因式分解中考题汇总

合集下载

初三因式分解题20道

初三因式分解题20道

20 道初三因式分解题题目一:x² - 9解析:这是平方差公式的形式,x² - 9 = (x + 3)(x - 3)。

题目二:4x² - 25解析:同样是平方差公式,4x² - 25 = (2x + 5)(2x - 5)。

题目三:x² - 4x + 4解析:完全平方公式,x² - 4x + 4 = (x - 2)²。

题目四:9x² + 6x + 1解析:完全平方公式,9x² + 6x + 1 = (3x + 1)²。

题目五:x² + 5x + 6解析:采用十字相乘法,x² + 5x + 6 = (x + 2)(x + 3)。

题目六:x² - 7x + 12解析:十字相乘法,x² - 7x + 12 = (x - 3)(x - 4)。

题目七:2x² - 5x - 3解析:十字相乘法,2x² - 5x - 3 = (2x + 1)(x - 3)。

题目八:3x² + 4x - 4解析:十字相乘法,3x² + 4x - 4 = (3x - 2)(x + 2)。

题目九:x³ - 27解析:立方差公式,x³ - 27 = (x - 3)(x² + 3x + 9)。

题目十:8x³ + 27解析:立方和公式,8x³ + 27 = (2x + 3)(4x² - 6x + 9)。

题目十一:x² - 6x + 9 - y²解析:先将前三项用完全平方公式变形为(x - 3)²,再用平方差公式,(x - 3)² - y² = (x - 3 + y)(x - 3 - y)。

题目十二:4x² - 12xy + 9y²解析:完全平方公式,4x² - 12xy + 9y² = (2x - 3y)²。

中考数学总复习 因式分解 专题训练(含答案)

中考数学总复习 因式分解 专题训练(含答案)

