苯-乙苯浮阀精馏塔的设计
苯-乙苯连续精馏浮阀塔设计

第1章设计方案1.1 设计方案1.1.1装置流程的确定精馏装置包括精馏塔、原料预热器、再沸器、冷凝器、釜液冷却器和产品冷却器等设备。
热量自塔釜输入,物料在塔内经多次部分冷凝精馏分离,由冷凝器和冷却器中的冷却介质将余热带走。
在此过程中,热能利用率很低。
为此在确定装置流程时应考虑余热的利用。
另外,为保持塔的操作稳定性,流程中用泵直接将原料送入塔内。
塔顶上升蒸汽采用全冷凝器冷凝,冷凝液在泡点下一部分回流至塔内,其余部分经产品冷却器冷却后送至储罐。
塔釜采用间接蒸汽加热,塔底产品经冷却后送至储罐。
1.1.2加料热状况的选择设计中采用泡点进料。
虽然进料方式有多种,但是饱和液体进料时进料温度不受季节、气温变化和前段工序波动的影响,塔的操作比较容易控制;此外,饱和液体进料时精馏段和提馏段的塔径相同,无论是设计计算还是实际加工制造这样的精馏塔都比较容易,为此,本次设计中采取饱和液体进料1.1.3回流比的选择回流比的确定,是精馏塔设计中的一个关键性问题。
它确定的合理与否,直接影响到所设计的塔能否正常操作及投资的大小。
首先根据物系的性质及进料状况确定最小回流比,再根据最小回流比选定几个回流比,通过作图,从中找出适宜的操作回流比。
1.2 确定设计方案的原则1.满足工艺和操作要求2.满足经济上的要求3.保证安全生产第2章工艺计算及主体设备设计2.1 设计条件及基础数据2.1.1 苯-乙苯连续精馏浮阀塔设计1.处理量:4.8万吨/年;2.料液组成(质量分数,下同):乙苯:30%,苯:70%;3.塔顶产品组成:塔顶的乙苯含量低于2.0%;4. 塔底产品组成:残液中乙苯含量不得少于94%5.年工作生产时间:330天。
2.1.2 基础数据2.2 物料衡算及塔板数的确定2.2.1全塔物料衡算1.原料液及塔顶,塔底产品的摩尔分数=(0.7/78)/(0.7/78+0.3/106)=0.7602XFX=(0.98/78)/(0.98/78+0.02/106) =0.9852DX=(0.06/78)/(0.06/78+0.94/106)=0.0798W2. 塔底产品的平均摩尔质量0.079878(10.0798)106W M =⨯+-⨯=103.8kg/kmol所以:W=74.81033024103.8⨯⨯⨯=58.39Kmol/h3.全塔物料衡算F=D+W ;FX F =DX D +WX W即:F=D+58.390.7602×F=0.9852×D+39.51×0.0798 则:可知F=234.96Kmol/h ;D=176.57Kmol/h2.2.2平均相对挥发度α的计算0lg /()P A B t C =-+①;将P=101.325 KPa 代入①式,在分别代入苯和乙苯的A 、B 、C得苯的沸点为80.05,乙苯的沸点为136.15℃。
课程设计----苯-甲苯连续精馏浮阀塔设计.

