6-函数与方程,函数模型及其应用

合集下载

第三讲 函数与方程、函数模型及其应用

第三讲 函数与方程、函数模型及其应用

第3讲│ 要点热点探究
[点评] 本题给出了函数的模型,但函数模型中含有未知 参数,需要根据已知的试验数据确定未知参数,这也是高考 中命制函数建模试题常见的方式之一.在使用导数求解定义 域有限制的函数的极值时,一般是先把函数的单调性和极值 点求出,再根据函数极值点与函数定义域的相对位置关系进 行分类讨论,讨论的标准是函数的极值点在函数定义域内与 不在函数的定义域内.实际问题中的函数大多是单峰函数, 即在问题的实际范围内函数只有一个极值点,那么这个极值 点就是最值点.
第3讲│ 要点热点探究
变式题
x+1,x≤0, (1)已知函数 f(x)= log2x,x>0,
则函数 y=f[f(x)
+1]的零点个数是( A.2 B.3
) C.4
D.5
(2)当直线 y=kx 与曲线 y=e|lnx|-|x-2|有 3 个公共点时, 实数 k 的取值范围是( ) A.(0,1) B.(0,1] C.(1,+∞) D.[1,+∞)
第3讲│ 要点热点探究
[答案] (1)B (2)D
[解析] (1)法一:∵f(x)=2x+x3-2在(0,1)上单调递增, 且f(0)×f(1)=-1×1=-1<0,∴函数f(x)=2x+x3-2在(0,1) 上有一个零点. 法二:将2x+x3-2=0化为2x=2-x3,在同一坐标系内 画出y=2x与y=2-x3的图象,如图所示,结合图象可知函数 f(x)=2x+x3-2在(0,1)上有一个零点.
第3讲 │ 主干知识整合
主干知识整合
第3讲 │ 主干知识整合
1.函数的零点与方程的根 (1)函数的零点与方程根的关系:函数y=f(x)的零点就是 方程f(x)=0的实数根,即函数y=f(x)的图象与x轴的交点的横 坐标.方程f(x)=0有实数根⇔函数y=f(x)的图象与x轴有交点 ⇔函数y=f(x)有零点. (2)二分法:对于在区间[a,b]上连续不断且f(a)· f(b)<0的 函数y=f(x),通过不断把函数f(x)的零点所在的区间一分为 二,使区间的两个端点逐步逼近零点,进而得到零点近似值 的方法叫做二分法.