2020年中考数学总复习因式分解专题训练一、单选题1.下列变形是因式分解的是( ) A .22(2)x x x x +=+B .222(1)1x x x +=+-C .22221x x x x ⎛⎫+=+⎪⎝⎭D .22(1)x x x x x +=++2.已知a 、b 、c 是ABC V 的三条边,且满足22a bc b ac +=+,则ABC V 是( ) A .锐角三角形 B .钝角三角形 C .等腰三角形D .等边三角形3.把(a 2+1)2-4a 2分解因式得( ) A .(a 2+1-4a )2 B .(a 2+1+2a )(a 2+1-2a ) C .(a +1)2(a -1)2D .(a 2-1)2 4.把多项式a 2﹣4a 分解因式,结果正确的是( ) A .a (a ﹣4)B .(a+2)(a ﹣2)C .(a ﹣2)2D .a (a+2(a ﹣2)5.下列等式中,从左到右的变形是因式分解的是( ). A .2323623x y x y =⋅B .ax - ay -1 = a (x - y ) -1C .22111x x x x x x ⎛⎫⎛⎫-=+- ⎪⎪⎝⎭⎝⎭D .29x - = (x + 3)(x - 3)6.下列各式中,能用完全平方公式分解因式的多项式的个数为( ). ①x 2-10x + 25;①4x 2+ 4x -1;①9x 2y 2- 6xy +1;①214x x -+;①42144x x -+. A .1个B .2个C .3个D .4个7.下列因式分解:①()()()()22224a b a b a b a b a +++-+-=;①()()()22412a b a b a b +-+-=+-;①()4222211x x x -+=-;①()422244 41x y x y x y x -=-.正确的式子有( )A .1个B .2个C .3个D .4个8.下列各选项中因式分解正确的是( ) A .()2211x x -=-B .()32222a a a aa -+=-C .()22422y y y y -+=-+D .()2221m n mn n n m -+=-9.将下列多项式分解因式,结果中不含因式(x +1)的是( ) A .x 2-1 B .x (x -3)-(3-x ) C .x 2-2x +1D .x 2+2x +110.下列从左到右的变形属于因式分解的是( ) A .(x +1)(x -1)=x 2-1 B .m 2-2m -3=m(m -2)-3 C .2x 2+1=x(2x +1x) D .x 2-5x +6=(x -2)(x -3)11.若多项式3212x mx nx ++-含有因式()3x -和()2x +,则n m 的值为 ( )A .1B .-1C .-8D .18-12.下列等式从左到右的变形属于因式分解的是( ) A .()()2224x x x +-=-B .623xy x y =gC .()()23441x x x x --=-+D .222111144x x x x x ⎛⎫-+=-+ ⎪⎝⎭二、填空题13.分解因式:222x -= _________.14.分解因式:32a ab -=_________.15.已知3221-可以被10到20之间某两个整数整除,则这两个数是___________. 16.若x +y =1,xy =-7,则x 2y +xy 2=_____________. 17.分解因式:(2a+b )2﹣(a+2b )2= .18.已知a 、b 、c 是①ABC 的三条边,且2281252a b a b +=+-,其中c 是①ABC 中最短的边长,则c 的取值范围是________.19.已知a ,b ,c 为三角形的三边,且满足a 2c 2-b 2c 2=a 4-b 4,那么它的形状是_______. 20.分解因式:a 2b+4ab+4b=______.三、解答题21.(知识情境)通常情况下,用两种不同的方法计算同一个图形的面积,可以得到一个恒等式.(1)如图1,在边长为a 的正方形中挖掉一个边长为b 的小正方形()a b >.把余下的部分剪拼成一个长方形(如图2).通过计算图形(阴影部分)的面积,验证了一个等式,则这个等式是______________;(拓展探究)类似地,用两种不同的方法计算同一个几何体的体积,也可以得到一个恒等式.如图3是边长为+a b 的正方体,被如图所示的分割线分成8块.图3(2)用不同的方法计算这个正方体的体积,就可以得到一个恒等式,这个恒等式可以为:_________________________________________________________________; (3)已知4a b +=,2ab =,利用上面的恒等式求33+a b 的值. 22.仔细阅读下面例题,解答问题:例题:已知二次三项式24x x m -+有一个因式是()3x +,求另一个因数及m 的值. 解:设另一个因式为()x n +,由题意,得()()243x x m x x n -+=++,化简、整理,得()2433x x m x n x n -+=+++,于是有343n m n +=-⎧⎨=⎩解得217m n =-⎧⎨=-⎩,∴另一个因式为()7x -,m 的值为21-.问题:仿照上述方法解答下面的问题:已知二次三项式223x x k +-有一个因式是()4x +,求另一个因式及k 的值.23.观察:22213-=;2222432110-+-=;22222265432121-+-+-=.探究:(1)2222222287654321-+-+-+-= .(直接写出答案)(2)222222(2)(21)(22)(23)21n n n n --+---+-= .(直接写出答案)应用:(3)如图,20个圆由小到大套在一起,从外向里相间画阴影,最外面一层画阴影,最外面的圆的半径为20cm ,向里依次为19cm 、18cm 、……1cm ,那么在这个图形中,所有阴影部分的面积和是多少?(结果保留π)24.材料1:把一个多项式化成几个整式的积的形式,这种变形叫做把这个多项式因式分解.例如:()am bm cm m a b c ++=++,2221(1)x x x ++=+都是因式分解.因式分解也可称为分解因式.材料2:只含有一个未知数,且未知数的最高次数是2的整式方程称作一元二次方程.一元二次方程的般形式是:20ax bx c ++=(其中a ,b ,c 为常数且0a ≠).“转化”是一种重要的数学思想方法,我们可以利用因式分解把部分一元二次方程转化为一元一次方程求解.例如解方程;240x -=24(2)(2)x x x -=+-Q()()220x x ∴+-=20x ∴+=或20x -=∴原方程的解是12x =-,22x =①原方程的解是12x =-,22x =又如解方程:2210x x -+=2221(1)x x x -+=-Q()210x ∴-=10x ∴-=∴原方程的解是121x x ==请阅读以上材料回答以下问题:(1)若22(2)(2)x x m x n x -+=+-,则m =_______;n =_______;(2)请将下列多项式因式分解:22a a -=_______,2244x xy y -+=________;(3)在平面直角坐标系中,已知点()2,1P m m -,)Qn ,其中m 是一元二次方程()22(3)134m m m ---=的解,n 为任意实数,求PQ 长度的最小值.参考答案1.A2.C3.C4.A5.D6.C7.B8.D9.C10.D11.A12.C 13.2(x+1)(x -1) 14.()()a a b a b +- 15.15和17; 16.﹣717.3(a+b )(a ﹣b ). 18.24c <<19.直角三角形或等腰三角形或等腰直角三角形. 20.b (a+2)221.(1)a 2-b 2=(a+b)(a -b)(2)(a +b )3=a 3+3a 2b +3ab 2+b 3(3)40 22.另一个因式为()25x -,k 的值为20. 23.(1)36;(2)83n -;(3)210π24.(1)6m =-,3n =;(2)(2)a a -,2(2)x y -;(3)3.。

