地下建筑结构课程设计隧道衬砌设计(英文)

合集下载

隧道工程课程设计(包含内力图和衬砌及内轮廓设计图)

隧道工程课程设计(包含内力图和衬砌及内轮廓设计图)

目录题目:隧道工程课程设计.............................................................................................................. - 3 -一、设计依据.................................................................................................................................. - 3 -二、设计资料.................................................................................................................................. - 3 -三、隧道方案比选说明.................................................................................................................. - 3 -1.平面位置的确定................................................................................................................... - 3 -2.纵断面设计........................................................................................................................... - 4 -3.横断面设计........................................................................................................................... - 4 -四、二次衬砌结构计算.................................................................................................................. - 4 -1.基本参数............................................................................................................................... - 4 -2.荷载确定............................................................................................................................... - 4 -3.计算衬砌几何要素............................................................................................................... - 5 -4.载位移—主动荷载在基本结构中引起的位移................................................................... - 7 -5.外荷载在基本结构中产生的内力....................................................................................... - 8 -6.主动荷载位移..................................................................................................................... - 10 -7.载位移—单位弹性抗力及相应的摩擦力引起的位移..................................................... - 11 -四、墙底(弹性地基梁上的刚性梁)位移................................................................................ - 14 -五、解力法方程............................................................................................................................ - 15 -六、计算主动荷载和被动荷载分别产生的衬砌内力................................................................ - 16 -七、最大抗力值的求解................................................................................................................ - 17 -八、计算衬砌总内力.................................................................................................................... - 18 -1.相对转角的校核................................................................................................................. - 19 -2.相对水平位移的校核按下式计算..................................................................................... - 19 -九、衬砌截面强度检算................................................................................................................ - 20 -1.拱顶..................................................................................................................................... - 20 -2.墙底偏心检查..................................................................................................................... - 20 -十、内力图.................................................................................................................................... - 21 --21-- 1 -- 2 -隧道工程课程设计一、设计依据本设计根据《公路工程技术标准》(JTG B01-2003),《公路隧道设计规范》(JTG D70-2004)进行设计和计算。

隧道工程课程设计

隧道工程课程设计

隧道工程课程设计说明书The structural design of the Tunnel作者姓名:专业、班级:道桥班学号:指导教师:设计时间:目录隧道工程课程设计一.课程设计题目某高速铁路隧道V 级围岩段衬砌结构设计(设计时速350Km/h,隧道埋深127m ,单洞双线)二.隧道的建筑限界2.1 隧道的建筑限界根据《铁路隧道设计规范》TB10003-2005有关条文规定,隧道的建筑限界高度H 取6.55m ,行车道宽度取4.252⨯m ,如图所示三.隧道的衬砌断面拟定隧道的衬砌,衬砌材料为C25混凝土,弹性模量Ec=2.95×107kPa ,重度γh=23kN/m3,衬砌厚度取50cm ,如图所示。

四.荷载确定4.1围岩压力计算计算围岩竖向均布压力:10.452s q γω-=⨯式中:s ——围岩类别,此处s=5;γ——围岩容重,此处γ=22KN/m3;ω——跨度影响系数毛洞跨度8.5B m =B =8.5m5,0.1B m i >=,此处1(5)10.1(8.55) 1.35i B ω=+-=+⨯-=所以有:40.452 1.359.72h m =⨯⨯= 因是松软围岩,故m H 127m 3.24h 5.2p <== 所以此隧道为深埋隧道。

围岩竖向均布压力10.452s q γω-=⨯=0.45×1-52×22×1.35=213.84KN4.2围岩水平压力围岩水平均布压力:()m 106.92)KN/~(64.1550.0~30.0e ==q 取其平均值 m KN q e /54.85=⋅=λ 4.3深埋隧道荷载计算 (1)作用在支护结构上的垂直压力由于q ph H H <<,为便于计算,假定岩土体中形成的破裂面是一条与水平成β角的斜直线,如图所示。

