三甘醇脱水工艺流程流程图课程设计报告
毕业设计--三甘醇脱水系统设计(附图纸)

论文目录一.三甘醇脱水系统设计摘要及绪论----------------------------------------1二.工艺流程特点----------------------------------------------------------------3三.三甘醇吸收脱水的原理流程----------------------------------------------5四.三甘醇脱水的工艺参数选取----------------------------------------------8五.三甘醇脱水装置工艺计算-------------------------------------------------12一.分离器的选择与工艺计算---------------------------------------------12二.吸收塔的工艺计算------------------------------------------------------221.进塔贫甘醇溶液浓度的确定---------------------------------------222.吸收剂贫三甘醇溶液用量的确定---------------------------------233.吸收塔塔板数的确定------------------------------------------------254.甘醇吸收塔的选型和塔径以及各种参数计算------------------30三.换热器的设计------------------------------------------------------------40四.管道的设计---------------------------------------------------------------42五.流量计的设计------------------------------------------------------------44六.参考文献-----------------------------------------------------------------------45三甘醇脱水系统设计一.摘要及绪论1.摘要:天然气在离开油藏时或自地下储集层中采出的的天然气及脱硫后的天然气通常含有水蒸气,有些气还含有H2S和CO2,酸性气体会便管线和设备腐蚀,水蒸气在天然气的压力和温度改变时容易形成水化物,不符合天然气集输和深加工的要求,因此必须脱除天然气中的水蒸气、H2S和CO2。
天然气三甘醇脱水一体化集成装置工艺运行参数优化

天然气三甘醇脱水一体化集成装置工艺运行参数优化前言三甘醇溶剂吸收法进行天然气脱水,是天然气工业中应用较为广泛的脱水方法。
通过对脱水工艺流程各参数优化,制定定量和变量进行分析、模拟,在满足外输天然气气质要求的前提下,优选出最佳运行参数,达到降本增效、绿色运行的目的。
1、三甘醇脱水系统工艺流程在天然气进入三甘醇脱水装置脱水前,游离水经前端分离器分离,基本完成分离,三甘醇脱水的主要目的是将天然气中的饱和水脱除,使得天然气达到外输水露点要求。
1.1三甘醇脱水流程含饱和水的湿天然气从三甘醇吸收塔下部进入,与从塔顶下来的三甘醇贫液逆流接触,以脱除天然气中的饱和水,脱水后的净化气经塔顶丝网除雾除去大于5μm的三甘醇液滴后由塔顶部出塔。
干天然气出塔后,经过套管式气液换热器与进塔前的热贫甘醇换热,降低贫三甘醇进塔温度。
1.2三甘醇再生部分贫三甘醇由塔上部进入吸收塔,由上而下与由下而上的湿天然气充分接触,吸收天然气饱和水,形成三甘醇富液。
三甘醇富液从吸收塔下部流出,经三甘醇循环泵进入精馏柱换热盘管,加热至35~60℃后进入闪蒸罐,闪蒸分离出溶解在富液中的烃气体。
三甘醇从闪蒸罐下部流出,依次进入滤布过滤器和活性炭过滤器。
通过滤布过滤器除去富甘醇中5μm以上的固体杂质;通过活性炭过滤器吸附掉富液中的部分重烃及三甘醇再生时的降解物质。
经过滤后的三甘醇富液进入贫富液换热器,与三甘醇贫液换热升温至130℃~160℃后进入精馏柱。
在精馏柱中,通过精馏段、塔顶回流及塔底重沸的综合作用,使三甘醇富液中的水份及很小部分烃类分离出塔。
塔底重沸温度为190℃~204℃,三甘醇重量百分比浓度可达98.5%~99.0%。
重沸器中的三甘醇贫液经贫液汽提柱,溢流至重沸器下部三甘醇缓冲罐,在贫液汽提柱中可由引入汽提柱下部的热干气对贫液进行汽提,经过汽提后的贫甘醇重量百分比浓度可达99.8%。
三甘醇贫液经过缓冲罐外壁的冷却,温度降至170℃左右出缓冲罐,进入贫富液换热器,与三甘醇富液换热,温度降至55~65℃左右进三甘醇循环泵,由三甘醇循环泵增压后进套管换热器与外输气换热至25~45℃进入吸收塔循环利用。
10三甘醇工艺分析