中考分解因式练习题及答案

中考分解因式练习题及答案

中考分解因式练习题及答案一. 选择题1. 下列哪个表达式不能被分解为因式?A. x^2-4B. x^2+6x+9C. x^2-9D. x^2+x+12. 以下哪个分解因式是正确的?A. 4x^2-9=(2x+3)(2x-3)B. x^3-1=(x-1)(x^2+x+1)C. x^4-16=(x^2-4)(x^2+4)D. 2x^2+6x+4=2(x^2+3x+2)3. 如果a和b是方程x^2+px+q=0的根,那么以下哪个表达式是正确的?A. pq=a+bB. a+b=-pC. ab=qD. ab=p二. 填空题1. 将下列表达式分解因式:x^3-1=______。

2. 如果一个二次方程的根是2和-3,那么这个方程可以表示为x^2+______+______=0。

3. 将下列表达式分解因式:a^3+b^3=(a+b)(_____+_____)。

三. 计算题1. 计算并简化下列表达式:(2x+3)^2-(2x-3)^2。

2. 给定方程x^2-5x+6=0,找出x的值。

3. 证明:对于任意实数a和b,(a+b)^3=a^3+3a^2b+3ab^2+b^3。

四. 应用题1. 一个长方形的长是2x+3,宽是x-1,求这个长方形的面积的表达式,并将其分解因式。

2. 一个数的平方比它的两倍多5,设这个数为x,求x的值。

3. 一个长方体的长宽高分别是a+2,a+1,a,求这个长方体的体积的表达式,并将其分解因式。

五. 综合题1. 已知一个多项式f(x)=x^3-6x^2+11x-6,求f(x+1)的表达式,并将其分解因式。

2. 一个二次方程的根的和是5,根的积是6,求这个二次方程。

3. 一个多项式g(x)=x^4-4x^2+4,求g(x)的根,并证明g(x)可以分解为两个二次多项式的乘积。

答案:一. 选择题1. D2. B3. B二. 填空题1. (x-1)(x^2+x+1)2. 3, -23. a^2-b^2, b^2-a^2三. 计算题1. 原式=(2x+3+2x-3)(2x+3-2x+3)=12x2. x=2或x=33. 证明略四. 应用题1. 面积表达式为(2x+3)(x-1)=2x^2+x-3,分解因式为(2x-1)(x+3)2. 设这个数为x,x^2-2x-5=0,解得x=1+√6或x=1-√63. 体积表达式为(a+2)(a+1)a=a(a^2+3a+2),分解因式为a(a+1)(a+2)五. 综合题1. f(x+1)=(x+1)^3-6(x+1)^2+11(x+1)-6,分解因式为(x-1)(x^2+x-6)2. 设二次方程为x^2+px+q=0,由题意得-p=5,q=6,所以二次方程为x^2-5x+6=03. g(x)的根为±√2,±√2i,分解因式为(x^2-2)(x^2+2)。

因式分解中考题型汇总

因式分解中考题型汇总

因式分解中考题型汇总题型一:直接提公因式1. 因式分解:xy -y =2.分解因式:2x x +=.3. 分解因式:24_________.x x -=4. 分解因式:2a 2-4a= .5.(因式分解:2x 3-x 2=______________.6.分解因式:ax+ay=.7.分解因式:24_________.x x -=8.分解因式:23x x +=.题型二:直接用公式平方差公式:))((22b a b a b a -+=-完全平方公式:222)(b ab a b a ++=+222)(b ab a b a +-=-1. 分解因式:225x -=.2. 分解因式:24x -=______.3. 因式分解:21a -=,4. 分解因式:x 2-9=______.5.因式分解:229x y -=_______________.6.分解因式:=-142x ____________________.7.分解因式:41242++x x =. 8. (2011山东威海)分解因式:2168()()x y x y --+-=.题型三:先提公因式,再套平方差或者完全平方公式。