设计任务书设计题目:苯-甲苯连续精馏浮阀塔设计设计条件:常压: 1p atm =处理量:100Kmol h进料组成: 0.45f x =馏出液组成: 98.0=d x釜液组成: 02.0=w x (以上均为摩尔分率)塔顶全凝器: 泡点回流 回流比: min (1.1 2.0)R R =-加料状态: 0.96q =单板压降: 0.7a kp ≤设 计 要 求 :(1) 完成该精馏塔的工艺设计(包括物料衡算、热量衡算、筛板塔的设计算)。
(2) 画出带控制点的工艺流程图、塔板负荷性能图、精馏塔工艺条件图。
(3) 写出该精馏塔的设计说明书,包括设计结果汇总和设计评价。
目录摘要 (1)绪论 (2)设计方案的选择和论证 (3)第一章塔板的工艺计算 (4)1.1基础物性数据 (4)1.2精馏塔全塔物料衡算 (4)1.2.1已知条件 (4)1.2.2物料衡算 (5)1.2.3平衡线方程的确定 (5)1.2.4求精馏塔的气液相负荷 (6)1.2.5操作线方程 (6)1.2.6用逐板法算理论板数 (6)1.2.7实际板数的求取 (7)1.3精馏塔的工艺条件及有关物性数据的计算 (8)1.3.1进料温度的计算 (8)1.3.2操作压力的计算 (8)1.3.3平均摩尔质量的计算 (8)1.3.4平均密度计算 (9)1.3.5液体平均表面张力计算 (10)1.3.6液体平均粘度计算 (10)1.4 精馏塔工艺尺寸的计算 (10)1.4.1塔径的计算 (10)1.4.2精馏塔有效高度的计算 (11)1.5 塔板主要工艺尺寸的计算 (12)1.5.1溢流装置计算 (12)1.6浮阀数目、浮阀排列及塔板布置 (13)1.7塔板流体力学验算 (14)1.7.1计算气相通过浮阀塔板的静压头降h f (14)1.7.2计算降液管中清夜层高度Hd (15)1.7.3计算雾沫夹带量e V (15)1.8塔板负荷性能图 (16)1.8.1雾沫夹带线 (16)1.8.2液泛线 (17)1.8.3 液相负荷上限线 (18)1.8.4漏液线 (18)1.8.5液相负荷下限线 (18)1.9小结 (19)第二章热量衡算 (20)2.1相关介质的选择 (20)2.1.1加热介质的选择 (20)2.1.2冷凝剂 (20)2.2热量衡算 (20)第三章辅助设备 (23)3.1冷凝器的选型 (23)3.1.1计算冷却水流量 (23)3.1.2冷凝器的计算与选型 (23)3.2冷凝器的核算 (24)3.2.1管程对流传热系数α1 (24)3.2.2计算壳程流体对流传热系数α0 (25)3.2.3污垢热阻 (26)3.2.4核算传热面积 (26)3.2.5核算压力降 (26)第四章塔附件设计 (29)4.1接管 (29)4.1.1进料管 (29)4.1.2回流管 (29)4.1.3塔底出料管 (29)4.1.4塔顶蒸气出料管 (30)4.1.5塔底进气管 (30)4.2筒体与封头 (30)4.2.1筒体 (30)4.2.2封头 (30)4.3除沫器 (31)4.4裙座 (31)4.5人孔 (31)4.6塔总体高度的设计 (32)4.6.1塔的顶部空间高度 (32)4.6.2塔的底部空间高度 (32)4.6.3塔立体高度 (32)设计结果汇总 (33)结束语 (34)参考文献 (35)主要符号说明 (36)附录 (38)摘要化工生产常需进行二元液相混合物的分离以达到提纯或回收有用组分的目的,精馏是利用液体混合物中各组分挥发度的不同并借助于多次部分汽化和多次部分冷凝达到轻重组分分离目的的方法。
化工原理课程设计苯乙苯精馏装置工艺设计

化工原理课程设计--苯-乙苯精馏装置工艺设计课程设计说明书武汉工程大学化工与制药学院课程设计说明书课题名称苯-乙苯精馏装置工艺设计专业班级生物工程学生学号学生姓名学生成绩指导教师课题工作时间武汉工程大学化工与制药学院化工与制药学院课程设计任务书专业生物工程班级学生姓名发题时间:2013 年 6 月17 日课题名称苯-乙苯精馏装置工艺设计一、课题条件(文献资料、仪器设备、指导力量)文献资料:1.陈敏恒. 化工原理[M]. 北京:化学工业出版社,2002.2.王志魁. 化工原理第三版[M]. 北京:化学工业出版社,2005.3.王国胜. 化工原理课程设计[M]. 大连:大连理工大学出版社,2005.4.路秀林. 塔设备设计[M]. 北京:化学工业出版社,2004.5.汪镇安. 化工工艺设计手册[M]. 北京:化学工业出版社,2003.6.王松汉. 石油化工设计手册(第3卷) [M]. 北京:化学工业出版社,2002.7.