中 国 石 油 塔 里 木 油 田 公 司 PetroChina Tarim Oilfield Company
2.3 一般工艺流程
中 国 石 油 塔 里 木 油 田 公 司 PetroChina Tarim Oilfield Company
第二章 克拉2第二处理厂TEG脱水系统简介 1、建设规模 克拉2第二天然气处理厂共设4套TEG脱水装置, 单套装置的处理量为500×104 m3/d,最大处理 能力为550×104 m3/d。
中 国 石 油 塔 里 木 油 田 公 司 PetroChina Tarim Oilfield Company
2、 设计基础数据 2.1原料气条件 温度:40 ℃ 压力:9.5MPa 流量:2000×104 m3/d(正常) 2200×104 m3/d(最大) 2.2 产品气出装置条件 经脱水装置处理后干天然气输出条件为: 温度:41 ℃ 压力:9.3 MPa 流量:1997.4×104 m3/d(正常) 2197.1×104m3/d(最 大) 水露点≤-10 ℃(操作条件下) 干气出本装置通过外输管道输送至轮南末站。
中 国 石 油 塔 里 木 油 田 公 司 PetroChina Tarim Oilfield Company
2 . 冬季燃料气系统冻堵 2.1时间原因分析
燃料气各气源的水、烃露点
液液分离器闪 蒸汽1% 回收的排放 气20% 液液分离器闪蒸气 TEG闪蒸罐闪蒸气 压缩机出口排放气
水露点(℃)
中 国 石 油 塔 里 木 油 田 公 司 PetroChina Tarim Oilfield Company
3、 工艺方法及特点 本装置所采用的TEG脱水、火管直接加热再生工艺具有 以下特点: 1)TEG脱水工艺流程简单、技术成熟,与其它脱水法相 比具有可获得较大露点降、热稳定性好、易于再生、损失 小、投资和操作费用省等优点。 2)在富液管道上设置过滤器,以除去溶液系统中携带的 机械杂质和降解产物,保持溶液清洁,防止溶液起泡,有 利于装置长周期平稳运行。 3)TEG再生所采用的直接火管加热方法成熟、可靠、操 作方便。
实验三乙醇脱水

实验三乙醇脱水实验三乙醇脱水实验三乙醇气相脱水制乙烯反应动力学实验室小型管式炉加热固定床、流化床催化反应装置是有机化工、精细化工、石油化工等部门的主要设备,尤其在反应工程、催化工程及化工工艺专业中使用相当广泛。
本实验是在固定床和流化床反应器中,进行乙醇气相脱水制乙烯,测定反应动力学参数。
固定床反应器内填充有固定不动的固体催化剂,床外面用管式炉加热提供反应所需温度,反应物料以气相形式自上而下通过床层,在催化剂表面进行化学反应。
流化床反应器内装填有可以运动的催化剂层,是一种沸腾床反应器。
反应物料以气相形式自下而上通过催化剂层,当气速达到一定值后进入流化状态。
反应器内设有档板、过滤器、丝网和瓷环等内部构件,反应器上段有扩大段。
反应器外有管式加热炉,以保证得到良好的流化状态和所需的温度条件。
反应动力学描述了化学反应速度与各种因素如浓度、温度、压力、催化剂等之间的定量关系。
动力学在反应过程开发和反应器设计过程中起着重要的作用。
它也是反应工程学科的重要组成部分。
在实验室中,乙醇脱水是制备纯净乙烯的最简单方法。
常用的催化剂有:浓硫酸液相反应,反应温度约170℃。
三氧化二铝气-固相反应,反应温度约360℃。
分子筛催化剂气-固相反应,反应温度约300℃。
其中,分子筛催化剂的突出优点是乙烯收率高,反应温度较低。
故选用分子筛作为本实验的催化剂。
一、实验目的1、巩固所学有关反应动力学方面的知识。
2、掌握获得反应动力学数据的手段和方法。
3、学会实验数据的处理方法,并能根据动力学方程求出相关的动力学参数值。
4、熟悉固定床和流化床反应器的特点及多功能催化反应装置的结构和使用方法,提高自身实验技能。
二、实验原理乙醇脱水属于平行反应。
既可以进行分子内脱水生成乙烯,又可以进行分子间脱水生成乙醚。
一般而言,较高的温度有利于生成乙烯,而较低的温度有利于生成乙醚。
因此,对于乙醇脱水这样一个复合反应,随着反应条件的变化,脱水过程的机理也会有所不同。
天然气三甘醇脱水工艺设计——吸收塔及重沸器设计、泵的选型_毕业论文

ABSTRACT
The water in the natural gas for transmission and use are harmful, therefore, in economic conditions allow as far as possible remove the water in the nature gas is necessary for gas transmission and use. The water in Natural gas usually of gas and liquid form existence, in a few instances will also is solid.