A :先提后套平方差1.分解因式:822-x = .2因式分解:x 3-x =.3.分解因式:24_________.x x -=4.分解因式:2218x -= ______________5.分解因式:9a -ab 2=.6. 因式分解:a 3-a =____7.因式分解:x 3-9x =8、分解因式8a 2-2=_________________.9.因式分解:x 3y 2-x 5=.B :先提后套完全平方1.分解因式:22x y xy y -+=________________.2.因式分解3222x x y xy -+=3. 因式分解:a 2b+2ab+b =4因式分解3222x x y xy -+=.5. 因式分解:x x x 4423+-=6. 因式分解:2a 2-4a +2= ______ .分解因式:32214a ab ab -+-=。

中考试题分考点解析汇编:因式分解

中考试题分考点解析汇编:因式分解

因式分解一、选择题1.(2011浙江金华、丽水3分)下列各式能用完全平方公式进行分解因式的是A 、x2+1B 、x2+2x ﹣1C 、x2+x+1D 、x2+4x+4【答案】D 。

【考点】运用公式法因式分解。

【分析】完全平方公式是:(a ±b )2=a 2±2a b +b 2,由此可见选项A 、B 、C 都不能用完全平方公式进行分解因式,只有D 选项可以。

故选D 。

2.(2011辽宁丹东3分)将多项式32x xy -分解因式.结果正确的是 A .22()x x y - B .2()x x y - C .2()x x y + D .()()x x y x y +-【答案】D 。

【考点】提公因式法与公式法因式分解。

【分析】先提取公因式x ,再根据平方差公式进行二次分解:()()()3222x xy x x y x x y x y -=-=+-。

故选D 。

3.(2011广西南宁3分)把多项式x3-4x 分解因式所得结果是A .x(x2-4)B .x(x +4)(x -4)C .x(x +2)(x -2)D .(x +2)(x -2) 【答案】C 。

【考点】提取公因式法和应用公式法因式分解。

【分析】根据提取公因式法和应用公式法因式分解,将多项式分解到不能再分解:()()()324422x x x x x x x -=-=+-,故选C 。

4.(2011广西梧州3分)因式分解x2y -4y 的正确结果是 (A )y (x+2)(x -2) (B )y (x+4)(x -4) (C )y (x2-4) (D )y (x -2)2 【答案】A 。

【考点】提取公因式和应用公式法因式分解。

【分析】根据提取公因式和应用平方差公式因式分解:x2y -4y =y (x2-4)=y (x+2)(x -2)。

故选A 。

6.(江苏无锡3分) 分解因式2x2—4x+2的最终结果是A .2x(x -2)B .2(x2-2x+1)C .2(x -1)2D .(2x -2)2 【答案】C 。

初中因式分解经典题型(含详细答案)

初中因式分解经典题型(含详细答案)

初中因式分解经典题型(含详细答案) 初中因式分解经典题型精选第一组:基础题1.a²b+2ab+b答案:b(a+1)²2.2a²-4a+2答案:2(a-1)²3.16-8(m-n)+(m-n)²答案:(4-m+n)²4.a²(p-q)-p+q答案:(p-q)(a+1)(a-1)5.a(ab+bc+ac)-abc答案:a²(b+c)第二组:提升题6.(x-y-1)²-(y-x-1)²答案:-4(x-y)7.ab-ab⁄4答案:ab(a+b)(a-b)8.b-14b²+1答案:(b²+4b+1)(b²-4b+1)9.x+x²+2ax+1-a²答案:(x+1+a)(x+1-a)10.a+a+1答案:2(a+1)11、化简表达式x-2y-2xy+xy x + xy - 2y - 2xyx(1+y) - 2y(1+x)x+y)(x-2y)12、展开表达式(ac-bd)²+(bc+ad)²a²c² - 2abcd + b²d² + b²c² + 2abcd + a²d²a²c² + b²c² + a²d² + b²d²a²+b²)(c²+d²)13、化简表达式x²(y-z)+y²(z-x)+z²(x-y)x²y - x²z + y²z - y²x + z²x - z²yx²y - y²x + z²x + y²z - x²z - z²yx-y)(x²+y²-z²)14、化简表达式x²-4ax+8ab-4b²x-2a)² - (2a-4b)²x-2a+2a-4b)(x-2a-2a+4b)x-4b)(x-2a)15、化简表达式xy²+4xz-xz²-4xx(y²-4) - z(x²-4)x-2)(x+z)(y+2z)16、将a(a²-b²)和b(b²-a²)的公因式提取出来,得到(a-b)(a+b)a和(b-a)(b+a)b,再利用立方差公式,化简为(a-b)²(a+b)(a²b²+a+b)。

