03高等数学专转本模拟试题

合集下载

专升本高数模拟题3

专升本高数模拟题3

专升本高等数学模拟题一、填空题(每题3分,共30分) 1. =+→xx x a 10)sin 1(lim __________.2. 3sin )23()3(lim0=--→xx f f x ,则=)3('f __________.3. 若常数b a ,使得5)(cos sin lim 20=--→b x a e xx x ,则=b _____________.4. 设⎩⎨⎧+=+=t t y t x arctan )1ln(,则==1|t dx dy_____________.5. )(x f y =是0122=--y x 所确定的隐函数,求=dxdy_____________. 6. 函数21x xy +=,则其单调递增区间是______________. 7. 若C e dx x f x +=⎰2)(,则=)(x f ______________. 8. 求⎰+∞=edx x x 2)(ln 1______________.9. 曲线2,1,2===x y x y 所围成的面积是_________________. 10. 微分方程0'2''=+-y y y 的通解是________________. 二、选择题(每题3分,共15分)1. 设⎪⎩⎪⎨⎧>≤=0,sin 0,)(x x x x x x f ,则)(x f 在)1,1(-上( )A. 可去间断点B. 每一个点处都连续C. 跳跃间断点D. 第二类间断点2. 当0→x 时,x x x cos sin -是2x 的_______无穷小.A. 低阶无穷小B. 等价无穷小C. 同阶无穷小D. 高阶无穷小 3. 对于函数)(x f y =,0)(0=x f ,0)(''0<x f ,0)(lim=-→x x x f x x ,则0x x =是( ) A. 极大值点 B. 极小值点 C. 不是极值点 D. 拐点 4. 设)(x f y =在],[b a 上连续,则结论不正确的是( ) A. 若0)(2=⎰dx x f ba ,则在],[b a 上0)(=x f ;B. )()2()(2x f x f dx x f dx d xx-=⎰,其中],[2,b a x x ∈; C. 若0)()(<b f a f ,则在],[b a 内存在一点ξ,使0)(=ξf ; D. 设函数)(x f y =在],[b a 上有最大值M ,最小值m ,则)()()(a b M dx x f a b m ba -≤≤-⎰。

最新专升本考试高等数学模拟题10套(含答案解析)

最新专升本考试高等数学模拟题10套(含答案解析)

1
1.若 f x
1 ex
1
,则 x 0 是 f x 的(
1
x 3n
10.幂级数
的收敛域为
n1 n
。 。
4 1y4
11.交换二次积分的积分次序 dy 2 f x, ydx = 0 4 y
y 12.函数 z ln 在点(2,2)处的全微分 dz =
x
三、计算题(本大题共 8 小题,每小题 8 分,满分 64 分)
sin x sin(sin x)
1 x , y , x 2及x 轴所围成的平面区域。
x
D
yx
20.求微分方程 y y 2x 1满足 lim 1的特解。 x0 x
四、证明题(本大题共 2 小题,每小题 9 分,共 18 分)
21.证明:当 x 0 时, ex x 2 cos x 。
2 x2
1
cos
x
x0
22.设函数
(1)求常数 k 的值,使 D1 与 D2 的面积相等; (2)当 D1 与 D2 的面积相等时,求 D1 绕 y 轴旋转一周所成的旋转体体积Vy 和 D2 绕 x 轴旋
转一周所成的旋转体体积Vx 。
全真模拟测试卷2
一、选择题(本大题共 6 小题,每小题 4 分,共 24 分。在每小题给出的四个选项中,只
ln1 x2
x0
2.设 f (x) x
,其中 (x) 是有界函数,则f (x)在x =0处( )。
x2x x 0
A.极限不存在 B.极限存在但不连续 C.连续但不可导 D.可导
3.设 f x 的导数为 ex ,且 f (0) 0 ,则 f xdx =( )。
A. ex x C B. ex x C C. ex x C D. ex x C

