高中物理牛顿第二定律经典例题
高中物理 人教版必修1第四章 牛顿运动定律 4.3牛顿第二定律 专题强化练:瞬时加速度问题

一、单选题1.如图所示,光滑水平面上,AB 两物体用轻弹簧连接在一起。
A B 、的质量分别为12m m 、,在拉力F 作用下,AB 共同做匀加速直线运动,加速度大小为a ,某时刻突然撤去拉力F ,此瞬时A 和B 的加速度大小为1a 和2a ,则( )A .1200a a ==,B .21212m a a a a m m ==+, C .12121212m m a a a a m m m m ==++, D .1122m a a a a m ==, 2.如图所示,质量为m 的光滑小球A 被一轻质弹簧系住,弹簧另一端固定于水平天花板上,小球下方被一梯形斜面B 托起保持静止不动,弹簧恰好与梯形斜面平行,已知弹簧与天花板夹角为30o ,重力加速度为210/g m s =,若突然向下撤去梯形斜面,则小球的瞬时加速度为( )A .0B .大小为210/m s ,方向竖直向下C .大小253/m s ,方向斜向右下方D .大小25/m s ,方向斜向右下方3.如图所示为两轻绳栓接一定质量的小球,两轻绳与竖直方向的夹角如图,则在剪断a 绳的瞬间,小球的加速度大小为a 1,剪断b 绳的瞬间,小球的加速度大小为a 2.则a 1:a 2为( )A .1:1B .2:1C .3:1D .23:14.如图所示,轻弹簧上端与一质量为1kg 的木块1相连,下端与另一质量为2kg 的木块2相连,整个系统置于水平放置的光滑木板上,并处于静止状态,现将木板沿水平方向突然抽出,设抽出后的瞬间,木块1、2的加速度大小分别为1a 、2a ,已知重力加速度g 大小为210/m s ,则有( )A .10a = , 2215/a m s =B .21215/a a m s ==C .10a =, 2210/a m s =D .21210/a a m s == 5.如图所示,竖直放置在水平面上的轻质弹簧上叠放着质量均为2kg 的物块A 、B ,它们处于静止状态,若突然将一个大小为10N 、方向竖直向下的力施加在物块A 上,则此瞬间,A 对B的压力大小为(g=10m/s 2)( )A .10 NB .20 NC .25 ND .30 N6.质量为m 的物体放置在光滑的水平面上,左右两端分别固定一个弹簧,弹簧的另一端连着细绳,细绳跨过光滑定滑轮与质量为M =2m 的物体相连,如图所示。
高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)

高中物理高考物理牛顿运动定律常见题型及答题技巧及练习题(含答案)一、高中物理精讲专题测试牛顿运动定律1.利用弹簧弹射和传送带可以将工件运送至高处。
如图所示,传送带与水平方向成37度角,顺时针匀速运动的速度v =4m/s 。
B 、C 分别是传送带与两轮的切点,相距L =6.4m 。
倾角也是37︒的斜面固定于地面且与传送带上的B 点良好对接。
一原长小于斜面长的轻弹簧平行斜面放置,下端固定在斜面底端,上端放一质量m =1kg 的工件(可视为质点)。
用力将弹簧压缩至A 点后由静止释放,工件离开斜面顶端滑到B 点时速度v 0=8m/s ,A 、B 间的距离x =1m ,工件与斜面、传送带问的动摩擦因数相同,均为μ=0.5,工件到达C 点即为运送过程结束。
g 取10m/s 2,sin37°=0.6,cos37°=0.8,求:(1)弹簧压缩至A 点时的弹性势能;(2)工件沿传送带由B 点上滑到C 点所用的时间;(3)工件沿传送带由B 点上滑到C 点的过程中,工件和传送带间由于摩擦而产生的热量。
【答案】(1)42J,(2)2.4s,(3)19.2J【解析】【详解】(1)由能量守恒定律得,弹簧的最大弹性势能为:2P 01sin 37cos372E mgx mgx mv μ︒︒=++ 解得:E p =42J(2)工件在减速到与传送带速度相等的过程中,加速度为a 1,由牛顿第二定律得: 1sin 37cos37mg mg ma μ︒︒+=解得:a 1=10m/s 2 工件与传送带共速需要时间为:011v v t a -=解得:t 1=0.4s 工件滑行位移大小为:220112v v x a -= 解得:1 2.4x m L =<因为tan 37μ︒<,所以工件将沿传送带继续减速上滑,在继续上滑过程中加速度为a 2,则有:2sin 37cos37mg mg ma μ︒︒-=解得:a 2=2m/s 2假设工件速度减为0时,工件未从传送带上滑落,则运动时间为:22v ta = 解得:t 2=2s工件滑行位移大小为:2 3? 1n n n n n 解得:x 2=4m工件运动到C 点时速度恰好为零,故假设成立。