EFGH 岩土体下沉,带动两侧三棱体(图中FDB 和ECA )下沉,整个岩土体ABDC 下沉时,又要受到未扰动岩土体的阻力;斜直线AC 或BD 是假定的破裂面,分析时考虑内聚力c ,并采用了计算摩擦角c ϕ;另一滑面FH 或EG 则并非破裂面,因此,滑面阻力要小于破裂面的阻力。

课程教学大纲-西南科技大学土木工程与建筑学院

课程教学大纲-西南科技大学土木工程与建筑学院

《地下工程》课程教学大纲课程英文名称:Underground Engineering课程编号:193990410课程类别:专业课课程性质:选修课学分: 3学时:48 (其中:讲课学时:32 课程设计学时:16 上机学时:0 )适用专业:土木工程本科专业开课部门:土木工程与建筑学院一、课程教学目的和课程性质地下工程是土木工程专业公共选修专业课,本课程的知识和技术可直接应用于科研和生产实际,以获得关于地下工程总体上的认识。

本课程的基本理论和技术是土木工程专业岩土工程与地下工程方向必需了解的专业基础知识。

本课程对地下空间工程的特性和利用形态、明挖法修建的地下工程、盾构法修建的地下工程、掘进机法修建的地下工程、矿山法修建的地下工程等方面进行概述性介绍,使学生对地下工程知识有一个总体而全面的了解,将大大提高拓宽学生的专业知识面,增进学生的工程概念,因而也是学生基本素质教学的组成部分。

二、本课程与相关课程的关系先修课程:《理论力学》、《材料力学》、《结构力学》、《岩体力学》、《土力学》、《基础工程》、《结构设计原理》、《岩土锚固及支挡工程》。

后续课程:《地铁与轻轨》三、课程的主要内容及基本要求(一)理论学时部分本课程对学生的基本要求是:(1)掌握主要地下工程的利用形态;(2)掌握深基坑工程的计算原理和设计方法;(3)掌握盾构法修建的地下工程原理和施工方法以及盾构设备基本类型与选型;(4)掌握TBM法修建的地下工程设计原理和施工方法以及TBM基本类型与构造;(5)掌握矿山法修建的地下工程设计原理和施工方法。

第一单元地下工程概述(6学时)[知识点](1)地下空间工程的特性和利用:地下工程的空间种类;地下工程的空间特性;地下空间的优缺点。

(2)地下工程的利用形态:为人类生存、确保安全加以利用的地下工程(生活、地下储藏设施);伴随城市发展而加以利用的地下工程(地下商业街、地下停车场、地下铁道、市政地下管道、能源供给设施、上下水道设施);伴随科学技术发展而利用的地下工程(地下生产工厂、水力发电站、原子能发电站、废弃地下处理设施);大规模国土的有效的地下工程(铁路设施、公路设施、海峡通道工程);防御和减少灾害的地下设施(灾害及防灾的地下设施、防护建筑、储备设施、防御洪水灾害的地下坝与地下河)。

地下建筑结构课程设计(word文档良心出品)

地下建筑结构课程设计(word文档良心出品)

————目录————一、设计资料1.1设计数据资料 (1)1.2结构尺寸及示意图 (1)1.3重心计算 (1)1.4计算半径 (2)二、基本使用阶段荷载计算2.1垂直荷载 (2)2.2均布荷载 (2)2.3三角形侧载 (2)2.4自重 (2)2.5拱背荷载 (2)2.6拱底反力 (2)三、管片配筋计算3.1材料选择 (4)3.2截面配筋计算1)截面设计 (4)2)截面复核 (6)四、管片接头验算4.1负弯矩接头 (7)4.2正弯矩接头 (8)五、顶推力验算 (9)六、心得体会 (10)七、设计规范 (11)八、主要参考文献 (11)九、上交材料 (11)盾构管片课程设计一、设计资料教师评阅:1.1设计数据资料管片外径11.5m管片内径10.3m覆土深度20.1m土层容重14.1kN/m³饱和容重19.1 kN/m³地下水位1.1m土层内摩擦角17.1°土层粘聚力 24 kN/㎡1.2结构尺寸及示意图1.3重心计算盾构管片课程设计教师评阅: 重心z=300mm1.4计算半径r=5.15+0.3=5.45m二、基本使用阶段荷载计算2.1垂直荷载q=1.1×1.41+(20.1-1.1)×(1.91-1)=18.84t/㎡2.2均布荷载p1=18.84×tan²(45-17.1/2)-2×2.4×tan(45-17.1/2)=6.73 t/㎡2.3三角形侧载p2=2×5.45×tan²(45-17.1/2)×0.91=5.41 t/㎡2.4自重g=2.6×0.6=1.56 t/㎡2.5拱背荷载G=2(1-π/4)×5.45²×0.91=11.62 t/㎡2.6拱底反力Pr=18.84+1.56π+0.2146×5.45×0.91-π/2×5.45×1=16.24 t/㎡计算的M和N见下表。