专转本高等数学模拟试卷3

专转本高等数学模拟试卷3

2013年专转本高等数学模拟试卷3单项选择题(每小题4分,满分24分)1、已知()2x f x =,则(0)f '=( D )A 、2ln 2xB 、2ln 2xC 、2ln 2x -D 、不存在2、下列积分收敛的是 ( B )A、0+∞⎰ B 、2111dx x +∞+⎰ C 、111dx x +∞+⎰ D 、211x dx x +∞+⎰ 3、下列极限中正确的是( C )A 、0sin(1/)lim 11/x x x→= B 、sin lim sin x x x x x →∞+-不存在 C 、12sin 0lim(12)x x x e →+= D 、0lim ln x x x →=∞ 4、x y x =,则下列正确的是( C )A 、1x y xx -'=B 、ln x dy x xdx =C 、(ln 1)x y x x '=+D 、xy x dx '= 5、与平面1x y z ++=平行的直线方程是( C )A 、2343x y z x y z --=⎧⎨+-=⎩ B 、112x y z -=-=- C 、123x t y t z =+⎧⎪=-+⎨⎪=⎩D 、23x y z -+=6、下列哪个结论是正确的( C )A、1n ∞=收敛 B 、1(1)1n n n ∞=-+∑绝对收敛 C 、21(1)sin n n n x ∞=-+∑绝对收敛 D 、1(1)2n n n ∞=-∑收敛 二、填空题(每小题4分,满分24分)7、tan x y y +=确定()y y x =,则dy =8、函数ln y =(0)y ''= 9、12311[arctan(sin )]2x x dx x -+=+⎰ 10、(),(1)0,x x f e xe f '== 则()f x =11、交换二次积分得1220010(,)(,)x x dx f x y dy dx f x y dy -+=⎰⎰⎰⎰ 12、幂级数20(1)3nn n n x ∞=-∑的收敛半径R = 三、计算题(每小题4分,满分24分)13、212ln(12)0lim(12sin )x x x -→+ 14、arctan x z y=,求dz 15、()arcsin xf x dx x C =+⎰,求()dx f x ⎰ 16、已知212001()1,(2),(2)0,(2)2f x dx f f x f x dx '''===⎰⎰求 17、设()y f x =满足322x y y y e '''-+=,其图形在(0,1)处与曲线21y x x =-+在该点处切线重合,求()f x 表达式18、求直线322x y z x y z -+=⎧⎨--=⎩在平面210x y z ++-=上的投影线方程19、求二重积分322[1()]D xx y dxdy +-+⎰⎰,其中D 为222x y ay +≤20、将函数ln y x x =在1x =处展开为幂级数,并指出成立范围四、综合题(每小题10分,满分20分)21、32(1)x y x =-求: (1)函数的单调区间及极值;(2)函数凹凸区间及拐点;(3)渐近线22、某曲线在(,)x y 处的切线斜率满足24y y x x'=-+,且曲线通过(1,1)点,(1)求()y y x =的曲线方程;(2)求由1y =,曲线及y 轴围成区域的面积;(3)上述图形绕y 轴旋转所得的旋转体的体积五、证明题(每小题9分,满分18分)23、设(0,1)x ∈,证明:22(1)ln (1)x x x ++< 24、31sin ,0()0,0x x f x x x ⎧≠⎪=⎨⎪=⎩ 证明:(1)()0f x x =在处可微;(2)()0f x x '=在处不可微。