最新高中物理牛顿第二定律经典例题(精彩4篇)

最新高中物理牛顿第二定律经典例题(精彩4篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、演讲发言、策划方案、合同协议、心得体会、计划规划、应急预案、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, speeches, planning plans, contract agreements, insights, planning, emergency plans, teaching materials, essay summaries, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!最新高中物理牛顿第二定律经典例题(精彩4篇)练习题从狭义上讲,练习题是以巩固学习效果为目的要求解答的问题;从广义上讲,练习题是指以反复学习、实践,以求熟练为目的的问题,包括生活中遇到的麻烦、难题等。
03-第3节 牛顿第二定律 高中物理必修第一册教科版

( BCD
)
A.当 < 2时,、都相对地面静止
B.当 =
5
1
时,的加速度大小为
2
3
C.当 > 3时,相对于滑动
1
D.无论为何值,的加速度大小都不会超过
2
图4-3-11
3
【解析】A、B间的最大静摩擦力为2,B和地面之间的最大静摩擦力为 ,
因数均相同.现用一水平向右的恒力推木块,使三个木块一起向右做匀加速直线运
动,则木块1对木块2的作用力与木块2对木块3的作用力的大小之比为( B
图4-3-9
A.3: 2
B.5: 3
C.2: 1
D.3: 1
)
【解析】将三个木块1、2、3看作整体,由牛顿第二定律得 − 6 = 6,解得
=
车和木块一起做无相对滑动的加速运动.小车的质量为,木块的
质量为,两者共同的加速度大小为,木块和小车之间的动摩擦因
数为 ,则在这个过程中,木块受到的摩擦力大小为(
A.
+
B.
C. +
BD
4-3-10
)
D.
【解析】木块B与小车A无相对滑动,对A、B组成的整体【提醒】A、B加速度相同,
2
= 46 m.
解法2 根据 − 图像与坐标轴围成的图形的面积表示位移得
=
10 +1
Δ1
2
1
+ 20 Δ2
2
= 46 m.
题型3 隔离法和整体法的应用
例6 (2024·山西太原期末)如图4-3-9所示,在粗糙水平面上依次并排紧靠着三个木块1、
高中物理牛顿第二定律经典练习题专题训练(含答案)

高中物理牛顿第二定律经典练习题专题训
练(含答案)
高中物理牛顿第二定律经典练题专题训练(含答案)
1. Problem
已知一个物体质量为$m$,受到一个力$F$,物体所受加速度为$a$。
根据牛顿第二定律,力、质量和加速度之间的关系可以表示为:
$$F = ma$$
请计算以下问题:
1. 如果质量$m$为2kg,加速度$a$为3m/s^2,求所受的力
$F$的大小。
2. 如果质量$m$为5kg,力$F$的大小为10N,求物体的加速度$a$。
2. Solution
使用牛顿第二定律的公式$F = ma$来解决这些问题。
1. 问题1中,已知质量$m$为2kg,加速度$a$为3m/s^2。
将这些值代入牛顿第二定律的公式,可以得到:
$$F = 2 \times 3 = 6 \,\text{N}$$
所以,所受的力$F$的大小为6N。
2. 问题2中,已知质量$m$为5kg,力$F$的大小为10N。
将这些值代入牛顿第二定律的公式,可以得到:
$$10 = 5a$$
解方程可以得到:
$$a = \frac{10}{5} = 2 \,\text{m/s}^2$$
所以,物体的加速度$a$为2m/s^2。