周大军. 化工工艺制图[M]. 北京:化学工业出版社,2005.8.匡国柱,史启才. 化工单元过程及设备课程设计[M]. 北京:化学工业出版社,2002.9.ASPEN Tech. ASPEN Plus 系列参考资料[R]. ASPEN Technology Co. Ltd.,2008.10.汤善甫,朱思明. 化工设备机械基础[M]. 上海:华东理工大学出版社,2004.11.贾绍义, 柴诚敬.化工原理课程设计[M]. 大连:天津大学出版社,2005.12.朱有庭, 曲文海, 于浦义. 化工设备设计手册上下卷[M]. 北京:化学工业出版社, 2004.二、设计任务某厂以苯和乙烯为原料,通过液相烷基化反应生成含苯和乙苯的混合物。
经水解、水洗等工序获得烃化液。
烃化液经过精馏分离出的苯循环使用,而从脱除苯的烃化液中分离出乙苯用作生成苯乙烯的原料。
现要求设计一采用常规精馏方法从烃化液分离出苯的精馏装置。
化工原理课程设计--苯-甲苯连续精馏塔的工艺设计(浮阀塔)

目录第1章前言31.1设计题目31.2精馏与精馏流程31.3精馏的分类41.4精馏操作的特点41.5塔板的类型与选择51.6相关符号说明5第2章精馏塔的精馏段的设计计算72.1设计方案的确定72.2精馏塔的物料衡算7原料液与塔顶、塔底产品的摩尔分数7原料液与塔顶、塔底产品的平均摩尔质量7物料衡算82.3塔板数的确定82.3.1理论板层数的确定8实际板层数求取102.4精馏塔的精馏段工艺条件与有关物性数据的计算11精馏段的操作压力11精馏段的操作温度11精馏段气、液混合物的平均摩尔质量11精馏段气、液相的平均密度12精馏段液相平均表面张力122.5精馏段的塔体工艺尺寸计算13精馏段塔径和实际空塔气速的确定13精馏段精馏塔有效高度的求取152.6精馏段塔板主要工艺尺寸的计算15精馏段溢流装置性能参数的确定15精馏段塔板布置与浮阀的数目与排列162.7精馏段塔板流体力学验算18精馏段气相通过浮阀塔板的压降18精馏段降液管中清夜层高度的确定192.8精馏段塔板负荷性能图20精馏段雾沫夹带线20精馏段液泛线21精馏段液相负荷上限线21精馏段漏液线22精馏段液相负荷下限线22第3章浮阀塔板工艺设计结果一览表23第4章设计过程的评述和讨论25 4.1回流比的选择254.2塔高和塔径254.3精馏塔的操作和调节25第5章塔附件设计265.1附件的计算26接管26筒体与封头27参考文献29课程设计心得30第1章前言1.1设计题目苯-甲苯连续精馏塔的工艺设计(浮阀塔)1.2精馏与精馏流程精馏是多级分离过程,即同时进行多次部分汽化和部分冷凝的过程。
因此可是混合物得到几乎完全的分离。
精馏可视为由多次蒸馏演变而来的。
精馏操作广泛用于分离纯化各种混合物,是化工、医药、食品等工业中尤为常见的单元操作。
化工成产中,精馏主要用于以下几种目的:⑴获得馏出液塔顶的产品;⑵将溶液多级分离后,收集馏出液,用于获得甲苯,氯苯等;⑶脱出杂质获得纯净的溶剂或半成品,如酒精提纯,进行精馏操作的设备叫做精馏塔。
化工原理》课程设计甲苯乙苯精馏塔浮阀

六盘水师范学院《化工原理》课程设计甲苯乙苯精馏塔(浮阀)学院六盘水师范学院专业化学工程与工艺目录第一部分设计任务书一、设计相关符号说明 (5)(二)、设计参考资料 (6)(三)、设计任务 (7)(四)、设计参数 (7)(五)、设计指标 (7)(六,设计项目 (7)第二部分精馏塔的设计一、精馏塔的物料衡算 (8)(一)、原料液及塔顶、塔底产品的摩尔分率 (8)(二)、物料衡算 (8)二、塔板数的确定 (8)(一)、理论板层数的求取 (8)(二)、回流比的确定 (9)(三)、求精馏塔的气液相负荷 (10)(四)、操作线方程 (10)(五)、求实际踏板数 (11)三、塔的操作工艺条件及相关物性数据的计算 (11)(一)、操作压力计算 (11)(二)、操作温度计算 (12)(三)、平均摩尔质量计算 (12)(四)、平均密度计算 (13)(五)、液体平均表面张力计算 (14)(六)、液体平均粘度计算 (15)(七)提馏段液相平均粘度 (16)四、精馏塔的塔体工艺尺寸计算 (16)(一)、塔径的计算 (17)(二)、精馏塔有效高度的计算 (18)五、塔板主要工艺尺寸的计算 (18)(一)、溢流装置计算 (18)(二)、塔板布置 (20)六、踏板的流体力学验算 (21)(一) 、塔板压降 (21)(二) 、淹塔 (22)(三) 、液沫夹带 (22)(四) 、液泛 (24)(五)、液相负荷上限 (25)(六) 、漏液 (25)(七)、液相负荷下限 (25)七、精馏塔的设计计算结果汇总一览表 (25)八、冷凝器的设计 (26)(一)、确定设计方案 (26)(二)、确定物性数据 (27)(三)、热计算负荷 (28)(四)、冷却水用量 (29)(五)、估算传热面积 (30)(六)、换热器的工艺结构尺寸 (30)(七)、换热器核算 (31)(八)、换热器主要结构尺寸和计算结果 (35)九、精馏过程流程图 (37)十、结束语 (38)一、相关符号说明英文字母A a—塔板开孔区面积,m2;A f —降液管截面积,m2;A0 —筛孔总面积,m2;A T —塔截面积,m2;c0 —流量系数,无因次;C——计算u max时的负荷系数,m/s;C S —气相负荷因子,m/s;d——填料直径,m;d0——筛孔直径,m;D——塔径,m;e v—液体夹带量,kg(液)/kg(气);E——液流收缩系数,无因次;E T—总板效率,无因次;F—气相动能因子,kg1/2/(s·m1/2);F0—筛孔气相动能因子,kg1/2/(s·m1/2) ;g——重力加速度,9.81m/ s2;h——填料层分段高度,m;h1—进口堰与降液管间的水平距离,m;h c—与干板压降相当的液柱高度,m液柱;h d—与液体流过降液管的压降相当的液柱h f—塔板上鼓泡层高度,m;h1 —与板上液层阻力相当的液柱高度,m;h L—板上清液层高度,m;h0—降液管的底隙高度,m;h OW—堰上液层高度,m;h W—出口堰高度,m;h,W—进口堰高度,m;hб——与阻力表面张力的压降相当的液柱高度,m液柱;H——板式塔高度,m;H d——降液管内清液层高度,m;H D——塔顶空间高度,m;H F——进料板处塔板间距,m;H P——人孔处塔板间距,m;H T——塔板间距,m;K——稳定系数,无因次;L W—堰长,m;L h —液体体积流量,m3/h;L s —液体体积流量,m3/s;L w —润湿速率,m3/(m·s);m——相平衡系数,无因次;n——筛孔数目;N T——理论板层数;P——操作压力,Pa;△P—压力降,Pa;△P P气体通过每层筛板的降压,Pa;t——筛孔的中心距,m;u——空塔气速,m/s;u F—泛点气速,m/s;u0—气体通过筛孔的速度,m/s;u0, min—漏液点气速,m/s;u′0—液体通过降液管底隙的速度,m/s;V h——气体体积流量,m3/h;V s——气体体积流量,m3/s;w L——液体质量流量,kg/s;w V—气体质量流量,kg/s;W c——边缘无效区宽度,m;W d——弓形降液管宽度,m;W s——泡沫区宽度,m;x—液相摩尔分数;X——液相摩尔比;y——气相摩尔分数;Y——气相摩尔分比;Z——板式塔的有效高度,m;填料层高度,m。
苯——乙苯 浮阀精馏塔设计书

目录一、毕业设计任务书- - - - - - - - - - - - - - - - - - - - - - - - - - - - - 1二、设计题目及原始条件- - - - - - - - - - - - - - - -- - - - - - - - - - 2三、前言- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -3四、物料衡算- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4五、热量衡算- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 4六、塔板工艺尺寸计算(精馏段)- - - - - - - - - - - - - -- - - - - - - - -61、塔径- - - - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - -72、溢流装置- - - - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - -73、塔板布置及浮阀数目与排列- - - - - - - - - - - - - - - - - - - - -7七、塔板流体力学验算- - - - - - - - - - - - - - - - - - - - - - - - - - - - -81、气相通过浮阀塔板的压强降- - - - - - - - - - - - - - - - - - - - -82、淹塔- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -83、雾沫夹带- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -8八、塔板负荷性能图- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -81、雾沫夹带线- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 