隧道衬砌结构设计课程设计

隧道衬砌结构设计课程设计

隧道衬砌结构设计课程设计一、课程目标知识目标:1. 理解隧道衬砌结构的基本概念、分类和作用;2. 掌握隧道衬砌结构设计的基本原理和方法;3. 了解隧道衬砌结构施工技术及其质量控制措施;4. 了解隧道衬砌结构在工程中的应用及发展趋势。

技能目标:1. 能够分析隧道衬砌结构设计中的主要荷载及其作用机理;2. 能够运用专业知识进行隧道衬砌结构的设计计算;3. 能够根据设计要求,合理选择隧道衬砌结构材料和施工工艺;4. 能够对隧道衬砌结构设计进行合理的优化,提高结构性能和经济效益。

情感态度价值观目标:1. 培养学生热爱工程专业,增强对隧道工程建设的责任感和使命感;2. 培养学生严谨的科学态度和团队合作精神,提高解决实际问题的能力;3. 增强学生环保意识,让学生认识到隧道衬砌结构设计在资源利用和环境保护方面的重要性;4. 激发学生创新意识,鼓励学生探索隧道衬砌结构设计的新方法和新工艺。

本课程针对高年级土木工程专业学生,结合课程性质、学生特点和教学要求,明确以上课程目标,旨在使学生在掌握基本理论知识的基础上,提高解决实际工程问题的能力,为将来从事隧道工程设计和管理奠定坚实基础。