3. Conclusion
通过计算题目中给定的质量、力和加速度,我们可以使用牛顿第二定律的公式$F = ma$来求解相关问题。
掌握这一定律的应用可以帮助我们更好地理解物体运动的规律和相互作用。
(完整版)高中物理牛顿第二定律经典例题

牛顿第二运动定律【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的是:A、物体从A下降和到B的过程中,速率不断变小B、物体从B上升到A的过程中,速率不断变大C、物体从A下降B,以及从B上升到A的过程中,速率都是先增大,后减小D、物体在B点时,所受合力为零的对应关系,弹簧这种特【解析】本题主要研究a与F合殊模型的变化特点,以及由物体的受力情况判断物体的运动性质。
对物体运动过程及状态分析清楚,同时对物=0,体正确的受力分析,是解决本题的关键,找出AB之间的C位置,此时F合由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加速直线运动。
在C位置mg=kx c,a=0,物体速度达最大。
由C→B的过程中,由于mg<kx2,a=kx2/m-g,物体做a增加的减速直线运动。
同理,当物体从B→A时,可以分析B→C做加速度度越来越小的变加速直线运动;从C→A做加速度越来越大的减速直线运动。
C正确。
例2如图3-10所示,在原来静止的木箱内,放有A物体,A被一伸长的弹簧拉住且恰好静止,现突然发现A被弹簧拉动,则木箱的运动情况可能是A、加速下降B、减速上升肥C、匀速向右运动D、加速向左运动【解析】木箱未运动前,A物体处于受力平衡状态,受力情况为:重力mg,箱底的支持力N,弹簧拉力F和最大的静摩擦力f m(向左)由平衡条件知:N=mg F=f m。
由于发现A弹簧向右拉动(已知),可能有两种原因,一种是由A向右被拉动推知,F>f m′,(新情况下的最大静摩擦力),可见f m>f m′即是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能是加速下降或减速上升,故A、B正确。
另一种原因是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D 正确。
高中物理必修一牛顿第二定律典型例题

高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作 [ ]A.匀减速运动B.匀加速运动C.速度逐渐减小的变加速运动D.速度逐渐增大的变加速运动【分析】木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.【答】 D.【例2】一个质量m=2kg的木块,放在光滑水平桌面上,受到三个大小均为F=10N、与桌面平行、互成120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?【分析】物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.(1)由于同一平面内、大小相等、互成120°角的三个力的合力等于零,所以木块的加速度a=0.(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F合=2F=20N,所以其加速度为:它的方向与反向后的这个力方向相同.【例3】沿光滑斜面下滑的物体受到的力是 [ ]A.力和斜面支持力B.重力、下滑力和斜面支持力C.重力、正压力和斜面支持力D.重力、正压力、下滑力和斜面支持力【误解一】选(B)。
【误解二】选(C)。
【正确解答】选(A)。
【错因分析与解题指导】 [误解一]依据物体沿斜面下滑的事实臆断物体受到了下滑力,不理解下滑力是重力的一个分力,犯了重复分析力的错误。
[误解二]中的“正压力”本是垂直于物体接触表面的力,要说物体受的,也就是斜面支持力。
牛顿第二定律与摩擦力-高中物理经典试题原卷版