82、液泛线- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 93、液相负荷上限线- - - - - - - - - - - - - - - - - - - - - - - - - - - - 94、漏液线- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -95、液相负荷下限线- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -9九、计算结果十、塔板工艺尺寸,流体力学验算,负荷性能图(提馏段) - - - - - -10 十一、参考文献- - - - - - - - - - - - - - - - - 13课程设计任务书题目:设计一个分离苯-乙苯双组分均相混合液的常压连续浮阀精馏塔。
苯-甲苯浮阀精馏塔课程设计

第一篇化工原理课程设计任务书1.1设计题目苯-甲苯连续精馏(浮阀)塔的设计1.2设计任务1、精馏塔设计的工艺计算及塔设备计算(1)流程及操作条件的确定;物料衡算及热量衡算;(2)塔板数的计算;(3)塔板结构设计(塔板结构参数的确定、流动现象校核、负荷性能图);(4)塔体各接管尺寸的确定;(5)冷却剂与加热剂消耗量的估算。
2.设计说明及讨论3.绘制设计图(1)流程图(A4纸);(2)塔盘布置图(8开坐标纸);(3)工艺条件图(1号绘图纸)。
1.3原始设计数据1、原料液:苯-甲苯,其中苯含量为35 %(质量),常温;2、馏出液含苯:99.2 %(质量);3、残液含苯: 0.5 %(质量);4、生产能力:4000 (kg/h).第二篇流程及流程说明为了能使生产任务长期固定,适宜采用连续精流流程。
贮罐中的原料液用机泵泵入精馏塔,塔釜再沸器用低压蒸汽作为热源加热料液,精馏塔塔顶设有全凝器,冷凝液部分利用重力泡点回流部分连续采出到产品罐(具体流程见附图)。
在流程确定方案选择上,本设计尽可能的减少固定投资,降低操作费用,以期提高经济效益。
1、加料方式的选择:设计任务年产量虽小,但每小时4000Kg的进料量,为维持生产稳定,采用高位槽进料,从减少固定投资,提高经济效益的角度出发,选用泡点进料的加料方式。
2、回流方式的选择:塔的生产负荷不大,从降低操作费用的角度出发,使用列管式冷凝器,利用重力泡点回流,同时也减少了固定投资。
3、再沸器的选择:塔釜再沸器采用卧式换热器,使用低压蒸汽作为热源,做到了不同品位能源的综合利用,大大降低了能源的消耗量。
第三篇 设计计算3.1全塔的物料衡算1、将任务书中的质量分数换算成摩尔分数,进料h km ol 4000=F35%78.110.33835%78.1165%92.13F x ==+(摩尔百分数)0.5%78.110.005890.5%78.1199.5%92.13W x ==+(摩尔百分数)99.2%78.110.99399.2%78.110.8%92.13D x ==+(摩尔百分数)2、求平均分子量,将h kg 换算成 h km ol进料处: 78.110.38892.130.61286.69kg kmol F M =⨯+⨯= 塔顶处: 78.110.99392.130.00778.21kg kmol D M =⨯+⨯= 塔釜处: 78.110.0058992.130.9941192.05kg kmol W M =⨯+⨯= 进料: kmol/h 46.144000/86.69==F 3、全塔的物料衡算由物料衡算得:F F DF W DF x W x D x =+⎧⎨⨯=⨯+⨯⎩代入数据得: ⎩⎨⎧⨯+⨯=⨯+=993.000589.0388.014.4614.46D W DW解之得: ⎩⎨⎧==h kmol 86.17hkmol 28.28D W3.2相对挥发度α及回流比Rα:1、求全塔平均相对挥发度表3-11 2 3 4 5 6 7 8 9 t C。
苯、乙苯精馏塔设计