通过对课程目标的分解和实现,培养学生成为具有专业知识、实践技能和创新精神的土木工程人才。

二、教学内容1. 隧道衬砌结构基本概念:包括隧道衬砌结构的定义、分类、功能及其在隧道工程中的重要性;参考教材章节:第一章第一节。

2. 隧道衬砌结构设计原理:介绍隧道衬砌结构设计的基本原理、设计方法及主要设计规范;参考教材章节:第二章。

3. 隧道衬砌结构设计计算:详细讲解隧道衬砌结构设计中的荷载分析、内力计算、截面设计等;参考教材章节:第三章。

4. 隧道衬砌结构材料与施工技术:介绍隧道衬砌结构常用材料及其性能要求,探讨施工工艺及质量控制措施;参考教材章节:第四章。

5. 隧道衬砌结构设计实例分析:分析典型隧道衬砌结构设计案例,使学生掌握实际工程设计方法;参考教材章节:第五章。

《隧道衬砌设计》课件

《隧道衬砌设计》课件
施工方法
采用了新奥法施工,即以喷射混凝土作为初期支护,钢筋混凝土作为二次支护,同时设置排水系统,确保隧道运营安全。
设计要点
根据地质勘察资料,该隧道穿越了多条断层破碎带和软弱围岩地层,因此衬砌设计需考虑围岩稳定性、防水和排水等因素。
案例概述:某铁路隧道位于山区,隧道全长3公里,设计时速为180公里/小时。
03
通过喷射混凝土的方式进行衬砌施工,具有施工速度快、衬砌强度高的特点。
总结词
喷射混凝土衬砌施工是一种常见的隧道衬砌方法,通过将混凝土混合料与压缩空气混合,然后通过喷嘴喷射到隧道岩壁上,形成一层混凝土衬砌。该方法具有施工速度快、衬砌强度高的优点,适用于不同地质条件的隧道施工。
详细描述
总结词
通过模板支撑浇筑混凝土的方式进行衬砌施工,具有结构稳定性好、耐久性高的特点。
案例概述
某水工隧道位于河流峡谷地带,隧道全长1.2公里,设计流量为20立方米/秒。
设计要点
该隧道主要用于引水灌溉和水力发电,衬砌设计需考虑水压力、防渗漏和结构稳定性等因素。
衬砌类型
根据设计要求和结构形式,采用了钢筋混凝土和模注混凝土两种衬砌类型。钢筋混凝土衬砌适用于承受水压力较大的地段,模注混凝土衬砌适用于承受水压力较小的地段。
排水孔
在隧道侧壁设置排水管,将侧壁渗水引出隧道外。
排水管
定期检查
定期对防排水系统进行检查,确保系统正常运行。
隧道衬砌设计案例分析
05
案例概述
某高速公路隧道位于山区,隧道全长2.5公里,设计时速为100公里/小时。
衬砌类型
根据围岩条件和隧道断面形状,采用了钢筋混凝土和喷射混凝土两种衬砌类型。钢筋混凝土衬砌适用于围岩稳定性较好的地段,喷射混凝土衬砌适用于围岩稳定性较差的地段。