牛顿第二定律与摩擦力-高中物理经典试题一、单选题1.如图所示,质量为m 的木块A 置于斜劈B 上,A 与B 一起沿光滑固定斜面由静止开始下滑,二者始终保持相对静止,重力加速度为g ,则在下滑过程中,下列说法正确的是( ) A .木块A 所受的合力竖直向下B .木块A 只受重力和支持力作用C .木块A 受B 作用于它的摩擦力大小为sin cos mg θθD .木块A 受到的支持力大小等于木块A 的重力大小2.如图所示,轻质弹簧一端与静止在倾斜木板上的物体A 相连,另一端与细线相连,细线绕过光滑的定滑轮与物体B 相连。
已知木板与水平面间的夹角为30°,轻质弹簧与倾斜木板保持平行。
若A B 2m m m ==,弹簧的劲度系数为k ,不计滑轮摩擦,物体始终保持静止。
那么( )A .轻质弹簧的伸长量为mg kB .轻质弹簧的伸长量为2mg kC .若木板与水平面的夹角减小,物体A 受到的静摩擦力不变D .若木板与水平面的夹角减小,物体A 受到的静摩擦力减小3.如图所示滑块A 和B 叠放在传送带上,B 被细线连于墙上。
如果传送带逆时针转动,滑块A 和B 都相对地面静止,则下列说法正确的是( )A .A 受到的静摩擦力水平向右B .增大传送带的速度,绳拉力变大C .B 受到的拉力和受到的摩擦力相同D .增大A 的质量,B 受到的摩擦力增大 4.如图所示,小车位于水平面上,其上顶板装有压力传感器。
车内弹簧处于竖直,弹簧上端把一个物块压在压力传感器上。
小车以加速度a 向右做匀加速运动,小物块恰好不相对压力传感器滑动,此时压力传感器的示数为1F 。
一段时间后,小车沿水平方向从水平面上飞出,落地前压力传感器的示数为2F ,该过程弹簧一直处于竖直。
忽略空气阻力,重力加速度为g ,则小物块与压力传感器间的动摩擦因数为( )A .12F a F gB .21F a F gC .()211F F aF g - D .()221F a F F g -5.如图所示,A 、B 两物体叠放在一起,以相同的初速度上抛(不计空气阻力),到回到出发点的过程中,下列说法正确的是( )A .上升过程A 、B 处于超重状态,下降过程A 、B 处于失重状态B .上升和下降过程A 、B 两物体均为完全失重C .上升过程中A 物体对B 物体的压力大于A 物体受到的重力D .下降过程中A 物体对B 物体的压力大于A 物体受到的重力6.引体向上是高中学生体质健康标准的测试项目之一,如图甲所示,质量为55kg m =的某同学,双手抓住单杠做引体向上,在竖直向上运动过程中,其重心的速率随时间变化的图像如图乙所示,g 取210m/s ,由图像可知,下列选项错误的是( )A .0.4s t =时,他正处于超重状态B .0.5s t =时,他的加速度约为20.3m/sC . 1.1s t =时,他受到单杠的作用力的大小为550ND . 1.5s t =时,他正处于超重状态7.某同学站在力传感器上完成下蹲动作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
牛顿第二运动定律【例1】物体从某一高度自由落下,落在直立于地面的轻弹簧上,如图3-2所示,在A点物体开始与弹簧接触,到B点时,物体速度为零,然后被弹回,则以下说法正确的就是:A、物体从A下降与到B的过程中,速率不断变小B、物体从B上升到A的过程中,速率不断变大C、物体从A下降B,以及从B上升到A的过程中,速率都就是先增大,后减小D、物体在B点时,所受合力为零的对应关系,弹簧这种特【解析】本题主要研究a与F合殊模型的变化特点,以及由物体的受力情况判断物体的运动性质。
对物体运动过程及状态分析清楚,同时对物体正确的受力分析,就是解决本题的关键,找出AB之间的C=0,由A→C的过程中,由mg>kx1,得a=g-kx1/m,物体做a减小的变加位置,此时F合速直线运动。
在C位置mg=kx c,a=0,物体速度达最大。
由C→B的过程中,由于mg<kx2,a=kx2/m-g,物体做a增加的减速直线运动。
同理,当物体从B→A时,可以分析B→C做加速度度越来越小的变加速直线运动;从C→A做加速度越来越大的减速直线运动。
C正确。
例2如图3-10所示,在原来静止的木箱内,放有A物体,A被一伸长的弹簧拉住且恰好静止,现突然发现A被弹簧拉动,则木箱的运动情况可能就是A、加速下降B、减速上升肥C、匀速向右运动D、加速向左运动【解析】木箱未运动前,A物体处于受力平衡状态,受力情况为:重力mg,箱底的支持力N,弹簧拉力F与最大的静摩擦力f m(向左)由平衡条件知:N=mg F=f m。