4)图表应绘制于无格子的页面上
5)软件工程类课题应有程序清单,并提供电Байду номын сангаас文档
5.装订顺序
1)设计(论文)
2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订
3)其它
学生毕业设计(论文)原创性声明
本人以信誉声明:所呈交的毕业设计(论文)是在导师梁平的指导下进行的设计(研究)工作及取得的成果,设计(论文)中引用他(她)人的文献、数据、图件、资料均已明确标注出,论文中的结论和结果为本人独立完成,不包含他人成果及为获得重庆科技学院或其它教育机构的学位或证书而使用其材料。与我一同工作的同志对本设计(研究)所做的任何贡献均已在论文中作了明确的说明并表示了谢意。
KIMRAY三甘醇泵也称甘醇能量转换泵,利用吸收塔出来的高压富甘醇与来自再生装置的低压贫甘醇进行能量交换,将高压富甘醇变为低压富甘醇离开循环泵,而低压贫甘醇变为高压贫甘醇进入吸收塔。
三甘醇脱水系统的KIMRAY泵具有以下优点:
三甘醇脱水工艺流程图

三甘醇脱水工艺流程图
三甘醇脱水工艺是一种重要的化工生产工艺,其流程图如下所示:
1. 原料准备阶段。
在三甘醇脱水工艺中,首先需要准备好原料。
原料主要包括三甘醇、脱水剂和催化剂。
三甘醇是工艺的主要原料,脱水剂用于去除三甘醇中的水分,催化剂用于促进脱水反应的进行。
2. 反应器装料阶段。
在反应器装料阶段,将准备好的原料按照一定的配比加入反应器中。
需要注意的是,要确保原料的纯度和配比的准确性,以保证脱水反应的顺利进行。
3. 加热反应阶段。
加热反应是三甘醇脱水工艺的核心步骤。
在加热的过程中,脱水剂开始与三甘醇发生反应,将三甘醇中的水分去除,生成脱水产
物。
同时,催化剂起到促进反应速率的作用,加快脱水反应的进行。
4. 分离提取阶段。
在脱水反应完成后,需要对反应体系进行分离提取。
通常采用
蒸馏、结晶、萃取等方法,将脱水产物从反应混合物中分离出来。
分离提取的目的是获取高纯度的脱水产物,为后续工艺提供优质原料。
5. 产品收集阶段。
最后,经过分离提取的脱水产物被收集起来,经过精炼、干燥
等步骤,最终得到高纯度的三甘醇脱水产品。
这些产品可以用于制
备聚酯树脂、涂料、塑料等化工产品,具有广泛的应用价值。
以上就是三甘醇脱水工艺的流程图及各个阶段的简要介绍。
三
甘醇脱水工艺是一项重要的化工生产工艺,其流程图所示的各个步
骤都至关重要,需要严格控制每个环节,确保产品的质量和产量。
通过不断优化工艺流程,提高生产效率,可以更好地满足市场需求,推动工艺技术的进步和产业的发展。
某三甘醇脱水工艺流程

重庆科技学院《油气集输工程》课程设计报告学院:_石油与天然气工程学院专业班级:学生姓名:学号:设计地点:(单位):设计题目:某三甘醇天然气脱水工艺设计--------再生塔设计完成日期: 2012年6月20日指导教师评语:成绩(五级记分制):指导教师(签字):摘要天然气中的水对于天然气的输送和使用都是有害的,因此,在经济条件允许的情况下,尽可能的脱去天然气中的水,不论对于天然气输送还是使用都非常的有必要。
天然气中的水通常以气态和液态两种形式存在,在少数情况下也会呈固态。
三甘醇在吸收塔中吸收了水分变成富液,不能再继续使用。
因此,再生塔就为富甘醇进行再生,并且打入吸收塔中再次利用。
三甘醇再生塔是安装在重沸器(再沸器)顶部的立式分馏塔。