《第三章函数的概念和性质》章节复习及单元检测试卷

《第三章函数的概念和性质》章节复习及单元检测试卷

《第三章函数的概念和性质》章节复习及单元测试卷第三章函数的概念和性质知识梳理1. 知识系统整合2. 规律方法收藏1.同一函数的判定方法(1)定义域相同;(2)对应关系相同(两点必须同时具备).2.函数解析式的求法(1)定义法;(2)换元法;(3)待定系数法;(4)解方程(组)法;(5)赋值法.3.函数的定义域的求法(1)已给出函数解析式:函数的定义域是使解析式有意义的自变量的取值集合.(2)实际问题:求函数的定义域既要考虑解析式有意义,还应考虑使实际问题有意义.(3)复合函数问题①若函数f(x)的定义域为[a,b],函数f[g(x)]的定义域应由a≤g(x)≤b 解出;②若函数f[g(x)]的定义域为[a,b],则函数f(x)的定义域为函数g(x)在[a,b]上的值域.注意:①函数f(x)中的x与函数f[g(x)]中的g(x)地位相同.②定义域所指永远是x的范围.4.函数值域的求法(1)配方法(二次或四次);(2)判别式法;(3)换元法;(4)函数的单调性法.5.判断函数单调性的步骤(1)设x1,x2是所研究区间内任意两个自变量的值,且x1<x2;(2)判定f(x1)与f(x2)的大小:作差比较或作商比较;(3)根据单调性定义下结论.6.函数奇偶性的判定方法首先考查函数的定义域是否关于原点对称,再看函数f(-x)与f(x)之间的关系:①若函数f(-x)=f(x),则f(x)为偶函数;若函数f(-x)=-f(x),则f(x)为奇函数;②若f(-x)-f(x)=0,则f(x)为偶函数;若f(x)+f(-x)=0,则f(x)为奇函数;③若f(x)f(-x)=1(f(-x)≠0),则f(x)为偶函数;若f(x)f(-x)=-1(f(-x)≠0),则f(x)为奇函数.7.幂函数的图象特征(1)幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限内,图象最多只能同时出现在两个象限内,至于是否在第二、三象限内出现,则要看幂函数的奇偶性.(2)幂函数的图象在第一象限内的变化规律为:在第一象限内直线x =1的右侧,图象从下到上,相应的指数由小到大,直线x =1的左侧,图象从下到上,相应的指数由大到小.8.函数的应用解决函数应用题关键在于理解题意,提高阅读能力.一方面要加强对常见函数模型的理解,弄清其产生的实际背景,把数学问题生活化;另一方面,要不断拓宽知识面,增加间接的生活阅历,诸如了解一些物价、行程、产值、利润、环保等实际问题,及有关角度、面积、体积、造价的问题,培养实际问题数学化的意识和能力.3 学科思想培优一、函数的定义域函数的定义域是指函数y =f (x )中自变量x 的取值范围.确定函数的定义域是进一步研究函数其他性质的前提,而研究函数的性质,利用函数的性质解决数学问题是中学数学的重要组成部分.所以熟悉函数定义域的求法,对于函数综合问题的解决起着至关重要的作用.[典例1] (1)函数f (x )=x x -132+(3x -1)0的定义域是( )A.)31,(-∞B.)131(,C.)3131(,-D.)31,(-∞∪)131(,(2)已知函数y =f (x +1)的定义域是[-2,3],则y =f (2x -1)的定义域是( )A.]25,0[ B .[-1,4]C.[-5,5] D .[-3,7] 【答案】(1)D (2)A【解析】(1)由题意,得⎩⎨⎧≠->-01301x x ,解得x <1且x ≠31.(2)设u =x +1,由-2≤x ≤3,得-1≤x +1≤4,所以y =f (u )的定义域为[-1,4].再由-1≤2x -1≤4,解得0≤x ≤25,即函数y =f (2x -1)的定义域是]25,0[ 二、分段函数问题所谓分段函数是指在定义域的不同子区间上的对应关系不同的函数.分段函数是一个函数而非几个函数,其定义域是各子区间的并集,值域是各段上值域的并集.分段函数求值等问题是高考常考的问题.[典例2] 已知实数a ≠0,函数f (x )=⎩⎨⎧≥--<+1,21,2x a x x a x 若f (1-a )=f (1+a ),则a 的值_____.【答案】-43【解析】①当1-a <1,即a >0时,此时a +1>1,由f (1-a )=f (1+a ),得2(1-a )+a =-(1+a )-2a ,解得a =-23(舍去); ②当1-a >1,即a <0时,此时a +1<1,由f (1-a )=f (1+a ),得-(1-a )-2a =2(1+a )+a ,解得a =-43,符合题意.综上所述,a =-43. 三、函数的单调性与奇偶性单调性是函数的一个重要性质,某些数学问题,通过函数的单调性可将函数值间的关系转化为自变量之间的关系进行研究,从而达到化繁为简的目的,特别是在比较大小、证明不等式、求值或求最值、解方程(组)等方面应用十分广泛.奇偶性是函数的又一重要性质,利用奇偶函数图象的对称性可以缩小问题研究的范围,常能使求解的问题避免复杂的讨论.[典例3]设函数()y f x =的定义域为R ,并且满足()()()f x y f x f y +=+,112f ⎛⎫= ⎪⎝⎭,当0x >时,()0f x >. (1)求(0)f 的值; (2)判断函数的奇偶性;(3)如果()(2)2f x f x ++<,求x 的取值范围.【解析】(1)令0x y ==,则(0)(0)(0)f f f =+,∴(0)0f =.(2)令y x =-,得(0)()()0f f x f x =+-=, ∴()()f x f x -=-,故函数()f x 是R 上的奇函数. (3)任取12,R x x ∈且12x x <,则210x x ->. ∵()()21f x f x -()()2111f x x x f x =-+- ()()()2111f x x f x f x =-+- ()210f x x =->,∴()()12f x f x <.故()f x 是R 上的增函数.∵112f ⎛⎫= ⎪⎝⎭,∴()1111122222f f f f ⎛⎫⎛⎫⎛⎫=+=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()(2)2f x f x ++<∴[]()(2)((2)(22)(1)f x f x f x x f x f ++=++=+<.又由()y f x =是定义在R 上的增函数,得221x +<,解得21x <-四、函数图象及应用函数的图象是函数的重要表示方法,它具有明显的直观性,通过函数的图象能够掌握函数重要的性质,如单调性、奇偶性等.反之,掌握好函数的性质,有助于函数图象正确地画出.函数图象广泛应用于解题过程中,利用数形结合解题具有直观、明了、易懂的优点.[典例4] 设函数f (x )=x 2-2|x |-1(-3≤x ≤3). (1)证明:函数f (x )是偶函数; (2)画出这个函数的图象;(3)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )的单调性; (4)求函数的值域.【解析】(1)证明:∵函数f (x )的定义域关于原点对称, 且f (-x )=(-x )2-2|-x |-1 =x 2-2|x |-1=f (x ),即f (-x )=f (x ),∴f (x )是偶函数. (2)当0≤x ≤3时,f (x )=x 2-2x -1=(x -1)2-2.当-3≤x <0时,f (x )=x 2+2x -1=(x +1)2-2.即f (x )=⎪⎩⎪⎨⎧<≤--+≤≤--)03(2)1()30(,2)1(22x x x x 根据二次函数的作图方法,可得函数图象如下图.(3)函数f (x )的单调区间为[-3,-1),[-1,0),[0,1),[1,3].f (x )在区间[-3,-1)和[0,1)上单调递减, 在[-1,0)和[1,3]上单调递增.(4)当0≤x ≤3时,函数f (x )=(x -1)2-2的最小值为-2,最大值为f (3)=2;当-3≤x <0时,函数f (x )=(x +1)2-2的最小值为-2,最大值为f (-3)=2.故函数f (x )的值域为[-2,2].五、幂函数的图象问题对于给定的幂函数图象,能从函数图象的分布、变化趋势、对称性等方面研究函数的定义域、值域、单调性、奇偶性等性质.注意图象与函数解析式中指数的关系,能够根据图象比较指数的大小.[典例5] 如图是幂函数y =x a ,y =x b ,y =x c ,y =x d 在第一象限内的图象,则a ,b ,c ,d 的大小关系为( )A.a <b <c <dB.a <b <d <cC.b <a <c <dD.b <a <d <c 【答案】A【解析】由幂函数的图象特征可知,在第一象限内直线x =1的右侧,图象从下到上,相应的指数由小到大.故选A.六、函数模型及其应用建立恰当的函数模型解决实际问题的步骤:(1)对实际问题进行抽象概括,确定变量之间的主被动关系,并用x ,y 分别表示;(2)建立函数模型,将变量y 表示为x 的函数,此时要注意函数的定义域; (3)求解函数模型,并还原为实际问题的解.[典例6] 已知A ,B 两城市相距100 km ,在两地之间距离A 城市x km 的D 处修建一垃圾处理厂来解决A ,B 两城市的生活垃圾和工业垃圾.为保证不影响两城市的环境,垃圾处理厂与市区距离不得少于10 km.已知垃圾处理费用和距离的平方与垃圾量之积的和成正比,比例系数为0.25.若A 城市每天产生的垃圾量为20 t ,B 城市每天产生的垃圾量为10 t .(1)求x 的取值范围;(2)把每天的垃圾处理费用y 表示成x 的函数;(3)垃圾处理厂建在距离A 城市多远处,才能使每天的垃圾处理费用最少? 