数学模拟试卷专转本

数学模拟试卷专转本

江苏省普通高校专转本统一考试高等数学模拟试卷(一)一、选择题(本大题共6小题,每小题4分,满分24分.)1.已知当时,函数是的等价无穷小,则常数( ).(A) (B) (C) (D)2.若是奇函数,在点处可导,则是函数的( ).(A) 跳跃间断点 (B) 可去间断点 (C) 无穷间断点 (D) 连续点3.对于反常积分的收敛性,正确的结论是( ).(A)当时收敛 (B)当时收敛 (C)当时收敛 (D)对的任意取值均不收敛4.直线与的位置关系是( ).(A)平行 (B)重合 (C)斜交 (D)垂直5.设曲线与在点处相切,则的值分别为( ).(A) (B) (C) (D)6..对级数,以下说法中正确的是( ).(A) 对任意常数,级数都发散 (B) 对任意常数,级数都条件收敛(C) 对任意常数,级数都绝对收敛 (D) 对不同常数,级数的敛散性不同二、填空题(本大题共6小题,每小题4分,满分24分.)7.设函数在点处连续的,则 .8.设,则 .9.设,则 .0.设, 则 .11.设,则 .12.将展开为的幂级数,得.三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14.设函数由方程确定,求.15. 求不定积分.16.计算定积分.17.求过点且与平面垂直,又与直线平行的平面的方程.18.计算二重积分,其中为由直线围成的闭区域.19.设函数可导,且满足,求.20.求微分方程的通解.四、综合题(本大题共2小题,每小题10分,满分20分.)21.设,求(1) 函数的单调区间与极值;(2) 曲线的凹凸区间与拐点;(3) 函数在区间上的最大值与最小值.22.求常数22.求常数的值,使直线位于曲线的上方(即对一切,恒有 ≥),且直线,,和曲线所围成的平面图形的面积最小.五、证明题(本大题共2小题,每小题9分,满分18分.)23.设函数有二阶连续导数,令,若复合函数满足,证明:满足.24.设在上可导,且,证明:在内存在唯一的点,使所围平面图形被直线分成面积相等的两部分.江苏省普通高校专转本统一考试高等数学模拟试卷(二)一、选择题(本大题共6小题,每小题4分,满分24分.)1.若,则分别为( ).(A) (B) (C) (D)2.点是函数的( ).(A)无穷间断点 (B)跳跃间断点 (C)可去间断点 (D)连续点3.设当时,是的高阶无穷小,而又是的高阶无穷小,则正整数=( ).(A) (B) (C) (D)4.考虑下列5个函数: ①; ②; ③; ④; ⑤.上述函数中,当时,极限存在的是 ( ).(A) ②③⑤ (B) ①④ (C) ③⑤ (D) ①②③⑤5.设二阶可导,,则( ).(A) (B)(C) (D)6.下列级数中,收敛的是( ).(A) (B) (C) (D)二、填空题(本大题共6小题,每小题4分,满分24分.)7.设为多项式,,,则 .8.曲线在点处的切线方程为 .9.若函数在点处可导,且,则 .10.函数在闭区间上的最小值为 .11.设,则.12.幂级数的收敛域为 .三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14.设,求.15. 求不定积分.16.计算定积分.17.求过点,且平行于平面,又与直线相交的直线方程.18.计算,其中.19.设具有二阶连续偏导数,求.20.求微分方程的通解.四、综合题(本大题共2小题,每小题10分,满分20分.)21.求由曲线,直线,和曲线的一条切线所围成图形面积的最小值.22.已知,试求: (1)函数的单调区间与极值; (2)曲线的凹凸区间与拐点;(3)曲线的渐近线.五、证明题(本大题共2小题,每小题9分,满分18分.)23.设函数在上连续,且是偶函数,证明也是偶函数.24.设是大于的常数,且,证明:对任意,有.江苏省普通高校专转本统一考试高等数学模拟试卷(三)一、选择题(本大题共6小题,每小题4分,满分24分.)1.下列极限正确的是( ).(A) (B)(C) (D)2.设,则( ).(A)等于 (B)等于 (C)等于 (D)不存在3.函数的第一类间断点共有( ).(A)个 (B)个 (C)个 (D)个4.设,则( ).(A) (B) (C) (D)5.二次积分交换积分次序后得( ).(A) (B)(C) (D)6.下列级数中,收敛的是( ).(A) (B) (C) (D)二、填空题(本大题共6小题,每小题4分,满分24分.)7.定积分的值为 .8.设,则 .9.设,,且,则 .10.设的一个原函数为,则 .11.幂级数的收敛域为 .12.若是某二阶常系数齐次线性微分方程的一个特解,则该微分方程为 .