通过三甘醇脱水工艺流程,TEG吸收塔底部排出的三甘醇富液与TEG再生塔顶部换热后进入TEG闪蒸罐,尽可能闪蒸出其中所溶的烃类,闪蒸后的三甘醇富液经过TEG过滤器除去固体、液体杂质,进入TEG换热罐提高三甘醇进TEG再生塔的温度,从再生塔中部进料,经TEG重沸器加热再生,再生后的三甘醇贫液经TEG换热罐和TEG后冷器冷却,冷却后的三甘醇贫液由TEG 循环泵输送到干气/贫甘醇换热器与吸收塔顶部出来的天然气换热后进入吸收塔,实现三甘醇贫液的循环利用。
由此可见三甘醇再生塔在三甘醇脱水工艺流程中显得尤为重要。
本篇就重点介绍三甘醇再生塔在脱水工艺流程中的设计和注意事项。
关键词:三甘醇再生塔精馏柱填料塔冷却盘管三甘醇贫液的循环利用目录1.设计参数 (4)2.遵循的规范、标准 (6)3.再生塔设计 (7)3.1再生塔工作原理 (7)3.2再生塔塔设备的选型 (7)3.3三甘醇再生方法选择 (8)3.4参数对比及方案优选 (9)4.三甘醇再生塔的计算 (11)4.1富液精馏柱计算 (12)4.2贫液精馏柱工艺计算 (13)4.3富液精馏柱顶部冷却盘管工艺计算 (13)4.4三甘醇再生塔主要设备选型计算结果 (14)5.结论 (16)6.参考文献 (17)1.设计参数基础资料:天然气组成如下表:原料气处理量 40×104m3/d 原料气露点 30~36 ºC 原料气压力 6MPa (g)拟建天然气脱水装置产品气为干净化天然气,该产品气质量符合国家标准《天然气》(GB17820-1999)中二类气的技术指标。
三甘醇脱水

三甘醇再生系统各设备
精馏柱 由吸收塔来的富甘醇在再生塔精馏柱和重沸器内进行 再生,对于小型脱水装置,常常将精馏柱安装在重沸器上 部。精馏柱内一般充填1.2~2.4m高的陶瓷或不锈钢填料; 大型脱水装置有时也采用塔板。我们的精馏柱采用散堆填 料。 200℃的热气进入填料,由下向上流动,富TEG由上向 下流动,气体温度由200℃降到100℃,建立温度梯度,富 TEG中的水分被蒸发出来,被热气带出,富TEG与热气传 质传热。
Inlet Gas Filter Separator
ቤተ መጻሕፍቲ ባይዱ
Dry Gas/TEG Exchanger From Wet Gas Compressor B TEG Contactor
Lean TEG
Rich TEG
Inlet Gas Filter Separator
To Closed Drain
5
5
三甘醇再生系统流程图
18
影响脱水效果的因素
影响脱水效果的因素 (1) 接触塔塔板级数 对于相同填料类型的接触塔,在接触塔压力、温度和三甘醇循环量、浓度一 定的情况下,塔板级数越多,脱水效果越好;但是由于建造费用和接触塔体积的 制约,塔板级数也不能选择太多。 (2)天然气和甘醇入塔的温度
接触塔入口天然气温度应该高于水化物形成的温度,气入口温度超过49℃, 将导致三甘醇损失增大。一般三甘醇装置的入口天然气温度在27—38 ℃之间。一 则避免气流在塔内有过多烃类冷凝及甘醇发泡,二则避免三甘醇温度过高,造成 三甘醇在干气中损失过大。甘醇进入接触塔上部时被冷却到比气体温度高3-8 ℃ 。 (3)天然气进塔压力
12
三甘醇再生系统各设备
甘醇过滤器 甘醇在系统内循环时,会吸收随入口气体携带的固体颗粒。此外, 甘醇还含有其在接触塔内从气体中吸收的烃类液体或其他的可溶液体。这 些杂质可能引起接触塔起泡。因此,需要将杂质过滤掉,甘醇过滤器包括 固体过滤器和活性炭过滤器。 固体过滤器 作用:防止泵和阀门内件磨损,热交换器堵塞,甘醇起泡,接触塔 盘结垢,和火管形成过热点。富甘醇溶液中含有微粒物质,此微粒包含甘 醇裂解产物、管线腐蚀产物和天然气中的固体微粒。甘醇滤器可以除去 99.9%的直径大于10微米的固体颗粒。2台滤器1用1备。 型号:5@10 μ MODEL:JPMG-2540-10AB-SIM-0S 活性炭过滤器 活性炭过滤器的主要作用是滤掉富甘醇溶液中的微小的碳氢化合物、 氧化物、分解产物、烃类液体、表面活性剂、缓蚀剂等,有助于将泡沫及 淤渣减至最小的程度。 活性炭过滤器在操作过程中一般要将旁通阀打开一部分,使大约10 %的富甘醇流过过滤器。 型号:22 CARBON CANISTER MODEL:JVF-1122C