【解析】(1)由题意可得x ≥10,100-x ≥10. 所以10≤x ≤90.所以x 的取值范围为[10,90].(2)由题意,得y =0.25[20x 2+10(100-x )2],即y =215x 2-500x +25000(10≤x ≤90). (3)由y =215x 2-500x +25000=350000)3100(2152+-x (10≤x ≤90),则当x =3100时,y 最小.即当垃圾处理厂建在距离A 城市3100km 时,才能使每天的垃圾处理费用最少.《第三章 函数的概念和性质》单元测试卷(一)基础测评卷(时间:120分钟,满分:150分)一、单选题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知f (x )=-3x +2,则f (2x +1)等于( B ) A .-3x +2 B .-6x -1 C .2x +1 D .-6x +5【答案】B【解析】在f (x )=-3x +2中,用2x +1替换x ,可得f (2x +1)=-3(2x +1)+2=-6x -3+2=-6x -1.2.函数1()f x x=的定义域是( )A .RB .[1,)-+∞C .(,0)(0,)-∞+∞D .[1,0)(0,)-+∞【答案】D【解析】由题意可得:10x +≥,且0x ≠,得到1x ≥-,且0x ≠,故选:D3.已知21,[1,0),()1,[0,1],x x f x x x +∈-⎧=⎨+∈⎩则函数()y f x =-的图象是( ) A .B .C . D .【答案】A【解析】当0x =时,依函数表达式知2(0)(0)011f f -==+=,可排除B ;当1x =时,(1)(1)10f -=-+=,可排除C 、D .故选A4.已知函数y =21,02,0x x x x ⎧+≤⎨->⎩,则使函数值为5的x 的值是( )A .2-或2B .2或52-C .2-D .2或2-或52- 【答案】C【解析】当0x ≤时,令5y =,得215x +=,解得2x =-;当0x >时,令5y =,得25x -=,解得52x =-,不合乎题意,舍去.综上所述,2x =-,故选C.5.某学校要召开学生代表大会,规定各班每10人推选一名代表 ,当各班人数除以10的余数大于6时再增选一名代表,那么,各班可推选代表人数y 与该班人数x 之间的函数关系用取整函数y=[x]([x]表示不大于x 的最大整数)可以表示为 ()A .y 10x ⎡⎤=⎢⎥⎣⎦B .3y 10x +⎡⎤=⎢⎥⎣⎦C .4y 10x +⎡⎤=⎢⎥⎣⎦D .5y 10x +⎡⎤=⎢⎥⎣⎦【答案】B【解析】根据规定每10人推选一名代表,当各班人数除以10的余数大于6时增加一名代表,即余数分别为7,8,9时可以增选一名代表,也就是x 要进一位,所以最小应该加3,因此利用取整函数可表示为310x y +⎡⎤=⎢⎥⎣⎦,也可以用特殊取值法,若56,5x y ==,排除C ,D ,若57,6x y ==,排除A ,故选B .6.设函数f (x )(x ∈R)为奇函数,f (1)=21,f (x +2)=f (x )+f (2),则f (5)等于( C )A .0B .1C .25D .5【答案】C【解析】令x =-1,得f (1)=f (-1)+f (2).∵f (x )为奇函数,∴f (-1)=-f (1),∴f (1)=-f (1)+f (2),∴21=-21+f (2),∴f (2)=1.令x =1,得f (3)=f (1)+f (2)=21+1=23.令x =3,得f (5)=f (2)+f (3)=257.已知函数()f x 是定义在R 上的偶函数,当0x ≥时,2()4f x x x =-,则不等式(2)5f x +<的解集为( )A .(3,7)-B .()4,5-C .(7,3)-D .()2,6-【答案】C【解析】当0x ≥时,2()45f x x x =-<的解为05x <≤;当0x <时,根据偶函数图像的对称性知不等式()5f x <的解为5x 0-<<, 所以不等式()5f x <的解集为{}55x x -<<,所以不等式(2)5f x +<的解集为{}{}52573x x x x -<+<=-<<.故选:C 8.已知定义在R 上的奇函数f (x )满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0)在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4等于( C )A .-6B .6C .-8D .8【答案】C【解析】f (x )在R 上是奇函数,所以f (x -4)=-f (x )=f (-x ),故f (x )关于x =-2对称,f (x )=m 的根关于x =-2对称,∴x 1+x 2+x 3+x 4=4×(-2)=-8.二、多选题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分)9.下列各组函数表示的是同一个函数的是( BD )A .f (x )=32x -与g (x )=x ·x 2-B .f (x )=|x |与g (x )=x 2C .f (x )=x +1与g (x )=x +x 0D .f (x )=x x与g (x )=x 0【答案】BD【解析】对于A ,f (x )=32x -与g (x )=x ·x 2-的对应关系不同,故f (x )与g (x )表示的不是同一个函数;对于B ,f (x )=|x |与g (x )=x 2的定义域和对应关系均相同,故f (x )与g (x )表示的是同一个函数;对于C ,f (x )的定义域为R ,g (x )的定义域为{x |x ≠0},故f (x )与g (x )表示的不是同一个函数;对于D ,f (x )=x x与g (x )=x 0的对应关系和定义域均相同,故f (x )与g (x )表示的是同一个函数.10.下列函数既是定义域上的减函数又是奇函数的是( BD )A .f (x )=x 1B .f (x )=-x 3C .f (x )=x |x |D .f (x )=-3x【答案】BD【解析】A .f (x )=x 1在定义域(-∞,0)∪(0,+∞)上是奇函数,且在每一个区间上是减函数,不能说函数在定义域上是减函数,∴不满足题意;对于B ,f (x )=-x 3在定义域R 上是奇函数,且是减函数,∴满足题意,对于C ,f (x )=x |x |=⎪⎩⎪⎨⎧<-≥0,0,22x x x x ,在定义域R 上是奇函数,且是增函数,∴不满足题意;对于D ,f (x )=-3x 在定义域R 上是奇函数,且是减函数,∴满足题意.故选BD .11.已知函数f (x )=31++-x x ,则( ABD ) A .f (x )的定义域为[-3,1] B .f (x )为非奇非偶函数 C .f (x )的最大值为8 D .f (x )的最小值为2【答案】ABD【解析】由题设可得函数的定义域为[-3,1],f 2(x )=4+2×322+--x x=4+2×2)1(4+-x ,而0≤2)1(4+-x ≤2,即4≤f 2(x )≤8,∵f (x )>0,∴2≤f (x )≤22,∴f (x )的最大值为22,最小值为2,故选ABD .12.下列说法正确的是( )A .若方程x 2+(a -3)x +a =0有一个正实根,一个负实根,则a <0B .函数f (x )=2211x x -+-是偶函数,但不是奇函数C .若函数f (x )的值域是[-2,2],则函数f (x +1)的值域为[-3,1]D .曲线y =|3-x 2|和直线y =a (a ∈R)的公共点个数是m ,则m 的值不可能是1【答案】AD【解析】设方程x 2+(a -3)x +a =0的两根分别为x 1,x 2,则x 1·x 2=a <0,故A 正确;函数f (x )=2211x x -+-的定义域为⎪⎩⎪⎨⎧≥-≥-010122x x ,则x =±1,∴f (x )=0,所以函数f (x )既是奇函数又是偶函数,故B 不正确;函数f (x +1)的值域与函数f (x )的值域相同,故C 不正确;曲线y =|3-x 2|的图像如图,由图知曲线y =|3-x 2|和直线y =a 的公共点个数可能是2,3或4,故D 正确.三、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中横线上)13.若函数()(31)4,1,1a x a x f x ax x -+<⎧=⎨-≥⎩,是定义在R 上的减函数,则a 的取值范围【答案】11,83⎡⎫⎪⎢⎣⎭【解析】因为函数()f x 是定义在R 上的减函数,所以3100314a a a a a -<⎧⎪-<⎨⎪-+≥-⎩,解得1183a ≤<. 14.函数f (x )=x x+-11的定义域为___,单调递减区间为___.【答案】(-∞,-1)∪(-1,+∞),(-∞,-1)【解析】函数f (x )的定义域为(-∞,-1)∪(-1,+∞).任取x 1,x 2∈(-1,+∞)且x 1<x 2,则f (x 1)-f (x 2)=)1)(1()22121x x x x ++-(>0,即f (x 1)>f (x 2),故f (x )在(-1,+∞)上为减函数;同理,可得f (x )在(-∞,-1)上也为减函数.15.函数y =f (x )是R 上的增函数,且y =f (x )的图像经过点A (-2,-3)和B (1,3),则不等式|f (2x -1)|<3的解集为____.