隧道工程英语专业词汇

隧道工程英语专业词汇

隧道工程英语专业词汇隧道工程tunnel engineering隧道tunnel铁路隧道railway tunnel公路隧道highway tunnel地铁隧道subway tunnel;underground railway tunnel;metro tunnel 人行隧道pedestrian tunnel水工隧洞hydraulic tunnel输水隧道raulic tunnel山岭隧道mountain tunnel水下隧道subaqueous tunnel海底隧道水下隧道submarinetunnel;underwater tunnel 土质隧道earth tunnel岩石隧道rock tunnel浅埋隧道shallow tunnel;shallow-depthtunnel;s hallow burying tunnel深埋隧道deeptunnel;deep-depthtunnel;dee p burying tunnel偏压隧道unsymmetrical loading tunnel马蹄形隧道拱形隧道horse-shoe tunnel;arch tunnel圆形隧道circular tunnel矩形隧道rectangular section tunnel 大断面隧道largecross-section tunnel长隧道long tunnel双线隧道twin-track tunnel;double track tunnel曲线隧道curved tunnel明洞open tunnel;open cut tunnel;tunnel without cover;gallery隧道勘测tunnel survey超前探测drift boring工程地质勘测工程地质勘探engineering geological prospecting隧道测量tunnel survey施工测量construction survey断面测量section survey隧道设计tunnel design隧道断面tunnel section安全系数safety coefficient隧道力学tunnel mechanics隧道结构tunnel structure隧道洞口设施facilities of tunnel portal 边墙side wall拱顶arch crown拱圈tunnel arch 仰拱inverted arch底板base plate;floor隧道埋深depth of tunnel隧道群tunnel group隧道施工tunnel construction隧道开挖tunnel excavation分部开挖partial excavation大断面开挖large cross-section excavation全断面开挖full face tunnelling开挖面excavated surface隧道施工方法tunnel construction method 钻爆法drilling and blasting method 新奥法natm;newaustriantunnelling method盾构法shield driving method;shield method顶进法pipe jacking method;jack-in method浅埋暗挖法sallow buried-tunnelling method明挖法cut and cover tunneling;open cut method地下连续墙法underground diaphragm wall method;underground wall method冻结法freezing method沉埋法immersed tube method管棚法pipe-shed method综合机械化掘进comprehensive mechanized excavation辅助坑道auxiliary adit;service gallery 平行坑道parallel adit竖井shaft斜井sloping shaft;inclined shaft 导坑heading衬砌工艺lining process喷锚锚喷anchor bolt spray;anchor bolt-spray管段tube section接缝joint地层加固reinforcing of natural ground 弃碴ballast piling施工监控construction monitor control 超挖overbreak欠挖underbreak施工进度construction progress隧道贯通tunnel holing-through工期work period隧道施工机械tunnel construction machinery隧道掘进机tunnellingmachine;tunnelbor ing machine;tbm单臂掘进机single cantilever tunnelling machine全断面掘进机full face tunnel boring machine隧道钻眼爆破机械machine for tunnel drilling and blasting operation装碴运输机械loading-conveying ballast equipment衬砌机械lining mechanism钢模板steel form模板台车formworking jumbo混凝土喷射机砼喷射机concrete sprayer盾构shield泥水盾构slurry shield气压盾构air pressure shield挤压闭胸盾构shotcrete closed shield 土压平衡盾构soil pressure balancing shield 注浆机械grouting machine凿岩机rock drilling machine;air hammer drill凿岩台车drill jumbo;rock drilling jumbo围岩surrounding rock围岩分类surrounding rock classification围岩加固surrounding rock consolidation围岩稳定surrounding rock stability围岩应力surrounding rock stress围岩压力pressure of surrounding rock 山体压力围岩压力ground pressure;surrounding rock pressure围岩变形surrounding rock deformation围岩破坏surrounding rock failure软弱围岩weak surrounding rock支护support锚喷支护anchor bolt-spray support 锚杆支护anchor bolt-support;anchor bolt support喷射混凝土支护喷射砼支护shotcrete support;sprayed concrete support配筋喷射混凝土支护配筋喷射砼支护reinforced sprayed concrete support钢架喷射混凝土支护钢架喷射砼支护rigid-frame shotcrete support掘进工作面支护excavation face support超前支护advance support管棚支护pipe-shed support;pipe roofing support胶结型锚杆adhesive anchor bolt砂浆锚杆mortar bolt树脂锚杆resin anchored bolt摩擦型锚杆friction anchor bolt楔缝式锚杆slit wedge type rock bolt涨壳式锚杆expansion type anchor bolt 机械型锚杆mechanical anchor bolt预应力锚杆prestressed anchor bolt土层锚杆soil bolt岩石锚杆rock bolt衬砌lining整体式衬砌integral tunnel lining;integral lining拼装式衬砌precast lining组合衬砌composite lining挤压混凝土衬砌挤压砼衬砌shotcrete tunnellining;extruding concrete tunnel lining混凝土衬砌砼衬砌concrete lining喷锚衬砌shotcrete and boltlining;shotcrete bolt lining 隧道通风tunnel ventilation施工通风construction ventilation运营通风operation ventilation机械通风mechanical ventilation自然通风natural ventilation隧道射流式通风隧道射流通风efflux ventilation for tunnel;tunnel efflux ventilation;tunnel injector type ventilation隧道通风帘幕curtain for tunnel ventilation;ventilation curtain 通风设备ventilation equipment隧道照明tunnel illumination;tunnel lighting照明设备lighting equipment隧道防水Tunnelwaterproofing;waterpr oofing of tunnel防水板waterproofingboard;waterproofboard;water proof sheet防水材料waterproof material隧道排水tunnel drainage排水设备drainage facilites隧道病害tunnel defect衬砌裂损lining split;lining **ing隧道漏水water leakage of tunnel;tunnel leak坍方landslide;slip地面塌陷land yielding涌水gushing water隧道养护tunnel maintenance堵漏leaking stoppage注浆grouting化学注浆chemical grouting防寒cold-proof整治regulation限界检查clearance examination;checking of clearance;clearance check measurement隧道管理系统tunnelling management system隧道环境tunnel environment隧道试验隧道实验tunnel test试验段实验段test section隧道监控量测隧道监控测量tunnel monitoring measurement收敛convergence隧道安全tunnel safety隧道防火tunnel fire proofing火灾fire hazard消防fire fighting隧道防灾设施tunnel disaster prevention equipment;tunnelanti-disaster equipment 报警装置报警器alarming device;warning device通过隧道passing tunnel避车洞refuge hole避难洞避车洞refuge recess;refuge hole 电气化铁道工程电气化铁路工程electrified railway construction电气化铁道电气化铁路electrified railway直流电气化铁道dc electrified railway交流电气化铁道交流电气化铁路a.c.electrification railway低频电气化铁道low frequency electrified railway工频电气化铁道工频电气化铁路industry frequency electrified railway电压制voltage system电流制current system。