初中数学因式分解100题及答案

初中数学因式分解100题及答案

初中数学因式分解100题及答案一、提取公因式(1)(53)(35)(53)(54)-----x y x y(2)(74)(25)(74)(52)----+x y x y(3)(54)(73)(54)(72)a b a b--+--(4)(45)(23)(71)(45)---+-m n n m(5)(25)(41)(25)(92)(25)(63)-++--+--a b a b a b(6)(1)(51)(1)(83)+-++-a b a b(7)(35)(85)(31)(35)-+---a b b a(8)4424322-+283521xy z y z x y z(9)22242x y z x yz x y+-15615(10)(21)(34)(23)(21)--+---m n n m(11)4232+x z x y z126(12)3222-x y x y39(13)343-ab c c2114(14)2333+xyz x y z820(15)(45)(2)(45)(33)a b a b+-+++-(16)(5)(25)(5)(53)(5)(42)--+--+-+m n m n m n (17)(72)(25)(72)(31)--+-+m x m x(18)33231435a c a b c-(19)3423234664xy z x y z x y z --(20)(2)(34)(2)(25)a b a b -----二、公式法(21)224253681x y x -+-(22)2262550x xy y ++(23)2324625x -(24)22729324m n -(25)2281324m n -(26)22364816a b a -+-(27)22900225a b -(28)22289340100a ab b -+(29)2361140900x x -+(30)22495616m n n -+-三、分组分解法(31)45408172mx my nx ny--+(32)455273xy x y --+(33)224835182186a c ab bc ca+-+-(35)60125010+--mn m n(36)12402480----xy x y(37)22++--54224545x y xy yz zx (38)28327080+++mn m n(39)22++++x z xy yz zx635102529 (40)54451815+--mx my nx ny (41)40802856+--ax ay bx by (42)245637--+xy x y(44)351573+--ax ay bx by (45)36541624+--ab a b (46)981981mx my nx ny+--(47)183060100+++ab a b (48)48641216-+-mx my nx ny (49)22-+--a c ab bc ca93326 (50)45253620--+ax ay bx by四、拆添项(51)22-+++936361235x y x y(52)223610489a b a b ---+(53)2299364828x y x y ----(54)2249161127217x y x y --+-(55)229366368x y x y ----(56)4224256936a a b b -+(57)2264254830m n m n-++(58)2281181880m n m n ----(59)22164641255m n m n -+++(60)2249649814432x y x y ----五、十字相乘法(61)22----+a ab b a b5412333018 (62)22+-+--x xy y x y283152815 (63)2++--a ab a b32828749(64)22x xy y x y-+-++327635564412 (65)22--+-+x xy y x y212025352514 (66)222x y z xy yz xz++-+-491512563656 (67)222x y z xy yz xz-+-+-28182031851 (68)222-++--48182030964a b c ab bc ac(69)22691523167x xy y x y +-+-+(70)2227216542321x xy y x y -----(71)22429149171415x xy y x y -++--(72)2229108471614x y z xy yz xz+----(73)22849293535a ab a b ++--(74)22629282315x xy y x y -++--(75)2293299x xy y y --+-(76)222141211165x xy y x y -+-++(77)2254697302224x xy y x y +++--(78)2215241231210a ab b a b --+-+(79)227222242712x xy y x y+-+-(80)2274342512814x xy y x y +-+-+六、双十字相乘法(81)22185914592814x xy y x y +-+--(82)2226341219260x y z xy yz xz-++++(83)2261121483142x xy y x y +-+-+(84)2227216282513x y z xy yz xz++--+(85)22263312342060x y z xy yz xz+++--(86)2146592135x xy x y +--+(87)22499849707024x xy y x y -+-++(88)22151910252110x xy y x y +-+++(89)242723x xy x y ++++(90)2728455x