1.课程设计的目的课程设计是“化工原理”课程的一个总结性教学环节,是培养学生综合运用本门课程及有关先修课程的基本知识去解决某一设计任务的一次训练,在整个教学计划中它也起着培养学生独立工作能力的重要作用,通过课程设计就以下几个方面要求学生加强训练。
1.查阅资料选用公式和搜集数据的能力 。
2.树立既考虑技术上的先进性与可行性,又考虑经济上的合理性,并注意到操作时的劳动 条件和环境保护的正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力。
3.迅速准确的进行工程计算(包括电算)和计算机绘图的能力。
4.用简洁文字清晰表达自己设计思想的能力。
2.设计题目一台分离苯和乙苯双组分均相混合液常压(1atm)连续精馏浮阀塔3.主要基础数据苯和乙苯的饱和蒸汽压可用Antoire 方程计算 即㏑P *=A-CT B 其中P * 单位为34.设计方案的确定及工艺流程说明本方案主要是采用浮阀塔。
精馏设备所用的设备及其相互联系,总称为精馏装置,其核心为精馏塔。
常用的精馏塔有板式塔和填料塔两类,通称塔设备,和其他传质过程一样,精馏塔对塔设备的要求大致如下:1:生产能力大:即单位塔截面大的气液相流率,不会产生液泛等不正常流动。
2:效率高:气液两相在塔内保持充分的密切接触,具有较高的塔板效率或传质效率。
3:流体阻力小:流体通过塔设备时阻力降小,可以节省动力费用,在减压操作是时,易于达到所要求的真空度。
4:有一定的操作弹性:当气液相流率有一定波动时,两相均能维持正常的流动,而且不会使效率发生较大的变化。
5:结构简单,造价低,安装检修方便。
6:能满足某些工艺的特性:腐蚀性,热敏性,起泡性等。
浮阀塔的优点是:1.生产能力大,由于塔板上浮阀安排比较紧凑,其开孔面积大于泡罩塔板,生产能力比泡罩塔板大 20%~40%,与筛板塔接近。
2.操作弹性大,由于阀片可以自由升降以适应气量的变化,因此维持正常操作而允许的负荷波动范围比筛板塔,泡罩塔都大。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课程设计题目:浮阀式连续精馏塔的设计教学院:化学与材料工程学院专业:学号:学生姓名:指导教师:2010年 5 月20 日课程设计任务书2009 ~ 2010学年第 2 学期学生姓名:专业班级:指导教师:工作部门:一、课程设计题目浮阀式连续精馏塔设计二、课程设计内容(含技术指标)1. 工艺条件与数据原料液量1500kg/h,含苯42%(质量分数,下同),乙苯58%;馏出液含苯98%,残液含苯2%;泡点进料;料液可视为理想溶液。
2. 操作条件常压操作;回流液温度为塔顶蒸汽的露点;间接蒸汽加热,加热蒸汽压力为5kgf/cm²(绝对压力);冷却水进口温度30℃,出口温度为45℃;设备热损失为加热蒸汽供热量的5%。
3. 设计内容①物料衡算、热量衡算;②塔板数、塔径计算;③溢流装置、塔盘设计;④流体力学计算、负荷性能图。
三、进度安排1.5月6日:分配任务;2.5月6日-5月14日:查询资料、初步设计;3.5月15日-5月21日:设计计算,完成报告。
四、基本要求1. 设计计算书1份:设计说明书是将本设计进行综合介绍和说明。
设计说明书应根据设计指导思想阐明设计特点,列出设计主要技术数据,对有关工艺流程和设备选型作出技术上和经济上的论证和评价。
应按设计程序列出计算公式和计算结果,对所选用的物性数据和使用的经验公式、图表应注明来历。
设计说明书应附有带控制点的工艺流程图,塔结构简图。
设计说明书具体包括以下内容:封面;目录;绪论;工艺流程、设备及操作条件;塔工艺和设备设计计算;塔机械结构和塔体附件及附属设备选型和计算;设计结果概览;附录;参考文献等。
2. 图纸1套:包括工艺流程图(3号图纸)和精馏塔装配总图(1号图纸)。
教研室主任签名:年月日目录1.设计方案简介2.工艺流程草图及说明3.工艺计算及主体设备设计4 辅助设备的计算及选型;5.设计结果概要或设计一览表6对本设计的评述;7 附图(工艺流程简图、主体设备工艺条件图);8 参考文献。
1.设计方案的选择及流程说明1.1设计方案的选定设计方案的选定是指确定整个精馏装置的流程、主要设备的结构的型式和主要操作条件。
所选方案必须:(1)能满足工艺要求,达到指定的产量和质量;(2)操作平稳、易于调节;(3)经济合理;(4)生产安全。
在实际的设计问题中,上述四项都必须兼顾考虑。
课程设计方案选定所涉及的主要内容有:操作压力进料状况、加热方式及其热能的利用。
1.1.1 操作压力精馏可在常压、加压或减压下进行,确定操作压力主要是根据处理物料的性质、技术上的可行性和经济上的合理性来考虑。