由于发现A弹簧向右拉动(已知),可能有两种原因,一种就是由A向右被拉动推知,F>f m′,(新情况下的最大静摩擦力),可见f m>f m′即就是最大静摩擦力减小了,由f m=μN知正压力N减小了,即发生了失重现象,故物体运动的加速度必然竖直向下,所以木箱的运动情况可能就是加速下降或减速上升,故A、B正确。
另一种原因就是木箱向左加速运动,由于惯性原因,木块必然向中滑动,故D正确。
综合上述,正确答案应为A、B、D。
【例3】如图3-11所示,一细线的一端固定于倾角为45°度的光滑楔形滑块A的顶端p处,细线的另一端栓一质量为m的小球,当滑块以2g的加速度向左运动时,线中拉力T等于多少?【解析】当小球贴着滑块一起向左运动时,小球受到三个力作用:重力mg、线中拉力T,滑块A的支持力N,如图3-12所示,小球在这三个力作用下产生向左的加速度,当滑块向左运动的加速度增大到一定值时,小球可能离开斜面,滑块的支持力变为零,小球仅受重力与拉力两个力作用离开斜面,滑块的支持力变为零,小球仅受重力与拉力两个力作用。
由于加速度a=2g 时,小球的受力情况未确定,因此可先找出使N=0时的临界加速度,然后将它与题设加速度a=2g 相比较,确定受力情况后即可根据牛顿第地定律列式求解。
根据小球贴着滑块运动时的受情况,可列出水平方向与竖直方向的运动方程分别为)1(45sin 45cos ma N T =-οο)2(45cos 45sin mgN T =-οο联立两式,得οο45sin 45cos ma mg N -=若小球对滑块的压力等于零,即就作N=0,滑块的加速度至少就为g g a ==οο45sin45cos可见,当滑块以a=2g 加速度向左运动时,小球已脱离斜面飘起,此时小球仅受两个力作用:重力mg 、线中拉力T ′。
设线与竖直方向间夹角为β,同理由牛顿第二定律得ma T ='βsin mg T ='βcos联立两式得mg a m g m mg ma T 5)()(222222=+=+='【例4】如图2-2-11甲所示,传送带与地面倾角θ=37°度,从A →B 长度为16m,传送带以10m/s 的速率逆时针转动,在传送带上端A 无初速度地放一个质量为0、5kg 的物体,它与传送带之间的动摩擦因数为0、5,求物体从A 运动到B 所需要时间就是多少?(g 取10m/s 2,sin37°=0、6) 【解析】物体放在传送带上后,开始阶段,由于传送带的速度大于物体的速度,传送带给物体一沿传送带向下的滑动摩擦力,物体受合力方向沿传送带向下,物体由静止加速。
物体加速至与传送带速度相等时,由于οο37cos 37sin mg mg μ>,物体在重力作用下继续加速运动,当物体速度大于传送带速度时,传送带给物体沿传送带向上的滑动摩擦力,但合力仍沿传送带向下,物体继续加速下滑,直至传送带的B 端。
开始阶段,物体受力情况如图2-2-11乙所示,由牛顿第二定律得ma mg mg =+θμθcos sin a 1=10×(0、6+0、5×0、8)=10m/s 2物体加速至与传送带速度相等需要时间 t 1=V/a 1=10/10=1S物体速度大于传送带速度后,物体受力情况如图2-2-11丙所示,由牛顿第二定律得图2-2-11甲图2-2-11乙2cos sin ma mg mg =-θμθa 2=2m/s 2设后一阶段物体滑至底端所用的时间为t 2,由222221t a vt S L +=- 解得t 2=1s,(t 2=-11s 舍去)所以物体由A →B 的时间t=t 1-t 2=2s 、【例5】如图3-28所示的三个物体质量分别为m 1、m 2与m 3,带有滑轮的物体放在光滑水平面上,滑轮与所有接触面的摩擦以及绳子的质量均不计,为使三个物体无相对运动,水平推力F 等于多少?【解析】由于三个物体无相对运动,困此可瞧作一个整体,列出整体的牛顿第二定律方程。
然后再隔离m 1、m 2分别列出它们的运动方程。
由整体在水平方面的受力列出牛顿第二定律为F=(m 1+m 2+m 3)a……(1) 分别以m 1、m 2为研究对象作受力分析(图3-29)设绳拉力为T 。