xy x y-+-七、因式定理(91)32672912x x x ---(92)326132015x x x --+(93)32896x x x ++-(94)321529173x x x +++(95)322536x x x +--(96)32384x x x -++(97)3220191312a a a --+(98)32463x x x +--(99)3231024x x x --+(100)32515136x x x +++初中数学因式分解100题答案一、提取公因式(1)(53)(21)x y --+(2)(74)(37)x y --+(3)(54)(145)a b --(4)(45)(54)m n --+(5)(25)(194)a b --(6)(1)(134)a b +-(7)(35)(56)a b -+(8)2222237(453)y z xy z z x -+(9)223(525)x y yz z x y +-(10)(21)(57)m n ---(11)326(2)x z xz y +(12)223(3)x y x -(13)337(32)c ab c -(14)2224(25)xyz x y z +(15)(45)(21)a b +-(16)(5)(116)m n --(17)(72)(54)m x --(18)2237(25)a c ac b -(19)3332(332)xy z z x xz --(20)(2)(1)a b -+二、公式法(21)(259)(259)x y x y ++-+(22)2(25)x y +(23)(1825)(1825)x x +-(24)(2718)(2718)m n m n +-(25)(918)(918)m n m n +-(26)(64)(64)a b a b ++-+(27)(3015)(3015)a b a b +-(28)2(1710)a b -(29)2(1930)x -(30)(74)(74)m n m n +--+三、分组分解法(31)(59)(98)m n x y --(32)(53)(91)x y --(33)(67)(835)a c a b c ---(34)(41)(310)m n --(35)2(65)(51)m n -+(36)4(2)(310)x y -++(37)(625)(9)x y z x y +-+(38)2(25)(78)m n ++(39)(357)(25)x y z x z+++(40)3(3)(65)m n x y-+(41)4(107)(2)a b x y-+(42)(81)(37)x y--(43)2(5)(310)m n+-(44)(5)(73)a b x y-+(45)2(94)(23)a b-+(46)9()(9)m n x y-+(47)2(310)(35)a b++(48)4(4)(34)m n x y+-(49)(3)(9)a c ab c-++(50)(54)(95)a b x y--四、拆添项(51)(365)(367)x y x y++-+(52)(61)(69)a b a b+---(53)(332)(3314)x y x y++--(54)(7417)(741)x y x y+--+ (55)(362)(364)x y x y++--(56)2222(536)(536)a ab b a ab b+---(57)(85)(856)m n m n+-+(58)(98)(910)m n m n++--(59)(425)(4211)m n m n++-+ (60)(782)(7816)x y x y++--五、十字相乘法(61)(563)(26)a b a b+---(62)(453)(75)x y x y++--(63)(47)(87)a b a++-(64)(852)(476)x y x y----(65)(757)(352)x y x y++-+ (66)(752)(736)x y z x y z----(67)(435)(764)x y z x y z+---(68)(665)(834)a b c a b c+---(69)(331)(257)x y x y-+++ (70)(337)(923)x y x y--++ (71)(675)(773)x y x y-+--(72)(52)(924)x y z x y z---+(73)(75)(477)a a b-++ (74)(345)(273)x y x y-+--(75)(33)(323)x y x y+--+ (76)(65)(221)x y x y----(77)(676)(94)x y x y+++-(78)(365)(522)a b a b-+++(79)(863)(94)x y x y++-(80)(77)(762)x y x y++-+六、双十字相乘法(81)(277)(922)x y x y++--(82)(72)(946)x y z x y z-+++ (83)(676)(37)x y x y-+++ (84)(776)(3)x y z x y z-+-+ (85)(732)(96)x y z x y z+-+-(86)(27)(735)x x y-+-(87)(774)(776)x y x y----(88)(352)(525)x y x y++-+ (89)(1)(423)x x y+++(90)(9)(85)x y x-+七、因式定理(91)(3)(21)(34)x x x-++ (92)2(3)(655)x x x-+-(93)2(2)(63)x x x++-(94)(1)(53)(31)x x x+++ (95)2(1)(236)x x x++-(96)2(1)(354)x x x---(97)(1)(43)(54)a a a--+ (98)2(1)(423)x x x++-(99)(3)(4)(2)x x x+--(100)2(2)(553)x x x+++。