地下建筑结构课程设计 (2)精选全文

地下建筑结构课程设计 (2)精选全文

可编辑修改精选全文完整版1 二次衬砌内力计算1.1基本资料结构断面图如图1所示。

围岩级别为V 级,容重3/18m kN =γ,围岩的弹性抗力系620.1510/K kN m =⨯,衬砌材料为C45混凝土,弹性模量为Kpa E 71035.3⨯=容重3/25m KN =γ图1.1 结构断面图2.计算作用在衬砌结构上的主动荷载 2.1隧道深浅埋的确定坍落拱高度按下式计算:[])5(1245.01-+⨯⨯=-t s qB i hⅤ级围岩,s=5;B>5,i=0.1[]m h q 299.14)586.14(1.01245.04=-⨯+⨯⨯=浅埋隧道分界深度:m h H q P 748.355.2=⨯=因为m H m H m h p q748.3534299.14=<=<=,所以是浅埋隧道2.2竖直和水平荷载垂直力:取00246.0,40,86.14,34=====g g t m B m Hφθφ744.2445.0839.0839.0)1704.0(839.0tan tan tan )1(tan tan tan 2=-⨯++=-++=θφφφφβg gg g[]283.0tan tan )tan (tan tan 1tan tan tan =+-+-=θφθφββφβλg g gm kN B H H q t /567.435)445.0283.086.14341(3418)tan 1(=⨯⨯-⨯⨯=⨯⨯-⨯=θλγ水平力:mkN H e /196.173283.034181=⨯⨯==λγ()m kN h e /094.238283.03474.12182=⨯+⨯==λγ()()m kN e e e /645.205094.238196.173212121=+⨯=+⨯=3.半拱轴线长度3.1衬砌的几何尺寸内轮廓线半径:m r m r 5.265.621==,内径21r r ,所画圆曲线端点截面与竖直轴线的夹角:0201140,109==ϕϕ拱顶截面厚度:m d 5.00=, 拱底截面厚度:m d n 6.0=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Underground Structure Course DesigningA Design of Shield Tunnel Lining College Civil EngineeringMajor Department of Geotechnical Engineering Student No.100xxxName xxxDirector xxxDate6th Sep. 2013Part One: Design Data1 Function of TunnelThe planned tunnel is to be used as a subway tunnel.2 Design Conditions(1)Dimensions of SegmentType of segment: RC , Flat typeDiameter of segmental lining: D 0=9500mmRadius of centroid of segmental lining: R c =4550mm Width of segment: b=1200mm Thickness of segment: t=400mm (2)Ground Conditions Overburden: H=12.3mGroundwater table: G.L.+0.6m =12.3+0.6=12.9m N Value: N=50Unit weight of soil: γ=18kN/m 3Submerged unit weight of soil: γ'=8kN/m 3 Angle of internal friction of soil: φ=30o Cohesion of soil: c =0 kN/m 2Coefficient of reaction: k=50MN/m 3Coefficient of lateral earth pressure: λ=0.4 Surcharge: P 0=39.7kN/m 2 Soil condition: Sandy (3)MaterialsThe grade of concrete: C30Nominal strength: f ck =20.1N/mm 2Allowable compressive strength: f c =14.3N/mm 2 Allowable tensile strength: f t =1.43N/mm 2 The type of steel bars: HRB335Allowable strength: f y = f y ’= 300N/mm 2 Bolt:Yield strength: f By =240N/mm 2 Shear strength: B τ=150N/mm 23 Design Method Requirement(1)How to check member forces: ① Elastic equation method(option)② Force method based on the textbook (must do this)③ Bedded frame model(Beam element with elastic support)(option)0P K =constant of rotation spring for positive moment at joint=18070/kN m rad ⋅ 0N K =constant of rotation spring for negative moment at joint=32100/kN m rad ⋅(2)How to calculate reinforcement for segmental lining:Limit state method①Based on the national code GB50010-2002 for reinforcement concrete design. ②Please choose the grade of concrete and the type of steel rebars.Bolt: yield strength 2240/By f MN m =shear strength 2150/B MN m τ=Part Two: Computation by Force Method1 Load Conditions(1)Judgment of Tunnel Type (by Terzaghi’s formula) c 0⑤Average Self -weight Wherec γ= Unit weight of RC segment 326/kN m =⑥Lateral Resistance Pressure