【答案】1(,1)2-【解析】因为y =f (x )的图像经过点A (-2,-3)和B (1,3),所以f (-2)=-3,f (1)=3.又|f (2x -1)|<3,所以-3<f (2x -1)<3,即f (-2)<f (2x -1)<f (1).因为函数y =f (x )是R 上的增函数,所以-2<2x -1<1,即⎩⎨⎧<-->-112212x x ,即⎪⎩⎪⎨⎧<->121x x ,所以-21<x <1.16.对于任意定义在R 上的函数f (x ),若实数x 0满足f (x 0)=x 0,则称x 0是函数f (x )的一个不动点.现给定一个实数a ∈(4,5),则函数f (x )=x 2+ax +1的不动点共有___个.【答案】2【解析】由定义,令x 2+ax +1=x ,则x 2+(a -1)x +1=0,当a ∈(4,5)时,Δ=(a -1)2-4>0,所以方程有两根,相应地,函数f (x )=x 2+ax +1(a ∈(4,5))有2个不动点.四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知幂函数39*()m y x m N -=∈的图象关于y 轴对称且在()0,∞+上单调递减,求满足()()33132mm a a +<---的a 的取值范围.【解析】因为函数39*()m y x m N -=∈在()0,∞+上单调递减,所以390m -<, 解得3m <.又因为*m N ∈,所以1m =,2; 因为函数的图象关于y 轴对称, 所以39m -为偶数,故1m =. 则原不等式可化为()()1133132a a +<---,因为13y x-=在(),0-∞,()0,∞+上单调递减,所以1320a a +>->或3210a a -<+<或1032a a +<<-, 解得2332a <<或1a <-. 故a 的取值范围是1a <-或2332a <<. 18.(10分)已知函数21()1x f x x -=+(1)试判断函数在(-1,+∞)上的单调性,并给予证明;(2)试判断函数在[3,5]x ∈的最大值和最小值 【解析】(1)∵()213211x y f x x x -===-++, ∴函数()f x 在()1,-+∞上是增函数, 证明:任取1x ,()21x ∈-+∞,,且12x x <, 则()()1212213333221111f x f x x x x x ⎛⎫⎛⎫-=---=- ⎪ ⎪++++⎝⎭⎝⎭()()()1212311x x x x -=++, ∵121x x -<<,∴120x x -<,()()12110x x ++>, ∴()()120f x f x -<,即()()12f x f x <,∴()f x 在()1,-+∞上是增函数. (2)∵()f x 在()1,-+∞上是增函数, ∴()f x 在[3]5,上单调递增, 它的最大值是()25135512f ⨯-==+,最小值是()23153314f ⨯-==+. 19.(12分)设函数f (x )=ax 2+(b -8)x -a -ab 的两个零点分别是-3和2.(1)求函数f (x );(2)当函数f (x )的定义域是[0,1]时,求函数f (x )的值域.【解析】(1)∵f (x )的两个零点是-3和2,∴-3和2是方程ax 2+(b -8)x -a -ab =0的两根,∴有9a -3(b -8)-a -ab =0,① 4a +2(b -8)-a -ab =0.② ①-②得b =a +8.③将③代入②得4a +2a -a -a (a +8)=0,即a 2+3a =0.∵a ≠0,∴a =-3,∴b =a +8=5,∴f (x )=-3x 2-3x +18.(2)由(1)得f (x )=-3x 2-3x +18=-3(x +21)2+43+18.图像的对称轴是直线x =-21.∵0≤x ≤1,∴f (x )min =f (1)=12,f (x )max =f (0)=18,∴此时函数f (x )的值域是[12,18].20.(12分)已知函数())1f x a =≠. (1)若0a >,求()f x 的定义域;(2)若()f x 在区间(]0,1上是减函数,求实数a 的取值范围. 【解析】(1)当0a >且1a ≠时,由30ax -≥得3x a≤,即函数()f x 的定义域是3,a ⎛⎤-∞ ⎥⎝⎦.(2)当10a ->即1a >时,令3t ax =-要使()f x 在(]0,1上是减函数,则函数3t ax =-在(]0,1上为减函数,即0a -<,并且且310a -⨯≥,解得13a ;当10a -<即1a <时 ,令3t ax =-要使()f x 在(]0,1上是减函数,则函数3t ax =-在(]0,1为增函数,即0a -> 并且310a -⨯≥,解得0a <综上可知,所求实数a 的取值范围是()(],01,3-∞.21.(12分)已知函数f (x )=x mx+,且此函数图象过点(1,2). (1)求实数m 的值;(2)判断函数f (x )的奇偶性并证明;(3)讨论函数f (x )在(0,1)上的单调性,并证明你的结论. 【解析】(1)∵函数f (x )=x mx+,且此函数图象过点(1,2), ∴2=1+m , ∴m =1;(2)f (x )=x 1x +,定义域为:()()00-∞⋃+∞,,, 又f (﹣x )=﹣x 1x+=--f (x ), ∴函数f (x )是奇函数;(3)函数f (x )在(0,1)上单调递减, 设0<x 1<x 2<1, 则()()()()211212121212121212111x x x x f x f x x x x x x x x x x x x x ---=+--=-+=-⋅⋅⋅, ∵0<x 1<x 2<1,∴x 1﹣x 2<0,0<x 1x 2<1,x 1x 2﹣1<0, ∴()()()1212121210x x f x f x x x x x --=-⋅>, 即f (x 1)>f (x 2),∴f (x )在(0,1)上的单调递减.22.(12分)某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为了鼓励销售商订购,决定每一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降0.02元,但实际出厂单价不能低于51元.(1)当一次订购量为多少个时,零件的实际出厂单价恰好为51元? (2)当销售商一次订购x 个零件时,该厂获得的利润为P 元,写出P =f (x )的表达式.【解析】(1)设每个零件的实际出厂价格恰好为51元时,一次订购量为x 0个,则60-0.02(x 0-100)=51,解得x 0=550,所以当一次订购量为550个时,每个零件的实际出厂价恰好为51元.(2)设一次订量为x 个时,零件的实际出厂单价为W ,工厂获得利润为P ,由题意P =(W -40)·x ,当0<x ≤100时,W =60;当100<x <550时,W =60-0.02(x -100)=62-50x;当x ≥550时,W =51.当0<x ≤100时, f (x )=(60-40)x =20x ;∴当100<x <550时, f (x )=(22-50x )x =22x -501x 2;当x ≥550时, f (x )=(51-40)x =11x .故f (x )=⎪⎪⎩⎪⎪⎨⎧∈≥∈<<-∈≤<+++),550(,11),550100(5022),1000(202N x x x N x x x x N x x x《第三章 函数的概念和性质》单元测试卷(二)能力测评卷(时间:120分钟,满分:150分)一、单项选择题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列函数中,既是奇函数又是在其定义域上是增函数的是( )A .y =x +1B .y =-x 3C .y =x 1D .y =x |x |【答案】D【解析】选项A 中,函数为非奇非偶函数,不符合题意;选项B 中,函数为奇函数,但在定义域为减函数,不符合题意;选项C 中,函数为奇函数,但在定2.已知幂函数y =f (x )的图象过点2,则下列结论正确的是( )A .y =f (x )的定义域为[0,+∞)B .y =f (x )在其定义域上为减函数C .y =f (x )是偶函数D .y =f (x )是奇函数3.函数f (x )=x x 2的定义域为( )A .(0,1)B .[0,1]C .(-∞,0]∪[1,+∞)D .(-∞,0)∪(1,+∞)【答案】D【解析】:由题意知:x 2-x >0,解得x <0或x >1,∴函数f (x )的定义域为(-∞,0)∪(1,+∞).4.已知函数f (3x +1)=x 2+3x +1,则f (10)=( ) A .30 B .19 C .6 D .20 【答案】B【解析】令x =3得f (10)=32+3×3+1=19.5.已知函数f (x )=|x +a |在(-∞,-1)上是单调函数,则a 的取值范围是( )A.(-∞,1] B.(-∞,-1) C.[1,+∞) D.(-∞,1)【答案】A【解析】由于f(x)=|x+a|的零点是x=-a,且在直线x=-a两侧左减右增,要使函数f(x)=|x+a|在(-∞,-1)上是单调函数,则-a≥-1,解得a≤1.故选A.6.为了节约用电,某城市对居民生活用电实行“阶梯电价”,计费方法如下:( ) A.475度 B.575度 C.595.25度 D.603.75度【答案】D【解析】不超过230度的部分费用为:230×0.5=115;超过230度但不超过400度的部分费用为:(400-230)×0.6=102,115+102<380;设超过400度的部分为x,则0.8x+115+102=380,∴x=203.75,故用电603.75度.7.