三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14设函数由参数方程所确定,求 ,.15. 已知,求16.求定积分.17.求通过直线且平行于直线的平面方程.18.计算二重积分,其中是由曲线,直线及轴所围成的平面闭区域.19.设,其中具有二阶连续偏导数,求20.求微分方程 的通解.四、综合题(本大题共2小题,每小题10分,满分20分.)21.已知函数, (1)求函数的单调区间与极值; (2)讨论曲线的凹凸性;(3)求函数在闭区间上的最大值与最小值.22.设曲线与交于点,过坐标原点和点的直线与曲线围成一平面区域.(1)求平面区域绕轴旋转一周所形成的旋转体的体积;(2)问为何值时,取得最大值?五、证明题(本大题共2小题,每小题9分,满分18分.)23.设函数的定义域为,且对任意和均有,又在处连续,.试证明函数在上连续.24.证明:当时,.江苏省普通高校专转本统一考试高等数学模拟试卷(四)一、选择题(本大题共6小题,每小题4分,满分24分.)1.设函数在点处可导,且,则( ).(A) (B) (C) (D)2.点是函数的( ).(A) 跳跃间断点 (B) 可去间断点 (C) 无穷间断点 (D) 振荡间断点3.若抛物线与曲线相切,则( ).(A) (B) (C) (D)4.是可导函数的极大值的充分条件为:对满足 的任意,都有( ).(A) (B) (C) (D)5.若的原函数为,则( ).(A) (B)(C) (D)6.设函数与在上均具有连续导数,且为奇函数,为偶函数,则( ).(A) (B) (C) (D)二、填空题(本大题共6小题,每小题4分,满分24分.)7.设,则 .8.设,则 .9.曲线在点处的切线方程为 .10.若向量与平行,且,则 .11.设,则 .12.将函数展开为的幂级数,得.三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14.设, 求. 15.设,求.16.计算定积分.17.求过点,并与直线垂直又与平面平行的直线方程.18.计算,其中为由直线,及围成的闭区域.19.设,其中具有二阶连续偏导数,求.20.求微分方程 满足初始条件的特解.四、综合题(本大题共2小题,每小题10分,满分20分.)21.设在取得极值,求常数的值,并求该曲线的凹凸区间与拐点.22.已知函数与满足下列条件:(1),; (2),,记由曲线与直线,,所围平面图形的面积为,求.五、证明题(本大题共2小题,每小题9分,满分18分.)23.证明:当,时,.24.证明:.江苏省普通高校专转本统一考试高等数学模拟试卷(五)一、选择题(本大题共6小题,每小题4分,满分24分.)1.设, ,则、的值分别为( ).(A) (B) (C) (D)2.设在处可导,且,则曲线在点处的切线的斜率为( ).(A) (B) (C) (D)3.设与都是恒大于零的可导函数,且,则当时,有( ).(A) (B)(C) (D)4.直线与平面的位置关系是( ).(A)平行 (B)垂直 (C)斜交 (D)直线在平面上5.设是连续函数,则( ).(A)(B)(C) (D)6.幂级数的收敛域为().(A) (B) (C) (D)二、填空题(本大题共6小题,每小题4分,满分24分.)7.设函数在处连续,则 .8.设直线是曲线的一条切线,则 .9. .10.设,则 .11.设,则.12.微分方程的通解为 .三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14.设,求.15.求不定积分.16.计算定积分.17.求通过点,,且平行于轴的平面方程.18.计算,其中为由曲线,直线,围成的闭区域.19.已知函数由方程确定, 求,.20.求微分方程的通解.四、综合题(本大题共2小题,每小题10分,满分20分.)21.设某平面图形由曲线与直线围成,求该平面图形的面积,以及该平面图形绕轴旋转一周所形成的旋转体的体积.22.已知,试求: (1)函数的单调区间与极值; (2)曲线的凹凸区间与拐点;(3)函数在闭区间上的最大值与最小值.五、证明题(本大题共2小题,每小题9分,满分18分.)23.设在处连续,,证明:在处可导的充分必要条件是. 24.证明:.江苏省普通高校专转本统一考试高等数学模拟试卷(六)一、选择题(本大题共6小题,每小题4分,满分24分.)1.若,则分别为( ).(A) (B) (C) (D)2.点是函数的( ).(A)无穷间断点 (B)跳跃间断点 (C)可去间断点 (D)连续点2.若当时,与是等价无穷小,则( ).(A) (B) (C) (D)4.