Whereδ= Displacement of lining at tunnel spring η= Reduction factor of model rigidity = 0.8E = Modulus of elasticity of segment = 423.010/N mm ⨯I = Moment of inertia of area of segment =33411.20.4 6.41012m -⨯⨯=⨯ k = Coefficient of reaction = 360/MN mϕ= the angle of measured from the vertical direction around the tunnel2 Computation of Member ForcesFor loading case 4, For loading case 5, For loading case 6,So the internal forces caused by surrounding pressures can be determined by accumulating the six loading cases, that is:Where ,,pj pj pj M N Q are the bending moment, the axial force and the shear force (per unit length) under the j th loading case, respectively.Then the total internal forces (i.e. the total bending moment, M, the total axial force, N, the total shear force, Q) per unit length (1.2m) along the lining can be obtained by the following equations: WhereAnd with MATLAB software, the maximum (positive and passive) moment, axial force, and shear force, which is shown in the Table 3. (The original code of MA TLAB can be seen in the addendum.)NOTE: The data in bold face represents the member forces on joint sections, and the data in tilt face represents the dominate member forces.According to the Table 3, it is obvious that the maximum positive moment occurs at the section located at 100 degrees from the tunnel crown (Section A), while the maximum negative moment occurs at the section located at 50 degrees (Section B), and that the maximum axial force occurs at the section located at 100 degrees (Section A).Figure 4The position of Section A, B, and CThe safety of the segmental lining should be checked at Section A, Section B, and the joint parts.Part Three: Arrangement of Steel Bars of Segmental Lining1 Section AFigure 5Simplified sketch of section A(1)Calculation data(2)Judgment on the type if eccentric compressionThe steel bars can be arranged symmetrically.Thus, this section should be calculated as a large eccentric compression section.(3)Calculation of s A and sA ' (4)Check the out -plane capacitySo the out -plane capacity of this section is safe.Finally, the steel bars of all segments can be chosen primarily as: 7B 14 both in compressive region and tensile region (Actually,21077.6ssA A mm '==). 2 Check of Safety at Section BSupposing that and are unknown, then the value of can be calculated and whether it is smallerthan the result calculated at section A shall also be checked. (1)Calculation data(2)Judgment on the type if eccentric compressionThe steel bars can be arranged symmetrically.Thus, this section should be calculated as a large eccentric compression section.