已知函数y=x2-4x+5在闭区间[0,m]上有最大值5,最小值1,则m 的取值范围是( )A.[0,1] B.[1,2] C.[0,2] D.[2,4]【答案】D【解析】∵函数f(x)=x2-4x+5=(x-2)2+1的对称轴为x=2,此时,函数取得最小值为1,当x=0或x=4时,函数值等于5.又f(x)=x2-4x+5在区间[0,m]上的最大值为5,最小值为1,∴实数m的取值范围是[2,4],故选D.8.已知定义域为R的函数y=f(x)在(0,4)上是减函数,又y=f(x+4)是偶函数,则( )A.f(2)<f(5)<f(7) B.f(5)<f(2)<f(7)C.f(7)<f(2)<f(5) D.f(7)<f(5)<f(2)【答案】B【解析】因为y=f(x+4)是偶函数,所以f(x+4)=f(-x+4),因此f(5)=f(3),f(7)=f(1),因为y=f(x)在(0,4)上是减函数,所以f(3)<f(2)<f(1),f(5)<f(2)<f(7),选B.二、多项选择题(本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.若函数y=xα的定义域为R且为奇函数,则α可能的值为( )A.-1 B.1 C.2 D.3【答案】BD【解析】当α=-1时,幂函数y=x-1的定义域为(-∞,0)∪(0,+∞),A不符合;当α=1时,幂函数y=x,符合题意;当α=2时,幂函数y=x2的定义域为R且为偶函数,C不符合题意;当α=3时,幂函数y=x3的定义域为R且为奇函数,D符合题意.故选BD.10.某工厂八年来某种产品总产量y(即前x年年产量之和)与时间x(年)的函数关系如图,下列五种说法中正确的是( )A.前三年中,总产量的增长速度越来越慢B.前三年中,年产量的增长速度越来越慢C.第三年后,这种产品停止生产D.第三年后,年产量保持不变【答案】AC【解析】由题中函数图象可知,在区间[0,3]上,图象是凸起上升的,表明总产量的增长速度越来越慢,A正确;由总产量增长越来越慢知,年产量逐年减小,因此B错误;在[3,8]上,图象是水平直线,表明总产量保持不变,即年产量为0,因此C正确,D错误,故选AC.11.对于实数x,符号[x]表示不超过x的最大整数,例如[π]=3,[-1.08]=-2,定义函数f (x )=x -[x ],则下列命题中正确的是( )A .f (-3.9)=f (4.1)B .函数f (x )的最大值为1C .函数f (x )的最小值为0D .方程f (x )-21=0有无数个根值可能是( )A .2B .3C .4D .5 【答案】ABC【解析】函数y =x 2-4x -4的部分图象如图,f (0)=f (4)=-4,f (2)=-8.因为函数y =x 2-4x -4的定义域为[0,m ],值域为[-8,-4],所以m 的取值范围是[2,4],故选ABC.三、填空题(本题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若函数f (x )=12+++bx x a x 在[-1,1]上是奇函数,则f (x )的解析式为________.14.已知幂函数()221()33mm f x m m x--=-+在(0,)+∞上单调递增,则m 值为_____.【答案】2【解析】由题意可知2233110m m m m ⎧-+=⎪⎨-->⎪⎩,解得2m =,故答案为:215.若定义在R 上的奇函数()f x 满足()()4f x f x +=,()11f =,则()()()678f f f ++的值为_______.【答案】1-【解析】由于定义在R 上的奇函数()y f x =满足()()4f x f x +=,则该函数是周期为4的周期函数,且()11f =,则()()800f f ==,()()()7111f f f =-=-=-,()()()622f f f =-=,又()()22f f -=-,()20f ∴=,则()60f =,因此,()()()6781f f f ++=-. 16.已知函数()(),f x g x 分别是定义在R 上的偶函数和奇函数,()()23x f x g x +=⋅.则函数()f x =__________;关于x 不等式()()2240g x x g x ++->的解集__________.【答案】33x x -+ ()(),41,-∞-+∞【解析】函数()f x 、()g x 分别是定义在R 上的偶函数和奇函数, ∴()()f x f x -=,()()g x g x -=-,又()()23xf xg x +=⋅,…①∴()()23xf xg x --+-=⋅, 即()()23xf xg x --=⋅,…②由①②求得函数()33x x f x -=+,()33x xg x -=-. 易知()33x xg x -=-是定义域R 上的单调增函数,所以不等式()()2240g x x g x ++->可化为()()()2244g x x g x g x +>--=-,即224x x x +>-,整理得2340x x +->, 解得4x <-或1x >, 所以不等式的解集为()(),41,-∞-+∞, 故答案为33x x -+,()(),41,-∞-+∞四、解答题(本题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知函数f(x)=61x -,(1)求函数f(x)的定义域; (2)求f(-1), f(12)的值.【解析】(1)根据题意知x -1≠0且x +4≥0,∴x≥-4且x≠1, 即函数f(x)的定义域为[-4,1)∪(1,+∞).(2) ()6132f -==---f(12)=66412111-=--=3811-. 18.(12分)已知幂函数f (x )=(m 2-5m +7)·x m -1为偶函数.(1)求f (x )的解析式;(2)若g (x )=f (x )-ax -3在[1,3]上不是单调函数,求实数a 的取值范围. 【解析】(1)由题意得m 2-5m +7=1, 即m 2-5m +6=0,解得m =2或m =3. 又f (x )为偶函数,所以m =3,此时f (x )=x 2.(2)由(1)知,g (x )=x 2-ax -3,因为g (x )=x 2-ax -3在[1,3]上不是单调19.(12分)已知函数()2f x x =+, (1)若该函数在区间()-2∞,+上是减函数,求a 的取值范围. (2)若1a =-,求该函数在区间[1,4]上的最大值与最小值. 【解析】(1)因为函数()212112()222a x a ax af x a x x x ++-+-===++++在区间(2,)-+∞上是减函数,所以120a ->,解得12a <, 所以a 的取值范围1,2⎛⎫-∞ ⎪⎝⎭.(2)当1a =-时,13()122x f x x x -+==-+++,则()f x 在(),2-∞-和()2,-+∞上单调递减,因为[](),,421⊆-+∞,所以()f x 在[]1,4的最大值是()111012f -+==+,最小值是()4114422f -+==-+, 所以该函数在区间[]1,4上的最大值为0,最小值为12-.20.已知函数f (x )是定义在R 上的奇函数,且当x ≤0时,f (x )=x 2+2x .(1)现已画出函数f (x )在y 轴左侧的图象,如图所示,请补全函数f (x )的图象;(2)求出函数f (x )(x >0)的解析式;(3)若方程f (x )=a 恰有3个不同的解,求a 的取值范围. 【解析】函数f(x)的图象如下:(2)因为f(x)为奇函数,则f(-x)=- f(x)∴当x 0>时,x 0-<∴f(-x)=- f(x)=()()2222x x x x ⎡⎤-+-=-⎣⎦故f(x)()220x x x =-+>(3)由(1)中图象可知:y=f(x)与y=a 的图象恰好有三个不同的交点1a ∴-<<121.已知函数2()4f x x =+. (1)设()()f x g x x=,根据函数单调性的定义证明()g x 在区间[2,)+∞上单调递增;(2)当0a >时,解关于x 的不等式2()(1)2(1)f x a x a x >-++.【解析】(1)由题意得,124(),,[2,)g x x x x x=+∀∈+∞,且12x x <,则()()()()()121212121212121244444x x x x g x g x x x x x x x x x x x --⎛⎫⎛⎫⎛⎫-=+-+=-+-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.由212x x >≥,得12120,40x x x x -<->.于是()()120g x g x -<,即()()12g x g x <所以函数()g x 在区间[2,)+∞上单调递增(2)原不等式可化为22(1)40ax a x -++>.因为0a >,故2(2)0x x a ⎛⎫--> ⎪⎝⎭. (i )当22a <,即1a >时,得2x a <或2x >. (ii )当22a=,即1a =时,得到2(2)0x ->,所以2x ≠;(iii )当22a >,即01a <<时,得2x <或2x a >.综上所述,当01a <<时,不等式的解集为2(,2),a ⎛⎫-∞⋃+∞ ⎪⎝⎭;当1a =时,不等式的解集为(,2)(2,)-∞⋃+∞;当1a >时,不等式的解集为2,(2,)a ⎛⎫-∞⋃+∞ ⎪⎝⎭22. 2018年10月24日,世界上最长的跨海大桥—港珠澳大桥正式通车。