曲线的渐近线共有( ).(A)条 (B)条 (C)条 (D)条5.若为函数的一个原函数,则【 】(A) (B)(C) (D)6.设,则【 】(A) (B) (C) (D)二、填空题(本大题共6小题,每小题4分,满分24分.)7.设,则 .8.设, 则 .9.设,则 .10. .11.微分方程的通解为 .12.级数的收敛半径为 .三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14.求由方程所确定的二元函数的全微分.15. 求不定积分.16.计算定积分.17.求过点且垂直于直线的平面方程.18.计算,其中为由直线及围成的平面闭区域.19.设其中具有连续二阶偏导数,求.20.求微分方程 满足初始条件的特解.21.求由曲线与直线,所围平面图形的面积以及该平面图形分别绕轴、轴旋转一周所形成的旋转体的体积.22.试确定常数、、,使函数的图形有一拐点,且在处有极值,并求出的图形的凸区间.23.设在[]上连续,且,证明:在()内有且仅有一点,使.24.证明:当时,.江苏省普通高校专转本统一考试高等数学模拟试卷(七)一、选择题(本大题共6小题,每小题4分,满分24分.)1.设函数,则在点处( )(A)极限不存在 (B)极限存在但不连续(C) 连续但不可导 (D) 可导且导数为2.设在点处可导,且,则点是函数的( )(A)无穷间断点 (B)跳跃间断点 (C)可去间断点 (D)连续点3.设,则()(A) 0 (B) 1 (C) 2 (D) 34.方程在内()(A) 仅有一个实根 (B) 有二个实根 (C) 至少有二个实根 (D) 没有实根5.设,,且与轴垂直,则 ( )(A) (B) (C) (D)6.下列级数中,发散的是( )(A) (B) (C) (D)二、填空题(本大题共6小题,每小题4分,满分24分.)7.设时,是比高阶的无穷小,则常数 .8.设,则.9.曲线的铅直渐近线的方程为 .10.函数在区间上的最大值为 .11.设,则全微分.12.幂级数的收敛域为 .三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14.设 , 求.15.设,求.16. 求不定积分.17.计算定积分.18.求过点,且与直线垂直,又与平面平行的直线方程19.计算,其中.20.求微分方程的通解.四、综合题(本大题共2小题,每小题10分,满分20分.)21.求曲线上的一点,使在该点的切线和,,围成平面图形的面积最小.22.设函数在的某一邻域内具有二阶导数,且,,试求.五、证明题(本大题共2小题,每小题9分,满分18分.)23.证明:当时,.24.设,,,其中具有二阶连续偏导数,证明:.江苏省普通高校专转本统一考试高等数学模拟试卷(八)一、选择题(本大题共6小题,每小题4分,满分24分.)1.设 存在,且 ,则 ( )(A) 1 (B) 0 (C) 2 (D) -22.当时, 是 的( )(A)同阶无穷小 (B) 高阶无穷小 (C) 低阶无穷小 (D)等价无穷小3.设在点处连续,则在点处取得极大值的充分条件为:对满足的任意,都有( ) (A) (B) (C) (D)4.若函数在点处可导,则在点处( ).(A)一定连续但不一定可导 (B)一定连续但不可导(C)一定连续且可导 (D)不一定连续且不一定可导5.设,则在区间上( )(A) 函数单调减少且其图形是凹的 (B) 函数单调减少且其图形是凸的(C) 函数单调增加且其图形是凹的 (D) 函数单调增加且其图形是凸的6.级数条件收敛的充要条件是()(A) (B) (C) (D)二、填空题(本大题共6小题,每小题4分,满分24分.)7.设,则 .8.设存在,且,则.9.已知是偶函数,且,则 .10.,则 .11.设,且是互相垂直的单位向量,则以为邻边的平行四边形面积为.12.将展开为的幂级数,得 .三、计算题(本大题共8小题,每小题8分,满分64分.)13.求极限.14.设,求.15. 求不定积分.16.计算定积分.17.一直线通过平面与直线的交点,且与直线平行,试求该直线方程.18.计算,其中D是直线所围成的闭区域.19.设,其中具有二阶连续偏导数,求.20.求微分方程的通解.四、综合题(本大题共2小题,每小题10分,满分20分.)21.求由曲线与直线所围平面图形的面积以及该平面图形分别绕轴、轴旋转一周所形成的旋转体的体积.22.设22.设,.(1)求的具体解析表达式;(2)讨论的连续性;(3)讨论的连续性.五、证明题(本大题共2小题,每小题9分,满分18分.)23.设函数具有连续偏导数,证明由方程 所确定的函数满足 .24.证明方程有且仅有一个实根.。