对m 1,在水平方向据牛顿第二定律得 T=m 1a……(2) 对m 2,在竖直方向由力平衡条件得 T-m 2g=0……(3) 联立式(1)(2)(3),得水平推力g m m m m m F )(32112++=【例6】某人在以a=2、5m/s 2的加速度匀加速下降的升降机中最多可举起m 1=80kg 的物体,则此人在地面上最多可举起多少千克的物体?若此人在匀加速上升的升降机中最多能举起m 2=40千克的物体,则此升降机上升的加速度为多大?(g 取10m/s 2)【分析】设此人的最大举力F,在不同参照系中这个举力就是恒定的,当升降机匀加速下降时,物体也以同一加速度下降,物体“失重”,当升降机竖直向上匀加速上升时,人举起的物体也与升降机一起匀加速上升,物体处于“超重”状态。
【解】:设此人最大举力为F,当升降机匀加速下降时,选取物体为研究对象,受力分析如图3-33所示,由牛顿第二定律得m 1g-F=m 1a 所以F=m 1(g-a)=600N当她在地上举物体时,设最多可举起质量为m 0的物体,则有F-m 0g=0所m 0=60kg 、当升降机竖直向上匀加速上升时,选物体为研究对象,受力分析如图3-34所示,由牛顿第二定律得 m 2g-F=m 2a,所以222/5s m m gm F a =-=' 图2-2-11丙【例7】如图1---42所示,重为G 的均匀链条,两端用等长的轻绳连接挂在等高的地方,绳与水平方向成θ角,试求:(1).绳子的张力大小。
(2).链条最低点的张力大小、[析与解]: (1).绳子的张力等于整条链跟外部绳子的作用力,此处应以整条链为研究对象,作其受力图如右上图,由对称性知:F 1=F 2,因竖直方向合力为零,则有:2Fsin θ=G , F=G/2sin θ,即绳子的拉力为G/2sin θ。
(2).将链条从最底点隔离开,只研究右半条链条,作其受力图如上页右下图,由图得F ′=Gctg θ/2即链条最低点的张力为Gctg θ/2 。
【例8】如图1---39所示,斜面上放一物体A 恰能在斜面上保持静止,如果在物体A 的水平表面上再放一重物,下面说法中正确的就是( )A.物体A 将开始加速下滑B.物体A 仍保持静止C.物体A 所受的摩擦力增大D.物体A 所受的合力增大6.(2006年·全国理综Ⅰ)一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为μ.起始时,传送带与煤块都就是静止的.现让传送带以恒定的加速度a 0开始运动,当其速度达到v 0后,便以此速度匀速运动.经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动.求此黑色痕迹的长度.6.【答案】20002v a g a gμμ-() 解析:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度a 小于传送带的加速度a 0.根据牛顿第二定律,可得 a =μg设经历时间t ,传送带由静止开始加速到速度等于v 0,煤块则由静止加速到v ,有 v 0=a 0t ,v =at由于a <a 0,故v <v 0,煤块继续受到滑动摩擦力的作用.再经过时间t ',煤块的速度由v 增加到v 0,有v 0=v +at '此后,煤块与传送带运动速度相同,相对于传送带不再滑动,不再产生新的痕迹.设在煤块的速度从0增加到v 0的整个过程中,传送带与煤块移动的距离分别为s 0与s ,有200012s a t v t '=+,202v s a = 传送带上留下的黑色痕迹的长度l =s 0-s由以上各式得20002v a g l a gμμ-=()9.(2003年·江苏理综)水平传送带被广泛地应用于机场与火车站,用于对旅客的行李进行安全检查右图为一水平传送带装置示意图,绷紧的传送带A 、B 始终保持v =1m/s 的恒定速率运行;F 1 F 2 θ θGθ θ 图1--42A θ 图1---39一质量为m =4kg 的行李无初速地放在A 处,传送带对行李的滑动摩擦力使行李开始做匀加速直线运动,随后行李又以与传送带相等的速率做匀速直线运动、设行李与传送带间的动摩擦因数μ=0、1,AB 间的距离l =2m,g 取10m /s 2.(1)求行李刚开始运动时所受的滑动摩擦力大小与加速度大小; (2)求行李做匀加速直线运动的时间;(3)如果提高传送带的运行速率,行李就能被较快地传送到B 处.