鉴于本课题,采用常压精馏。
1.1.2 进料状态进料状态有多种,但一般将料液预热到泡点或接近泡点才送入塔中,这样进料温度就不受季节、气温变化和前道工序波动的影响,塔的操作就比较容易控制。
此外,泡点进料时,精馏段与提馏段的塔径相同,设计制造均比较方便。
鉴于此,选用泡点进料.1.1.3 加热方式精馏塔通常设置再沸器,采用间接蒸汽加热,以提供足够的热量。
1.1.4 热能的利用蒸馏过程的原理是多次进行部分汽化和冷凝,因此,热效率很低,通常进入再沸器的能量仅有5%左右被有效利用.所以,蒸馏系统的热能利用问题应值得认真考虑。
塔顶蒸汽冷凝放出的热量是大量的,但其能位较低,不可能直接用来作塔釜的热源。
但可用作低温热源,或通入废热锅炉,产生低压蒸汽,供别处使用。
或可采用热泵技术,提高温度后再用于加热釜液。
此外,通过蒸馏系统的合理设置,也可取得节能的效果。
例如,可采取设置中间再沸器和中间冷凝器的流程,因为设置中间再沸器,可利用温度比塔底低的热源,而中间冷凝器则可回收温度比塔顶高的热量。
1.2连续精馏流程连续精馏装置一般包括精馏塔、冷凝器、再沸器以及原料预热器,如图。
除此之外,还应确定全凝器或是分凝器,再沸器采用直接加热还是间接加热,另外根据热能的利用情况决定是否采用原料预热器。
1.3.板式塔的计算流程图1.4 塔的工艺计算1. 工艺条件与数据原料液量1500kg/h ,含苯40%(质量分数,下同),乙苯60%;馏出液含苯97%,残液含苯2%;泡点进料;料液可视为理想溶液。
2. 操作条件常压操作;回流液温度为塔顶蒸汽的露点;间接蒸汽加热,加热蒸汽压力为5kgf/cm ²(绝对压力);冷却水进口温度30℃,出口温度为45℃;设备热损失为加热蒸汽供热量的5%。
1.4.1 物料衡算与能量衡算1.4.1.1 料液及塔顶、塔底产品含苯摩尔分率设苯为A,乙苯为B,M A =78.11㎏/kmol , M B =106.17㎏/kmol1.4.1.2 原料液及塔顶塔底产品的摩尔质量Kmol Kg M /5.2927.1106)496.01(1.178496.0F =⨯-+⨯=KmolKg M /3.5787.1106)985.01(1.178985.0D =⨯-+⨯=KmolKg M W /1.41057.1106)027.01(1.178027.0=⨯-+⨯=1.4.1.3 全塔物料质量流量原液量处理量96.407.1106/8.501.178/2.401.178/2.40=+=F x 85.907.1106/2.001.178/8.901.178/8.90=+=D x 27.007.1106/8.901.178/2.001.178/2.00=+=W x总的物料衡算 F=D+W 则有=7.1921.4.1.4 塔中回收率的计算在精馏计算中分离程度除用产品的摩尔分数表示外,还常用回收率表示,即: 以塔顶易挥发组分为主要产品,则回收率:97.22%96.409.01485.90898.6)X )/(F X (D F D =⨯⨯=⨯⨯=η1.4.1.5 相对挥发度的计算计算相平衡线及精馏段是都必须直接或间接应用到塔内的平均挥发度,要知道挥发度则必须知道塔顶塔底的温度,再由苯90.7220t 033.12113055.06lg *+-=A p ,乙苯6.0213t 255.14242088.06lg *B +-=p 这两个公式来求出塔顶塔底的温度对应下的*A p 、*B p 。
利用试差法计算温度。
不同温度下苯和乙苯的饱和蒸汽压T (℃) 0 20 40 60 80 100 120 140苯(KPa ) 3.37 10.03 24.37 52.19 101.0 180.0 300.3 480.2乙苯(KPa ) 0.253 0.943 2.865 7.394 16.77 34.25 64.21 112.1塔顶X D =0.985假设一个温度t=80.5℃利用90.7220t 033.12113055.06lg *+-=A p 及 6.0213t 255.14242088.06lg *B +-=p算得*A p =102.565、*B p =16.996代入中与0.985相差不大,故塔顶温度为80.5℃,此时 采用同样的方法算得塔底温度t w =100.5℃,*A p =182.5016、*B p =34.6577则塔中平均相对挥发度4.6521=⨯=ααa3.06**1==BAp p α7.25**2==BAp p α1.4.1.6 相平衡线的计算 相平衡线方程为: 代入上式中相对挥发度的值则相平衡线方程为:1.4.1.7 q 线方程精馏段操作线和提馏段操作线的交点的轨迹是一条直线,描述该直线的方程称为q 线方程或进料方程。