[专升本类试卷]河北专接本数学(多元函数积分学)模拟试卷3.doc

[专升本类试卷]河北专接本数学(多元函数积分学)模拟试卷3.doc

[专升本类试卷]河北专接本数学(多元函数积分学)模拟试卷3一、选择题在每小题给出的四个选项中,只有一项是符合要求的。

1 设D1:一1≤x≤1,一1≤y≤1,则(x2+y2)dxdy=( ).2 设区域D是单位圆x2+y2≤1在第一象限的部分,则二重积分=( ).3 设D是平面区域0≤x≤1,0≤y≤2,则二重积分=( ).(A);(B)1;(C)4;(D)2.4 设,x+y=1围成的,则I1,I2的大小关系为( ).(A)I1=I2;(B)I1>I2;(C)I1<I2;(D)I1≥I2.5 设D={(x+y)|x2+y2≤a2},若,则a=( ).二、填空题6 设D是平面区域x2+y2≤1,则二重积分=__________.7 设I=,交换积分次序后I=__________.8 交换积分次序∫01dy∫0y f(x,y)dx+∫12dy∫02—y f(x,y)dx=__________.9 设D是平面区域一1≤x≤1,0≤y≤2,则二重积分=__________.10 设L是正向曲线x2+y2=R2,则曲线积分∮L xy2dy—x2ydx=__________.三、综合题11 计算xe xy dxdy,其中D是由0≤x≤1,一1≤y≤0围成的区域.12 计算(3x+2y)dxdy,其中D是由两条坐标轴及直线x+ky=2围成的闭区域.13 计算,其中D是由1≤x≤2,3≤y≤4围成的区域.14 计算xcos(x+y)dxdy,其中D是顶点分别为(0,0),(π,0)和(π,π)的三角形闭区域.15 计算∫13dx∫x—12siny2dy.16 计算(x2+3x2y+y3)dxdy,其中D是由0≤x≤1,0≤y≤1围成的区域.17 计算(1—2x—3y)dxdy,其中D是由直线2x+3y=1与两坐标轴围成的区域.18 计算xy2dxdy,其中D是由圆周x2+y2=4及y轴所围成的右半闭区域.19 计算(x+6y)dxdy,其中D是由y=x,y=5x,x=1围成的区域.20 计算xydxdy,其中D是由直线y=x一1与抛物线y2=2x+6所围成的闭区域。

专升本(国家)-专升本高等数学(一)分类模拟多元函数微积分学(三).doc

专升本(国家)-专升本高等数学(一)分类模拟多元函数微积分学(三).doc

专升本(国家)-专升本⾼等数学(⼀)分类模拟多元函数微积分学(三).doc专升本⾼等数学(-)分类模拟多元函数微积分学(三)⼀、选择题dz1、⼆元函数z=(l+2x)3y ,则⽯等于 ____________A. 3y (l+2x)3y_1 B ? 6y (l+2x) 3y_1C ?(l+2x)3y :Ln(:L+2x)D ? 6y (l + 2x)3ydz2^ 设z=cos (x 3y 2),则⼱,等于 ___________A. 2x 3ysin (x 3y 2) B ? -sin (x'y :) C ? ⼀2x 3ysin (x 3y 2) D ? 3x 2y 2sin (x 3y 2)剽3> z=5xy ,则处 IA ?50B ?25 C. 501n5 D. 251n5] afgQ4、已知f (xy, x+y) =x 3+y 3,则 “⼯°,等于A ? 3y 2-3x-3yB ? 3y 2+3x+3y C. 3x 2-3x-3yD ? 3x?+3x+3y(In y)x dr ⼗亍(In y)^{dy(In yY\n (In y)dz+丄(In y)T }dyC ?(:Lny) x ln (lny) dx+ (lny) x_1dy(In v )JIn (In ^y)dr+ —(In y)T ~[dy D . y6、函数z=x 2+y 3在点(1, -1)处的全微分dz | (i, -i )等于 ____________A. 2dx-3dyB. 2dx+3dyC. dx+dy D ? dx-dyA. (1GW2 B ?5、设⼄=(lny) J 贝Ijdz 等于 _________7、设f(x, 为 _________ y)为⼆元连续函数, p (D )drdy = J dj*jV (x ,5?)dx 则积分区域可以表⽰(L2)等于A.B.c.D?8^设f(x, y)为连续函数,⼆次积分A J^cLrJ f(x.y)dyc.W f(x,y)dx交换积分次序后等于^cU?J^/(jr ,5r)dy (dx|" /(\r^y)dyB.D. J 。

普通高校专转本高数统一考试模拟试卷解析(三)

