证三甘醇进泵阻力的控制,避免甘醇泵的抽空情况,从而满足实际工作的要求。
该工作步骤的开展离不开三甘醇脱水装置工艺的计算工作,进行进料气体气量的分析,进行进料气体温度、三甘醇吸收塔的操作压力、进料气体的相对密度以及要求的露点或是吸收塔干气的露点。
在对这些数据进行确定之后,进行计算。
计算过程中:要对应除去的水量进行确定;要对三甘醇的循环量进行确定;要对三甘醇在进入吸收塔的最低浓度进行选择。
针对三甘醇贫液及其三甘醇富液的换热器尺寸进行计算,针对其气体及其三甘醇换热器的尺寸进行计算。
针对其重沸器的类型进行确定,做好尺寸的计算工作,做好三甘醇循环泵的功率计算工作,进行三甘醇吸收塔类型的分析,做好相关的确定工作,进行直径、塔高等计算,进行闪、蒸分离器的类型分析,做好尺寸的计算工作,进行过滤器的尺寸确定工作,要对过滤器的尺寸进行确定。
就目前而言,对于三甘醇脱水系统工艺来讲,其技术已日益完善,其应用也越来越广泛,但依然存在一些工艺设备和参数的确定在理论依据上存在一定缺陷,仍然有待相关设计人员在以后的设计中进行进一步研究。
3 结束语
天然气三甘醇脱水系统应用方案的优化,更有利于实践过程中天然气问题的解决,这需要引起相关人员的重视,做好自身的优化工作,提升其应用效益。