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆科技学院课程设计报告学院:石油与天然气工程学院专业班级:油气储运10-3 学生姓名:汪万茹学号: 2010440140设计地点(单位)____ k715 _____ __设计题目:___ 某三甘醇天然气脱水站的工艺设计______ 完成日期: 2013 年 6 月 28 日指导教师评语:______________________ ______________________________________________________________________________________________________________________________________________成绩(五级记分制):______ __________指导教师(签字):________摘要天然气还含有气态的水,仅用分离器不能将其分离出来,这些气态水又会在天然气管道输送过程中随着压力和温度的改变而重新凝结为液态水,堵塞、腐蚀管道。
根据实际情况我们选用了三甘醇脱水方法来脱除这部分气态水。
三甘醇脱水工艺包括甘醇吸收和再生两部分。
含水天然气经过三相分离器脱除液态水,然后进入吸收塔与贫甘醇逆流接触后从塔顶流出。
然后富甘醇依次经过再生塔、三甘醇闪蒸罐、过滤器等再生为贫甘醇循环使用。
根据实际情况和石油行业相关的规范和相关的书籍设计出了合理的三甘醇脱水的工艺流程,并用AutoCAD软件绘制了工艺流程图。
关键词:三甘醇;吸收;再生;流程图目录第一章前言 (1)第二章三甘醇脱水工艺设计说明2.1设计概述 (2)2.1.1 三甘醇脱水工艺的主要工作任务 (2)2.2天然气基础资料 (5)2.3设计规范 (6)2.4遵循的规范、标准 (7)第三章工艺流程设计3.1 设计要求 (5)3.2 工艺方法的选择 (5)3.3 所设计工艺流程的特点 (6)3.4 所设计工艺流程简述 (7)3.5 工艺流程中设备参数 (8)第四章总结 (9)1 前言从地层中开采出来的天然气含有游离水和气态水,对于游离水,由于它是以液态水方式存在的,天然气集输过程中,通过分离器就可以将其分离;但是对于气态水,由于其在天然气中是以气态的方式存在,运用分离器不能完成分离。
而这些气态水又会在天然气管道输送过程随着温度压力的改变而重新凝结为液态水。
液态水将会导致天然气水合物的形成和液体本身也会堵塞管路、设备或降低它们的负荷,引发二氧化碳、二氧化硫等酸液的腐蚀,对天然气管道造成很严重的破坏。
因此在输送之前脱除天然气中的水是很必要的。
天然气的脱水方法有很多种,按其原理可以分为低温冷凝法、吸收脱水法和吸附脱水法三种。
吸收法是根据吸收原理,采用一种亲水液体与天然气逆流接触,从而脱除气体中的水蒸气。
用来脱水的吸收剂主要有甲醇、甘醇等。
吸收水分后的溶液蒸汽压很低,且可再生和循环使用,脱水成本低,已在天然气脱水中得到广泛的应用。
三甘醇脱水工艺设计是油气集输工艺设计的重要组成部分,为使其最大限度地满足油气田开发和油气开采的要求,需要做到经济合理、技术先进、生产安全可靠,保证为国家生产符合数量和质量要求的合格天然气产品。