函数模型及其应用教案

函数模型及其应用教案

函数模型及其应用教案一、教学目标1. 理解函数的概念,了解函数模型的产生和应用;2. 学习两种常见函数模型的基本形式和参数,并能解决实际问题应用;3. 认识函数模型在现实生活和工程实践中的重要作用;4. 提高学生分析和解决实际问题的能力。

二、教学重点1. 函数的概念与应用;2. 两种常见函数模型的基本形式与参数;3. 实际问题中函数模型的应用。

三、教学难点1. 函数模型在数学联系与实际应用展示之间的联系;2. 如何将实际问题转化为基本形式的函数模型。

四、教学方法1. 讲授教学法;2. 课堂互动式教学法;3. 问题式教学法。

五、教学准备1. 多媒体教学设备;2. 函数模型案例资料。

六、教学过程1. 引入函数是一种重要的数学概念,也是自然科学、经济学、工程技术等领域的基础。

而函数模型则是在实际问题中应用函数的过程中,通过对数据和经验的分析产生的数学模型,可用于预测、控制、优化等目的。

今天我们将学习两种常见函数模型及其应用。

2. 基础知识讲解(1)函数的概念函数是一个输入输出关系的特殊情况。

数学上定义一个函数是指一组数对,其中第一个数(称为自变量)从一个特定集合中取任意一个值,;第二个数(称为因变量或函数值)则从另一集合中取一个值,这个取值完全由第一个数决定。

(2)线性函数模型线性函数模型可以写为 y=a*x+b 的形式,其中 a 称为斜率,b称为截距。

它的应用非常广泛,比如经济学中的供给函数、消费函数,工程学中的动力学方程等等,都可以通过线性函数模型来描述。

(3)指数函数模型指数函数模型可以用 y=a^x+b 的形式表示,其中 a 称为底数,b 称为位移。

指数函数具有非常广泛的应用,在物理学、天文学、化学、生物学、经济学等领域中都有其用途,比如放射性衰变过程、细胞增殖过程、经济增长过程等等都可以使用指数函数模型来描述。

3. 练习将下列实际问题转化为线性函数模型或指数函数模型,并求出相应的参数或曲线。

高中数学(各版本教材目录)

高中数学(各版本教材目录)

高中数学各版本新教材目录体系比较第三章统计案例§1 回归分析1.1回归分析1.2相关系数1.3可线性化的回归分析阅读材料高尔顿与回归§2 独立性检验2.1条件概率与独立事件阅读材料概率与法庭2.2独立性检验2.3独立性检验的基本思想2.4独立性检验的应用《数学选修4-1 几何证明选讲》第一章直线、多边形、圆§1 全等与相似§2 圆与直线§3 圆与四边形第二章圆锥曲线§1 截面欣赏§2 直线与球、平面与球的位置关系§3 柱面与平面的截面§4 平面截圆锥面§5 圆锥曲线的几何性质《数学选修4-2 矩阵与变换》第一章平面向量与二阶方阵§1平面向量及向量的运算§2向量的坐标表示及直线的向量方程§3二阶方阵与平面向量的乘法第二章几何变换与矩阵§1几种特殊的矩阵变换§2矩阵变换的性质第三章变换的合成与矩阵乘法§1变换的合成与矩阵乘法§2矩阵乘法的性质第四章逆变换与逆矩阵§1逆变换与逆矩阵§2初等变换与逆矩阵§3二阶行列式与逆矩阵§4可逆矩阵与线性方程组第五章矩阵的特征值与特征向量§1矩阵变换的特征值与特征向量§2特征向量在生态模型中的简单应用《数学选修4-4坐标系与参数方程》第一章坐标系§1 平面直角坐标系§2 极坐标系§3 柱坐标系和球坐标系第二章参数方程§1 参数方程的概念§2 直线和圆锥曲线的参数方程§3 参数方程化成普通方程§4 平摆线和渐开线§5 圆锥曲线的几何性质《数学选修4-5不等式选讲》第一章不等关系与基本不等式§1 不等式的性质§2 含有绝对值的不等式§3 平均值不等式§4 不等式的证明§5 不等式的应用第二章几个重要不等式§1 柯西不等式§2 排序不等式§3 数学归纳法与贝努利不等式。

完整版高中数学必修一全册课件-2024鲜版

完整版高中数学必修一全册课件-2024鲜版

完整版高中数学必修一全册课件目录•高中数学必修一概述•集合与函数概念•基本初等函数(Ⅰ)•函数的应用•空间几何体•点、直线、平面之间的位置关系01高中数学必修一概述包括集合的基本概念、集合间的关系与运算、函数的概念与性质等。