此设计中,泡点进料,q 线方程定为:1=q1.4.1.8 回流比求解 q=1 (R min )q=1===0.39取R opt =2R min=0.78 1.4.1.9 精馏段操作线因为精馏过程涉及传热和传质两种过程,为简化期间在该课程设计中假定塔内为恒摩尔流动。
R 值定为0.78精馏段操作线方程为:DD X x x x R x R R y 53.5038.408.71985.018.708.70111+=++=+++=式中 y 、x ──分别为精馏段任一截面处的气液相易挥发组分的摩尔分数;xD ──塔顶易挥发组分的摩尔分数; R ──回流比,R =L/D ;1.4.1.10 提馏段操作线塔顶的回流比R=0.78,则塔釜汽相回流比R`与R 的关系式为:07.710.496-0.9850.027-0.4961.78=X X -X 1)+(R =R D W F `=-F X而提馏段操作线方程为:0.0158-1.586x =R X - X R 1)+(R =y `W ``1.4.1.11精馏塔的热量衡算1.塔顶冷凝器中冷却水用量和冷凝器的传热面积 本设计中设备热损失为加热蒸汽提供热量的95% Q 水=0.95Q 顶气yyx 4.644.65-=ya a y x )1(--=即 q m 水c 水(t 2—t 1)=V r 所以式中 Q 水——冷却水吸收的热量,W ; Q 顶气——塔顶蒸气放出的热量,W ; q m 水——冷却水用量,kg/s ;C 水——冷却水的平均比热容,J/(kg ·℃); t 1、t 2——冷却水的进、出口温度,℃;V ——塔顶蒸气量,kmol/s ; r ——塔顶蒸气汽化热,J/kmol ; A 冷凝器——冷凝器的传热面积,m 2; Q ——冷凝器的热负荷,W ;K ——传热系数,W/(m 2·℃),取经验值;∆t 均——冷凝器的传热平均温度差,℃。
冷去水进口温度为:C t 0130= 出口 C t 0245= 乙醇蒸气进口温度为: 出口 所以()Ct t t t t 02112.972=⎪⎭⎫ ⎝⎛'-'+-=∆均传热系数12..800--=k m w K当塔顶温度为80.1℃时,此时苯的汽化热为394.02KJ /Kg ,则塔顶蒸气汽化热kmol J r /1077.7301.1782.03946⨯=⨯=Ckg J C 03./102.4⨯=水()skmol D R V /003411.0360098.868.711=⨯=+=泡点进料s kg q m /8.5115102.4r V 95.03=⎪⎭⎫⎝⎛⨯⨯⨯⨯=水268.715.978001077.730003411.05.90m t K r V t k Q A =⨯⨯⨯⨯=∆⨯⨯=∆⨯=冷凝器)12m t t c rV q -=(水水Ct 01.580='C t 02.779='2.塔底再沸器中加热蒸汽用量和再沸器的传热面积塔底温度为t=100.5℃时,苯的汽化热360.4 KJ /Kg 乙苯的汽化热为353.3 KJ /Kg ,则塔底上升蒸汽汽化热为r= 故再沸器的热流Q=Vr=则: q===0.064s kg /塔底再沸器的面积()23m 1.68.42080010%510.8133=⨯⨯+⨯=∆⨯=t k Q A 再沸器1.5理论塔板数的设计1.5.1联立精馏段和提馏段操作线方程X d =0.2811.5.2用逐板计算法计算理论塔板数第一块塔板的一项组成与回流蒸汽的组成一致,所以==0.985= 第二快板:==0.956= 第三块板:==0.901=第四块板=0.823=0.452176.0)y 1(y y 333=-+α.7940)y 1(y y 222=-+α.920)y 1(y y 111=-+α第五块板=0.75 =0.347 第六块板=0.705 =0.298 第七块板=0.684=0.277故本题中需要六块,第七块为进料板,从第八快开始,用提馏段操作线求,用平衡方程求,一直到第八块板==0.115第九块板=0.167 =0.034 第十块板=0.038=0.007因为釜底间接加热,所以共需要10-1=9层塔板,精馏段需要六块,提馏段需要三块1.6 塔板效率和实际塔板数1.6.1塔板效率在实际塔板上,气液两相并未达到平衡,这种气液两相间传质的不完善程度用塔板效率来表示,在设计计算中多采用总板效率求出实际塔板数。