(3)Calculation of s A and sA ' Therefore, sectionB is safe.3 Arrangement of Steel BarsAs shown in design drawing (see Attachment 2).Part Four: Determination of Bolts of Joint Section1 Bolt TypeBolt (M30) and Bolt (M45) is used between the segment pieces and between the segmentalrings, respectively.2 Arrangement of Bolts in Joint SectionsFigure 6 Section of jointFigure 6 shows the primary arrangement of joint section whose safety could be checked later. Four Bolts (M30) are used in one joint between segment pieces, and then2212301413.74s s A A mm π'==⨯⨯⨯=.3 Check the Safety of BoltsThe safety of joint sections can be checked at section located at 100 degrees (Section A) with maximum moment and at 60 degrees (Section C) with maximum shear force. (1) Section A ①Calculation data②Judgment on the type of eccentric compressionThe bolts are be arranged symmetrically.Therefore, this section should be calculated as a large eccentric compression section. ③Safety checkThen suppose that 2160sx a mm '== Therefore, the bolts at section A are safe.(2)Section CAt this section, shear force occurs maximum, equaling to 355.76kN.Therefore, the bolts at section C are safe.ConclusionAccording above analysis, computation and checking, the designed segmental lining is safe against the design loads.Attachment 1:The initial code of MATLAB software>> k = 0;R = 4.55;x1 = 38.1;x2 = 1780.7;P = [420.6228 467.6713 272.9184 172.9728 14.976 140.1768];for theta = 0:pi/18:pi;k = k + 1;Mp1 = -0.5*P(1)*R^2*sin(theta)^2;Np1 = P(1)*R*sin(theta)^2;Qp1 = P(1)*R*sin(theta)*cos(theta);if theta < pi/2Mp2 = 0;Np2 = 0;Qp2 = 0;elseMp2 = -0.5*(P(2)-P(1))*R^2*(1-sin(theta))^2;Np2 = -(P(2)-P(1))*R*(1-sin(theta))*sin(theta);Qp2 = -(P(2)-P(1))*R*(1-sin(theta))*cos(theta);endMp3 = -0.5*P(3)*R^2*(1-cos(theta))^2;Np3 = -P(3)*R*(1-cos(theta))*cos(theta);Qp3 = P(3)*R*(1-cos(theta))*sin(theta);Mp4 = -1/12*P(4)*R^2*(1-cos(theta))^3;Np4 = -0.25*P(4)*R*(1-cos(theta))^2*cos(theta);Qp4 = 0.25*P(4)*R*(1-cos(theta))^2*sin(theta);Mp5 = -P(5)*R^2*(cos(theta) + theta*sin(theta)-1);Np5 = P(5)*R*theta*sin(theta);Qp5 = P(5)*R*theta*cos(theta);if theta < pi/4Mp6 = 0;Np6 = 0;Qp6 = 0;else if theta >= pi/4 && theta <= 3*pi/4Mp6 = -1/3*P(6)*R^2*(cos(2*theta) - 2*cos(theta + pi/4));Np6 = 1/3*P(6)*R*(cos(2*theta) - 2*cos(theta + pi/4));Qp6 = -2/3*P(6)*R*(sin(2*theta) - 2*sin(theta + pi/4));elseMp6 = 2*sqrt(2)/3*P(6)*R^2*cos(theta);Np6 = -2*sqrt(2)/3*P(6)*R*cos(theta);Qp6 = 2*sqrt(2)/3*P(6)*R*sin(theta);endendMp = Mp1 + Mp2 + Mp3 + Mp4 + Mp5 + Mp6;Np = Np1 + Np2 + Np3 + Np4 + Np5 + Np6;Qp = Qp1 + Qp2 + Qp3 + Qp4 + Qp5 + Qp6;M1 = 1;N1 = 0;Q1 = 0;M2 = R*(1-cos(theta));N2 = cos(theta);Q2 = -sin(theta);M(k) = M1*x1 + M2*x2 + Mp;N(k) = N1*x1 + N2*x2 + Np;Q(k) = Q1*x1 + Q2*x2 + Qp;end>> MM =Columns 1 through 1038.1000 24.5627 -11.2537 -55.9618 -90.3510 -93.9478 -63.0671 -12.1028 42.3759 85.1985Columns 11 through 19105.8135 100.0987 71.2815 30.6020 -4.3031 -25.9724 -38.8660 -45.7972 -48.0002>> NN =1.0e+003 *Columns 1 through 101.7807 1.7948 1.8343 1.8913 1.95462.0121 2.0562 2.08552.1016 2.1089Columns 11 through 192.1095 2.1054 2.1009 2.0978 2.0952 2.0928 2.0916 2.0912 2.0912>> QQ =Columns 1 through 100 33.0655 54.2683 54.2120 27.8748 403.9668 355.7588 315.5075 284.2149 259.1631Columns 11 through 19234.3567 202.9612 156.9845 88.6816 34.6814 20.9562 12.0903 5.60980.0000。

相关文档
最新文档