集合与函数概念包括指数函数、对数函数、幂函数等基本初等函数的图像与性质。

基本初等函数包括函数与方程、函数模型及其应用等,通过实例探究函数的性质与应用。

函数的应用教材内容与结构过程与方法通过观察、思考、探究、归纳等活动,培养学生的数学思维能力、创新能力和解决问题的能力。

知识与技能掌握集合与函数的基本概念,理解基本初等函数的图像与性质,能够运用函数知识解决一些实际问题。

情感态度与价值观激发学生学习数学的兴趣和热情,培养学生的数学素养和审美情趣。

教学目标与要求总结归纳定期对所学知识进行总结归纳,形成知识网络,便于记忆和提取。

通过大量的练习,熟练掌握解题方法和技巧,提高解题速度和准确性。

课后复习及时复习巩固所学知识,独立完成作业和练习题,加深对知识点的理解和记忆。

课前预习提前阅读教材,了解本节课的知识点和重点难点,为听课做好准备。

课中听讲认真听讲,积极思考,及时记录重要知识点和解题方法。

学习方法与建议02集合与函数概念03元素与集合的关系属于、不属于。

01集合的概念集合是由一个或多个确定的元素所构成的整体。

02集合的表示方法列举法、描述法、图像法。

集合及其表示方法集合之间的关系与运算集合之间的关系子集、真子集、相等。

集合的运算并集、交集、补集。

集合运算的性质交换律、结合律、分配律等。

函数是一种特殊的对应关系,它使得每个自变量对应唯一的因变量。

函数的概念函数的表示方法函数的三要素解析法、列表法、图像法。

定义域、值域、对应法则。

030201函数及其表示方法1 2 3单调性、奇偶性、周期性等。

函数的性质解决实际问题,如最优化问题、数学建模等。

函数的应用通过函数可以研究方程和不等式的解的性质和范围。

2012年高考试题分类考点9 函数与方程、函数模型及其应用

2012年高考试题分类考点9 函数与方程、函数模型及其应用

考点9 函数与方程、函数模型及其应用一、选择题1.(2012·湖北高考理科·T9)函数f (x )=xcos x ²在区间[0,4]上的零点个数为( )(A )4 (B )5 (C )6 (D )7【解题指南】本题考查函数零点的定义,转化成求方程根的个数问题. 本题考查基本不等式的应用,解答本题的关键把条件的左边通分利用基本不等式证明.【解析】选C.由方程xcos x ²=0在区间[0,4]上的解有10,x ,共6个零点. 2.(2012·湖北高考文科·T3)函数f(x)=xcos 2x 在区间[0,2π]上的零点的个数为( )(A )2 (B )3 (C )4 (D )5【解题指南】解答本题可先求导数,转化成求方程根的个数问题,最后再利用方程与函数的思想求解.【解析】选D. f(x)=xcos 2x 是由y 1=x 与y 2=cos 2x,相乘构成的函数,当x=0时, y 1=0, y 2=1,此时f(x)=0,当0<x ≤2π时, y 1≠0, y 2=cos 2x 有4个零点,此时f(x)=0有4个零点,综上所述f(x)=xcos 2x 有5个零点.选D.3.(2012·北京高考文科·T5)函数f (x )=x121x 2⎛⎫- ⎪⎝⎭的零点个数为( )(A )0 (B )1 (C )2 (D )3【解题指南】利用函数与方程思想,把函数的零点个数问题转化为方程解的个数问题,再转化为两个函数图象的交点个数问题.【解析】选B.函数f (x )=x121x 2⎛⎫- ⎪⎝⎭的零点个数,是方程121()02x x -=的解的个数,是方程121()2x x =的解的个数,也就是函数12y x =与1()2x y =的图象的交点个数.在同一坐标系中作出两个函数的图象,可得交点个数为1.4.(2012·天津高考理科·T4)函数3()22x f x x =+-在区间(0,1)内的零点个数是( )(A)0 (B)1 (C)2 (D)3 【解题指南】先判断函数的单调性,再确定零点.【解析】选B.因为2()2ln 23x f x x '=+>0,所以函数3()22x f x x =+-在(0,1)上递增,且(0)10210,(1)21210,f f =+-=-<=+-=>所以有1个零点. 二、填空题5.(2012·福建高考理科·T15)对于实数a 和b,定义运算“”:a b 22,,a a b a ba b b a b a b ⎧-≤*=⎨->⎩,设()(21)(fx x x=-*-1)(1)fx x x =-*-,且关于x 的方程为()()f x m mR =∈,恰有三个互不相等的实数根123,,x x x ,则123x x x 的取值范围是_______. 【解题指南】根据新定义,得到一个分段的二次函数式,通过图象找出三个实根的具体位置,同时运用根与系数的关系进行求解 【解析】当x ≤0时, 2x-1≤x-1,则f(x)=(2x-1)(x-1)=(2x-1)2-(2x-1)(x-1)=2x 2-x, 当x>0时,2x-1>x-1,x12y x=1()2x则f(x)=(2x-1)(x-1)=(x-1)2-(2x-1)(x-1)=-x 2+x. 可知当m ∈1(0,)4时,f(x)=m(m ∈R)恰有三个互不相等的实数根x 1,x 2,x 3(x 1<x 2<x 3),其中,x 2,x 3是方程-x 2+x-m=0的根, x 1是方程2x 2-x-m=0的一个根,则23x x m =,1x ,所以123xxx 123xxx显然,该式随m 的增大而减小,因此,当m =0时,123m a x ()0x xx =;当12m =14时, 123m i n()xx x .【答案】0).三、解答题6.(2012·上海高考理科·T21)海事救援船对一艘失事船进行定位:以失事船的当前位置为原点,以正北方向为y 轴正方向建立平面直角坐标系(以1海里为单位长度),则救援船恰好在失事船正南方向12海里A 处,如图.现假设:①失事船的移动路径可视为抛物线24912x y =;②定位后救援船即刻沿 直线匀速前往救援;③救援船出发t 小时后,失事船所在位置的横坐标为t 7.(1)当5.0=t 时,写出失事船所在位置P 的纵坐标.若此时两船恰好会合,求救援船速度的大小和方向.(2)问救援船的时速至少是多少海里才能追上失事船?【解题指南】本题考查圆锥曲线中的抛物线知识,以及不等式中的均值不等式知识,更考查考生的识图能力.【解析】(1)5.0=t 时,P 的横坐标x P =277=t ,代入抛物线方程24912x y =中,得P 的纵坐标y P =3.由|AP|=2949,得救援船速度的大小为949海里/时.由tan ∠OAP=730,得∠OAP=arctan 307,故救援船速度的方向为北偏东arctan 730度.(2)设救援船的时速为v 海里,经过t 小时追上失事船,此时位置为)12,7(2t t .由222)1212()7(++=t t vt ,整理得337)(1442122++=t t v .因为2212≥+tt ,当且仅当t =1时等号成立,所以22253372144=+⨯≥v ,即25≥v .因此,救援船的时速至少是25海里才能追上失事船.7.(2012·湖南高考理科·T20)某企业接到生产3000台某产品的A ,B ,C三种部件的订单,每台产品需要这三种部件的数量分别为2,2,1(单位:件).已知每个工人每天可生产A部件6件,或B部件3件,或C部件2件.该企业计划安排200名工人分成三组分别生产这三种部件,生产B部件的人数与生产A部件的人数成正比,比例系数为k (k 为正整数).(1)设生产A部件的人数为x,分别写出完成A,B,C三种部件生产需要的时间.(2)假设这三种部件的生产同时开工,试确定正整数K的值,使完成订单任务的时间最短,并给出时间最短时具体的人数分组方案.【解析】(1)设完成A,B,C 三种部件的生产任务需要的时间(单位:天)分别为123(),(),(),Tx Tx Tx 由题设有 12323000100020001500(),(),(),6200(1)T x T x T x x x k x k x ⨯====-+ 其中,,200(1)x k x k x -+均为1到200之间的正整数.(2)完成订单任务的时间为{}123()m a x (),(),(),f x T x T x T x =其定义域为2000,.1x x x N k *⎧⎫<<∈⎨⎬+⎩⎭易知,12(),()T x T x 为减函数,3()T x 为增函数.注意到 212()(),T x T x k=于是 ①当k=2时,12()(),T x T x = 此时 {}1310001500()m a x(),()m a x ,2003f x T x T x x x ⎧⎫==⎨⎬-⎩⎭,由函数13(),()T x T x 的单调性知,当100015002003x x=-时()f x 取得最小值,解得 4009x =.由于134002503004445,(44)(44),(45)(45),(44)(45)91113f T f T f f <<====<而. 故当44x =时完成订单任务的时间最短,且最短时间为250(44)11f =.②当k >2时,12()(),T x T x >由于k 为正整数,故3k ≥,此时 150********=200-(1+k)x 200-(1+3)x 50-x ≥,记{}1375(),()m a x(),()50T x x T x T x x ϕ==-易知()T x 为增函数,则{}13()m a x (),()fx T x T x ={}1m a x (),()T xT x ≥1000375()m a x ,50x x x ϕ⎧⎫==⎨⎬-⎩⎭. 由函数1(),()T x T x 的单调性知,当100037550x x=-时()x ϕ取得最小值,解得40011x =.由于14002502503752503637,(36)(36),(37)(37),119111311T T ϕϕ<<==>==>而 此时完成订单任务的最短时间大于25011.③当k<2时,12()(),T x T x <由于k 为正整数,故1k =,此时{}232000750()m a x(),()m a x ,.100f x T x T x x x ⎧⎫==⎨⎬-⎩⎭由函数23(),()T x T x 的单调性知,当2000750100x x =-时()f x 取得最小值,解得80011x =.类似①的讨论.此时完成订单任务的最短时间为2509,大于25011.综上所述,当k=2时,完成订单任务的时间最短,此时,生产A,B,C三种部件的人数分别为44,88,68.。

专题02 函数的概念与基本初等函数(原卷版)

专题02 函数的概念与基本初等函数(原卷版)