本设计充分考虑集输站站设计工程中可能存在的一些问题,通过大量的计算以及校验,最终制定了集输站三甘醇脱水的设计方案。
2 天然气集输站三甘醇脱水工艺设计说明2.1 设计概述天然气集输站三甘醇脱水工艺设计是天然气集输工艺设计的重要组成部分,为了使其最大限度地满足天然气脱水的要求,设计时应该做到技术先进,经济合理,生产安全可靠,保证为国家生产符合质量要求的合格油气田产品。
2.1.1三甘醇脱水工艺的主要工作任务(1)接收站内输来的气液混合物;(2)进入吸收塔脱水;(3)三甘醇的再生;(4)干气的输出;2.2 天然气基础资料天然气组成表2.2.2原料气处理量21×104m3/d³原料气湿度30~36 ºC原料气压力 2.05~2.25MPa (g)中二类气的技术指标。
产品气参数拟建天然气脱水装置产品气为干净化天然气,该产品气质量符合国家标准《天然气》(GB17820-1999)2.3 设计范根据重庆科技学院油气集输课程设计任务书,设计范围为某三甘醇天然气脱水工艺流程图,并根据实际天然气的组成及基本参数和实际情况设计工艺流程图。
2.4 遵循的规范、标准[1]梁平,王天祥.《天然气集输技术》.石油工业出版社[2] SY/T0076-2008.《油气集输设计规范》[3]曾自强,张育芳.《天然气集输工程》.石油工业出版社[4]SY/T 0076- 2003.《天然气脱水设计规范》[5]GB50350-2005,《油气集输设计规范》[6]SY/T0602-2005.《甘醇型天然气脱水设计规范》3 工艺流程设计3.1设计要求(1)尽可能采用先进设备,先进生产方法及成熟的科学技术成就,以保证产品质量。
(2)“就地取材”,充分利用当地原料,以便获得最佳的经济效果。
(3)所采用的设备效率高,降低原材料消耗及水电气消耗,以使产品成本降低。
(4)经济效益高(5)充分预计生产的故障,以便及时处理,保证生产的稳定性。
(6)充分考虑天然气进料性质、产品质量及品种,生产能力及今后发展。
(7)设计流程尽可能采用循环法,尾气处理符合国家环境排放标准。
3.2 工艺方法的选择对吸收剂的要求表3.2.1根据这些要求目前常用的脱水吸收有甘醇类化合物和氯化钙水溶液。
常用吸收剂方法的比较二甘醇(DEG )、三甘醇(三甘醇)均为乙二醇的缩合物,反应式为:二甘醇三甘醇二甘醇: 沸点:245.0℃; 分解温度:164.4 ℃ 三甘醇: 沸点:287.4℃; 分解温度:206.7 ℃通过上面两个表的比较和二甘醇三甘醇的比较可以得出在天然气脱水工艺中选择三甘醇作为吸附剂优于其他吸附剂。
三甘醇溶液具有热稳定性好、易于再生、吸湿性很高、蒸汽压低、携带损失量小、运行可靠等优点。
三甘醇脱水装置主要分为吸收和再生两部分, 应用了吸收、分离、气液接触、传质、传热和抽提等原理, 露点降通常可达到30 ℃~60℃,最高可达85 ℃。
CH 2CH 2OH OHCH 2CH 2OHOHCH 2CH 2OHO CH 2CH 2OH+H 2OCH 2CH 2OH OHCH 2CH 2OHO CH 2CH 2H 2O3(O CH 2CH 2OH+23.3所设计工艺流程的特点(1)工艺流程简单、技术成熟,与其它脱水法相比具有可获得较大露点降、热稳定性好、易于再生、损失小、投资和操作费用省等优点;(2)采用高效过滤分离器分离原料气中固、液颗粒,减少甘醇污染;(2)在富液管道上设置过滤器,以除去溶液系统中携带的机械杂质和降解产物,保证溶液清洁,防止溶液起泡,有利于装置长周期平稳运行;(4)再生所采用的直接火管加热方法成熟、可靠、操作方便;(5)为了增强天然气脱水装置的适应性,在贫液精馏柱上设有气提气注入,气提气起源使用干气。