普通高校“专转本”统一考试模拟试卷解析(三) 高等数学
一、选择题(本大题共 6 小题,每小题 4 分,满分 24 分. 在每小题给出的四个选项中,只
有一项符合题目要求,请把所选项前的字母填在题后的括号内)
1、设函数 f (x) 二阶可导,且 f (x) 0 , f (x) 0 ,则 x0 为 f (x) 的( )
y
2ex
(y
1)ex exy ex x2exy
xye xy
, y0
2 2 1 1。 1
15、求不定积分
x3 dx 。 x2 4
解析:该题使用第二类换元法,作三角代换
令 x 2 sec t ,
原式 8sec3 t 2 tan t sec tdt 8 sec 4 tdt
2 tan t
分顺序。一般当被积函数形如 f (x2 y2 ) ,区域形状为圆形、圆环、扇形(环)等,往往
5
使用极坐标计算。
将圆周 x 2 y 2 2ax 化为极坐标方程 r 2a cos ,
2 2a cos
y
原式= d r cos r sin rdr
0
0
2 [r4 04
cos sin ]
2a cos 0
f (x 1)dx
2
f (u)du
1
f (u)du
2
f (u)du
2
1
1
1
1 udu 2 (2u 1)du 0 (u 2 u) 2 6 2 4
1
1
1
17、设区域 D 为圆周 x 2 y 2 2ax 与 x 轴在第一象限所围部分,求 xydxdy 。
D
解析:二重积分问题是很多“专转本”同学的难点。首先要理解二重积分的几何意义,特别 是对称型简化积分计算。 首先要画出积分区域,然后根据被积函数的特点与区域的形状选择适当的坐标以及适当的积

专升本《高等数学》模拟试题三


3. 1 (sin x cos 2x x2 )dx 1
A. 0 B.1 C. 4
D. 2
3
3
4. a 1 ln xdx,b 2 x dx ,则
0x
1 ln x
A. a,b 都收敛 B. a,b 都发散 C. a 收敛, b 发散 D. b 收敛, a 发散
5. a (1,1,0), b (1,0,1) ,则 a 和 b 的夹角是
2.求证
2
ln(sin
x)dx
ln
2
0
2
n1
n
10. y'' y 的通解是_________
3.计算题共 8 题, 前 4 道各 7 分,后 4 道各 8 分,总分 60 分;
tan x sin x
1. lim x0
x3
Байду номын сангаас
2. lim 1 x 1 x0 sin 4x
3.设 y y(x) 是由 x2 y2 xy 4 确定的隐函数,求 dy
4. 4 x2 dx 5. sec xdx 6. lim 1 x cos t 2dt
x x0 0
7. 2
cos x
dx
0 sin x cos x
8.将 ln(1 3x 2x2 ) 展开成麦克劳林级数
综合题共 3 题, 每小题 10 分, 总分 30 分
1.证明
1
dx
2 2 0 1 x4 2
4. lim x sin x _______ x x
5. f (x) x2 432 的极小值是________ x
6.
dx x(1
x)
____________
7.
lim

专升本数学模拟试卷10套及答案


11.如果当 x ® 0 时,无穷小量(1 - cos x )与 a sin 2 x 为等阶无穷小量,则a = 2
ò 12.设 f ¢(x) 的一个原函数为 sin ax ,则 xf ¢¢(x)dx =
ò 13. sin x + cos x dx =
3 sin x - cos x
14.已知
a,
b, c
三、解答题:本大题共 8 小题,共 86 分.解答应写出文字说明,证明过程或演算步骤。 得分 评卷人 17.(本小题满分 10 分)
确定常数 a 和 b 的值,使 lim [ x2 + x + 1 - (ax + b)] = 0 x®-¥ 96-4
得分 评卷人 18.(本小题满分 10 分)
ò求Leabharlann xe x dx .10.已知 y = x 是微分方程 y¢ = y + j ( x ) 的解,则j ( x ) 的表达式为
ln x
xy
y
A. - y 2 x2
B. y2 x2
C. - x 2 y2
D. x2 y2
96-3
天津市高等院校“高职升本科”招生统一考试
高等数学标准模拟试卷(一)
第Ⅱ卷 (选择题 共 110 分)
B.是 f (x)g(x) 的驻点,但不是极值点
C.是 f (x)g(x) 的极大点
D.是 f (x)g(x) 的极小点
3.已知 f ¢(e x ) = xe-x 且 f (1) = 0 则 f (x) =
A. f (x) = (ln x)2 2
B. ln x
C. f (x) = ln x2 2
D. ln x 2
x
f (t)dt +

江苏省专转本(高等数学)模拟试卷3(题后含答案及解析)

江苏省专转本(高等数学)模拟试卷3(题后含答案及解析)题型有:1. 选择题 2. 填空题 4. 解答题 5. 综合题 6. 证明题选择题在每小题给出的四个选项中,只有一项是符合要求的。

1.已知∫f(x)dx=e2x+C,则∫f’(-x)dx=( )。

A.2e-2x+CB.e-2x+CC.-2e-2x+CD.e-2x+C正确答案:C解析:原式两边分别求导得,f(x)=2e2x,再两边求导,得f’(x)=4e2x,则f’(-x)=4e-2t。