专题02函数的概念与基本初等函数1.【2019年天津文科05】已知a=log27,b=log38,c=0.30.2,则a,b,c的大小关系为()A.c<b<a B.a<b<c C.b<c<a D.c<a<b2.【2019年天津文科08】已知函数f(x)若关于x的方程f(x)x+a(a∈R)恰有两个互异的实数解,则a的取值范围为()A.[,] B.(,] C.(,]∪{1} D.[,]∪{1}3.【2019年新课标3文科12】设f(x)是定义域为R的偶函数,且在(0,+∞)单调递减,则()A.f(log3)>f(2)>f(2)B.f(log3)>f(2)>f(2)C.f(2)>f(2)>f(log3)D.f(2)>f(2)>f(log3)4.【2019年新课标2文科06】设f(x)为奇函数,且当x≥0时,f(x)=e x﹣1,则当x<0时,f(x)=()A.e﹣x﹣1 B.e﹣x+1 C.﹣e﹣x﹣1 D.﹣e﹣x+15.【2019年新课标1文科03】已知a=log20.2,b=20.2,c=0.20.3,则()A.a<b<c B.a<c<b C.c<a<b D.b<c<a6.【2019年北京文科03】下列函数中,在区间(0,+∞)上单调递增的是()A.y=x B.y=2﹣x C.y=log x D.y7.【2018年新课标2文科12】已知f(x)是定义域为(﹣∞,+∞)的奇函数,满足f(1﹣x)=f(1+x),若f(1)=2,则f(1)+f(2)+f(3)+…+f(50)=()A.﹣50 B.0 C.2 D.508.【2018年新课标1文科12】设函数f(x),则满足f(x+1)<f(2x)的x的取值范围是()A.(﹣∞,﹣1] B.(0,+∞)C.(﹣1,0)D.(﹣∞,0)9.【2018年新课标3文科07】下列函数中,其图象与函数y=lnx的图象关于直线x=1对称的是()A.y=ln(1﹣x)B.y=ln(2﹣x) C.y=ln(1+x)D.y=ln(2+x)10.【2018年北京文科05】“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献,十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为()A.f B.f C.f D.f11.【2018年天津文科05】已知a,b,c,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.c>a>b12.【2017年北京文科05】已知函数f(x)=3x﹣()x,则f(x)()A.是偶函数,且在R上是增函数B.是奇函数,且在R上是增函数C.是偶函数,且在R上是减函数D.是奇函数,且在R上是减函数13.【2017年北京文科08】根据有关资料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(参考数据:lg3≈0.48)A.1033B.1053C.1073D.109314.【2017年天津文科06】已知奇函数f(x)在R上是增函数.若a=﹣f(),b=f(log24.1),c=f (20.8),则a,b,c的大小关系为()A.a<b<c B.b<a<c C.c<b<a D.c<a<b15.【2017年天津文科08】已知函数f(x),设a∈R,若关于x的不等式f(x)≥|a|在R上恒成立,则a的取值范围是()A .[﹣2,2]B .C .D .16.【2018年新课标1文科13】已知函数f (x )=log 2(x 2+a ),若f (3)=1,则a = . 17.【2018年新课标3文科16】已知函数f (x )=ln (x )+1,f (a )=4,则f (﹣a )= .18.【2018年天津文科14】已知a ∈R ,函数f (x ).若对任意x ∈[﹣3,+∞),f (x )≤|x |恒成立,则a 的取值范围是 .19.【2017年新课标2文科14】已知函数f (x )是定义在R 上的奇函数,当x ∈(﹣∞,0)时,f (x )=2x 3+x 2,则f (2)= .20.【2017年新课标3文科16】设函数f (x ),则满足f (x )+f (x )>1的x 的取值范围是 .21.【2017年北京文科11】已知x ≥0,y ≥0,且x +y =1,则x 2+y 2的取值范围是 .1.【山西省晋城市2019届高三第三次模拟考试】若函数(()sin ln f x x ax =⋅的图象关于y 轴对称,则实数a 的值为( ) A .2B .4C .2±D .4±2.【广东省东莞市2019届高三第二学期高考冲刺试题(最后一卷)】己知()f x 是定义在R 上的偶函数,在区间(]0-∞,为增函数,且()30f =,则不等式(12)0f x ->的解集为( ) A .()10-,B .()12-,C .()02,D .()2,+∞ 3.【天津市河北区2019届高三一模】已知()f x 是定义在R 上的偶函数,且()f x 在[)0,+∞内单调递减,则( )A .()()()320log 2log 3f f f <<-B .()()()32log 20log 3f f f <<-C .()()()23log 3log 20f f f -<<D .()()()32log 2log 30f f f <-<4.【天津市红桥区2019届高三二模】已知 1.22a =,52log 2=b ,1ln3c =,则( )A .a b c >>B .a c b >>C .b a c >>D .b c a >>5.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()221log 2xf x x+=-,若()f a b =,则()4f a -=( )A .bB .2b -C .b -D .4b -6.【河南省八市重点高中联盟“领军考试”2019届高三第五次测评】已知函数()21x f x x =-,则( )A .()f x 在()0,1单调递增B .()f x 的最小值为4C .()y f x =的图象关于直线1x =对称D .()y f x =的图象关于点()1,2对称7.【山东省栖霞市2019届高三高考模拟卷(新课标I)】已知定义在R 上的奇函数()f x 满足(2)()f x f x +=-,当01x ≤≤时,2()f x x =,则(1)(2)(3)(2019)f f f f ++++=L ( )A .2019B .0C .1D .-18.【天津市红桥区2019届高三一模】若方程2121x kx x -=--有两个不同的实数根,则实数k 的取值范围是( ) A .(),1-∞-B .()1,0-C .()0,4D .()()0,11,49.【天津市部分区2019届高三联考一模】设,m n R ∈,则“m n <”是“112m n-⎛⎫> ⎪⎝⎭”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件10.【广东省2019届高考适应性考试】某罐头加工厂库存芒果()m kg ,今年又购进()n kg 新芒果后,欲将芒果总量的三分之一用于加工为芒果罐头。

2021高一数学所有公式和知识点汇总

2021高一数学所有公式和知识点汇总

高一数学所有公式和知识点有哪些,小编整理了相关信息,希望会对大大家有所帮助!高一数学所有公式有哪些1. 集合与常用逻辑用语2. 平面向量3. 函数、基本初等函数的图像与性质4. 函数与方程、函数模型及其应用5.三角函数的图形与性质6.三角恒等变化与解三角形7.空间几何体8.空间点、直线、平面位置关系9.空间向量与立体几何10.直线与圆的方程高一数学的知识点:立体几何初步1、柱、锥、台、球的结构特征(1)棱柱:定义:有两个面互相平行,其余各面都是四边形,且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱柱、四棱柱、五棱柱等。

表示:用各顶点字母,如五棱柱或用对角线的端点字母,如五棱柱。

几何特征:两底面是对应边平行的全等多边形;侧面、对角面都是平行四边形;侧棱平行且相等;平行于底面的截面是与底面全等的多边形。

(2)棱锥定义:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体。

分类:以底面多边形的边数作为分类的标准分为三棱锥、四棱锥、五棱锥等表示:用各顶点字母,如五棱锥几何特征:侧面、对角面都是三角形;平行于底面的截面与底面相似,其相似比等于顶点到截面距离与高的比的平方。

(3)棱台:定义:用一个平行于棱锥底面的平面去截棱锥,截面和底面之间的部分。

分类:以底面多边形的边数作为分类的标准分为三棱态、四棱台、五棱台等表示:用各顶点字母,如五棱台几何特征:①上下底面是相似的平行多边形②侧面是梯形③侧棱交于原棱锥的顶点(4)圆柱:定义:以矩形的一边所在的直线为轴旋转,其余三边旋转所成的曲面所围成的几何体。

几何特征:①底面是全等的圆;②母线与轴平行;③轴与底面圆的半径垂直;④侧面展开图是一个矩形。

(5)圆锥:定义:以直角三角形的一条直角边为旋转轴,旋转一周所成的曲面所围成的几何体。

几何特征:①底面是一个圆;②母线交于圆锥的顶点;③侧面展开图是一个扇形。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数与方程﹑函数模型及其应用
函数ห้องสมุดไป่ตู้点
概念
方程 的实数根。方程 有实数根 函数 的图象与 轴有交点 函数 有零点.
存在定理
图象在 上连续不断,若 ,则 在 内存在零点。
函数建模
概念
把实际问表达的数量变化规律用函数关系刻画出来的方法叫作函数建模。
解题步骤
阅读审题
分析出已知什么,求什么,从中提炼出相应的数学问题。
数学建模
弄清题目中的已知条件和数量关系,建立函数关系式。
解答模型
利用数学方法得出函数模型的数学结果。
解释模型
将数学问题的结果转译成实际问题作出答案。
相关文档
最新文档