求行李从A 处传送到B 处的最短时间与传送带对应的最小运行速率. 4.【答案】(1)4N,a =lm/s 2;(2)1s;(3)2m/s解析:(1)滑动摩擦力F =μmg ① 以题给数值代入,得F =4N ②由牛顿第二定律得 F =ma③ 代入数值,得a =lm/s 2④(2)设行李做匀加速运动的时间为t ,行李加速运动的末速度v=1m /s.则 v =at⑤ 代入数值,得t =1s⑥(3)行李从A 匀加速运动到B 时,传送时间最短.则2min 12l at =⑦代入数值,得min 2s t = ⑧ 传送带对应的运行速率V min =at min ⑨ 代人数据解得V min =2m/s ⑩10.如图3-2-24所示,传送带两轮A 、B 的距离L =11 m,皮带以恒定速度v =2 m/s 运动,现将一质量为m 的物块无初速度地放在A 端,若物体与传送带间的动摩擦因数为μ=0、8,传送带的倾角为α=37°,那么物块m 从A 端运到B 端所需的时间就是多少?(g 取10 m/s 2,cos37°=0、8)2.解析:将物体放在传送带上的最初一段时间内物体沿传送带向上做匀加速运动由牛顿第二定律得μm g cos37°-mg sin37°=ma 则a =μg cos37°-g sin37°=0、4 m/s 2物体加速至2 m/s 所需位移 s 0=v 22a =222×0、4 m =5 m<L经分析可知物体先加速5 m 再匀速运动s =L -s 0=6 m 、 匀加速运动时间t 1=v a =20、4 s =5 s 、匀速运动的时间t 2=s v =62 s =3 s 、则总时间t =t 1+t 2=(5+3) s =8 s 、答案:8 s11如图所示的传送皮带,其水平部分AB 长s AB =2m,BC 与水平面夹角θ=37°,长度s BC =4m,一小物体P 与传送带的动摩擦因数μ=0、25,皮带沿A 至B 方向运行,速率为v =2m/s,若把物体P 放在A 点处,它将被传送带送到C 点,且物体P 不脱离皮带,求物体从A 点被传送到C 点所用的时间.(sin37°=0、6,g =l0m/s 2)1.【答案】2、4s解析:物体P 随传送带做匀加速直线运动,当速度与传送带相等时若未到达B ,即做一段匀速运动;P 从B 至C 段进行受力分析后求加速度,再计算时间,各段运动相加为所求时间.P 在AB 段先做匀加速运动,由牛顿第二定律11111,,N F ma F F mg v a t μμ====, 得P 匀加速运动的时间110.8s v vt a gμ===. 22111112110.8m,22AB s a t gt s s vt μ===-=,匀速运动时间120.6s AB s st v-==.P 以速率v 开始沿BC 下滑,此过程重力的下滑分量mg sin37°=0、6mg ;滑动摩擦力沿斜面向上,其大小为μmg cos37°=0、2mg .可见其加速下滑.由牛顿第二定律233cos37cos37,0.44m/s mg mg ma a g μ︒-︒===,233312BC s vt a t =+,解得t 3=1s(另解32s t '=-,舍去). 从A 至C 经过时间t =t 1+t 2+t 3=2、4s.12】如图1---40所示,甲、乙两球带电量均为q,质量均为m,两球间用绝缘细线连接,甲球又用绝缘细线悬挂在天花板上,在两球所在的空间有方向水平向左的匀强电场,场强为E,平衡时细线被拉紧,则表示平衡状态的图可能正确的就是下列哪一个?( )平衡后的拉力正确的就是( )=2mg = B ′.T1>2mg T 2>22)()(mg qE +C ′.T 1<2mg T 2<22)()(mg qE +D /.T 1=2mg T 2<22)()(mg qE +12、[]解析分析线1的张力方向与大小时,应以两球及中间线整体为对象,因整体在水平方向所受电场力的合力为零,故线1必须竖直,选A;因整体竖直方向受力平衡,得:T 1=2mg,为了得出T 2,必须使其成为外力,将乙球隔离出来作其受力图,由力的平衡有:T 2+F 引=22)()(mg qE +、 即 T 2<22)()(mg qE +,选D 。