3.4所设计工艺流程简述三甘醇脱水工艺流程主要由天然气吸收脱水、三甘醇富液再生两部分组成。
其工艺设备主要有原料气过滤分离器、三甘醇吸收塔、三甘醇闪蒸罐、三甘醇循环泵、三甘醇过滤器、三甘醇再沸器、贫富液换热器等设备。
(1)原料气脱水湿天然气进入原料气过滤分离器,分离固体杂质、游离水等后进入三甘醇吸收塔底部,与吸收塔上部注入的贫三甘醇溶液逆流接触而脱除水分,吸收塔顶部出来的天然气经干气/贫甘醇换热器换热后进入产品气分离器,分离出少量三甘醇溶液后,从干气分离器中分离出的气相小部分做为燃料气补充气,大部分为产品气(2)三甘醇富液再生三甘醇吸收塔底部排出的三甘醇富液与三甘醇再生塔顶部换热后进入三甘醇闪蒸罐,尽可能闪蒸出其中所溶的烃类气体,闪蒸后的三甘醇富液一次经过纤维过滤器和活性炭过滤器,除去甘醇溶液在吸收塔中吸收与携带过来的少量固体、液烃、化学剂及其他杂质,以防止引起甘醇溶液起泡、堵塞再生系统的精馏柱或使再沸器的火管结垢。
过滤后的富三甘醇进入三甘醇换热罐提高三甘醇进三甘醇再生塔的温度,从再生塔中部进料,经三甘醇重沸器加热再生,再生后的三甘醇贫液经三甘醇换热罐和三甘醇后冷器冷却,冷却后的三甘醇贫液由三甘醇循环泵输送到干气/贫3.5工艺流程中设备参数4 结论本次油气集输课程设计我们小组设计任务是某三甘醇脱水工艺设计,本人具体负责工艺流程设计及绘制,在本次设计中本人查阅了大量的资料,并且从熟悉CAD操作到绘制出工艺流程图。
其中,在工艺流程设计中,经查阅资料、小组讨论以及老师指导确定了用三甘醇气提法来脱水的工艺流程。
本次设计的结果,经计算,符合设计要求。
两周的课程设计结束了,在设计过程中与小组同学分工设计,相互合作完成了小组任务。
课程设计是我们专业各种综合知识实际应用的体现,其中不仅体现了学科综合知识的应用还需要我们有很好的团队合作能力。
我们小组在最开始的时候就讨论设计出了基本的工艺流程图,并且把设计任务落实到了每一个人的身上,让每个人都清楚自己设计的内容及从哪些方面着手,这样很好的提高了设计效率。
对本人来说用CAD 绘制工艺流程图是此次设计中最难的,因为之前没有用过CAD。
在极短的时间内自学了一些简单的CAD绘图知识,并且根据使用行业的相关制图规范标准绘制了CAD工艺流程图。
通过本次设计,综合本专业所学的理论基础知识及生产实际知识进行三甘醇脱水工艺设计,培养了和提高了学生的独立思考、应用知识以及团队合作等多方面的能力。
让我们巩固和扩充了油气集输课程的相关知识,掌握了天然气三甘醇脱水设计的方法和步骤,清楚了怎样确定工艺方案,熟悉了一些相关的标准和规范,并且提高了计算机和绘图软件的应用能力。
再次尤为感谢梁平老师,这次工艺流程图从设计到绘制成图每一个环节都离不开您的细心指导。
同时也感谢我们同组的同学,是你们的全力配合和共同努力和无私帮助才使我们很好的完成本次设计。
由于本人设计能力有限,再设计过程中难免出现错误,恳请老师同学们多多指教,我十分乐意接受你们的批评指正,本人将万分感谢。
参考文献[1] 冯叔初,郭揆常.油气集输.第二版.中国石油大学出版社.2006:74-364.[2] GB 50350-2005,油田油气集输设计技术手册.[3] SY/T 0045-1999,油田集输管道施工及验收规范[4]梁平,王天祥.《天然气集输技术》.石油工业出版社[5]SY/T 0076- 2003.《天然气脱水设计规范》[6]SY/T0602-2005.《甘醇型天然气脱水设计规范》。