∫f’(-x)dx=∫4e-2xdx=-2∫e2xd(-2x)=-2e-2x+C。

故选C项。

2.在下列极限求解中,正确的是( )。

A.B.C.D.正确答案:D解析:3.下列级数中条件收敛的是( )。

A.B.C.D.正确答案:C解析:4.曲线y=x3-3x在开区间(0,1)内为( )。

A.单调上升,且上凹B.单调下降,且下凹C.单调上升,且下凹D.单调下降,且上凹正确答案:D解析:当00。

曲线单调下降,且上凹,故选D项。

5.若直线l与Ox平行,且与曲线y=x-ex相切,则切点坐标为( )。

A.(1,1)B.(-1,1)C.(0,-1)D.(0,1)正确答案:C解析:根据题意得:y’=(1-ex)’=0x=0,代入得y=-1。

6.且f(x)在x=0处连续,则a的值为( )。

A.1B.0C.D.正确答案:C解析:使用洛必达法则可知:,根据f(x)在x=0处连续,可知a=。

填空题7.x+y=tany确定y=y(x),则dy=______。

正确答案:(coty)2解析:两边对x求导y’=1/(x+y)2·(1+y’) 整理得y’=1/(x+y)2=(coty)28.函数,y”(0)=______。

正确答案:9.设u=exysinx,=______。

正确答案:exy(ysinx+cosx)解析:=exy·ysinx+exy·cosx=exy(ysinx+cosx)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

10理科班“5+2”第二次选拔考试《高等数学》试题
(试卷共4页 时间90分钟)
一、选择题(每题4分 合计20分):
1、极限()=--→2
111sin lim x x x ( ). A 、1 B 、2 C 、2
1- D 、21 2、函数()x f 在点0x 处有定义是()x f 在该点处连续的( ).
A 、充要条件
B 、充分条件
C 、必要条件
D 、无关的条件
3、已知函数()⎩
⎨⎧>≤-=-001x e x x x f x ,则()x f 在0=x 处 ( ). A 、()10-='f B 、间断 C 、()10='f D 、连续但不可导 4、设()x x x f ln =,且()20='x f ,则()0x f =( ).
A 、1
B 、e
C 、2e
D 、e
2 5、下列函数是方程12=+'y y x 的特解的是( ).
A 、2x y =
B 、22x y =
C 、x x y 1+=
D 、2112+=x
y 二、填空题(每题4分 合计40分):
6、极限21lim(1)x x x
→∞-=_____________. 7、极限22212lim()n n n n n
→∞+++=_______. 8、若x x f 2)(=,则()()=∆-∆-→∆x f x f x 00lim 0 . 9、曲线11=+=
x x y 在处的切线方程是 . 10、x y =在闭区间[]1,0满足拉格朗日定理的点=ξ .
11、函数()x x x f ln 22-=的单调增加区间是 .
12、设x e -是)(x f 的一个原函数,则⎰
=dx x xf )( ______ .
13、已知x e f x +='1)( ,则=)(x f ________ .
14、设)(x f 连续,且
⎰=30)(x x dt t f ,则=)8(f . 15、定积分()=+⎰-dx x x x 1123
sin _____________.
三、解答题(每题6分 合计60分): 16、计算极限3020sin lim x dt t x
x ⎰→.
17、计算极限x x x -→-111lim .
18、()
x x x -→ππ
cos 22sin lim
4
19、已知()211ln x y ++=,求y ''.
20、已知函数)(x f y =由方程
1-=x e
y y 确定,试求该函数在点)0,1(处的切线和法线方程.
21、求函数的()
321)24(-+=x x y 的单调区间和极值.
22、计算不定积分dx e
e x x
⎰+21.
23、计算不定积分
⎰+21x dx .
24、计算定积分
dx x ⎰1
0arcsin .
25、求方程x y y y =+'+''2的通解.
四、综合题(每题10分 合计30分):
26、计算定积分
⎰-2021dx x .
27、过点()0,1-作曲线x y =
的切线.求: (1)该切线方程;
(2)该切线与曲线x y =
以及x 轴围成的平面图形的面积.
28、已知函数)(x f 满足2)()(x x f x f x +=',求)(x f ,使得由曲线)(x f y =与直线0=x ,1=x 以及0=y 所围的平面图形绕x 轴旋转所得旋转体的体积最小.。

相关文档
最新文档