中考数学总复习《因式分解》练习题附带答案

中考数学总复习《因式分解》练习题附带答案

中考数学总复习《因式分解》练习题附带答案一、单选题1.下列因式分解正确的是()A.x2−4x+4=(x−4)2B.4x2+2x+1=(2x+1)2C.9-6(m-n)+(n-m) 2 =(3-m+n) 2D.x4−y4=(x2+y2)(x2−y2)2.把(a−b)+m(b−a)提取公因式(a−b)后,则另一个因式是()A.1−m B.1+m C.m D.−m 3.已知a﹣b=3,b+c=﹣5,则代数式ac﹣bc+a2﹣ab的值为()A.-15B.-2C.-6D.6 4.下列等式从左到右的变形是因式分解的是()A.6a3b=3a2•2ab B.(x+2)(x﹣2)=x2﹣4C.2x2+4x﹣3=2x(x+2)﹣3D.ax﹣ay=a(x﹣y)5.下列分解因式正确的是()A.x2+y2=(x+y)(x﹣y)B.m2﹣2m+1=(m-1)2C.(a+4)(a﹣4)=a2﹣16D.x3﹣x=x(x2﹣1)6.分解因式x2y−y3结果正确的是().A.y(x+y)2B.y(x−y)2C.y(x2−y2)D.y(x+y)(x﹣y)7.下列由左到右的变形,属于因式分解的是()A.(x+2)(x−2)=x2−4B.x2+4x−2=x(x+4)−2 C.x2−4=(x+2)(x−2)D.x2−4+3x=(x+2)(x−2)+ 3x8.有下列各式:①x2−6x+9;②25a2+10a−1;③x2−4x+4;④a2+a+ 1.其中能用完全平方公式因式分解的个数为()4A.1B.2C.3D.4 9.多项式3x3﹣12x2的公因式是()A.x B.x2C.3x D.3x2 10.下列各式由左边到右边的变形中,是因式分解的为()A.a(x+y)=ax+ayB.10x2﹣5x=5x(2x﹣1)C.x2﹣4x+4=(x﹣4)2D.x2﹣16+3x=(x+4)(x﹣4)+3x11.﹣m(m+x)(x﹣n)+mn(m﹣x)(n﹣x)的公因式是()A.﹣m B.m(n﹣x)C.m(m﹣x)D.(m+x)(x﹣n)12.计算:1252﹣50×125+252=()A.100 B.150C.10000D.22500二、填空题13.因式分解:x2+2xy+y2−1=.14.分解因式:a3−81ab2=.15.在实数范围内分解因式:x2y﹣3y=16.多项式2a2b3+6ab2的公因式是.17.分解因式:12x2-x+ 12=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

因式分解中考题
一、选择题:
1.(2016·山东滨州市·3分)把多项式x2+ax+b 分解因式,得(x+1)(x ﹣3)则a ,b 的值分别是( )
A .a=2,b=3
B .a=﹣2,b=﹣3
C .a=﹣2,b=3
D .a=2,b=﹣3
2.(2016·山东济宁市·3分)已知x ﹣2y=3,那么代数式3﹣2x+4y 的值是( )
A .﹣3
B .0
C .6
D .9
3. (2016·山东潍坊市·3分)将下列多项式因式分解,结果中不含有因式a+1的是( )
A .a²﹣1
B .a²+a
C .a²+a ﹣2
D .(a+2)²﹣2(a+2)+1
4.(2016·山东威海市·3分)若x 2﹣3y ﹣5=0,则6y ﹣2x 2﹣6的值为( )
A .4
B .﹣4
C .16
D .﹣16
4. (2015•临沂)多项式mx²﹣m 与多项式x²﹣2x+1的公因式是( )
A .x ﹣1
B .x+1
C .x²﹣1
D .(x ﹣1)²
5. (2015•枣庄)如图,边长为a ,b 的矩形的周长为14,面积为10,则22ab b a +的值为( )
A .140
B .70
C .35
D .24
6.(2015•湖北)已知a ,b ,c 分别是△ABC 的三边长,且满足22224442222c b c a c b a +=++ ,则△ABC 是( )A .等腰三角形 B .等腰直角三角形
C .直角三角形
D .等腰三角形或直角三角形
二、填空题:
1.(2016·山东省东营市·3分)分解因式:a³-16a =_____________.
2.(5分)(2016•淄博)若x=3﹣,则代数式x 2﹣6x+9的值为 .
3.(3分)(2016•临沂)分解因式:x 3—2x 2+x=
4.(3分)(2016•济南)分解因式:x 2+2x+1=
5.(3分)(2016•威海)分解因式:(2a+b )2﹣(a+2b )2=
2.(2016•百色·3分)观察下列各式的规律
(a ﹣b )(a+b )=a²﹣b²
(a ﹣b )(a²+ab+b²)=a³﹣b³
(a ﹣b )(a³+a²b+ab²+b³)=44b a - …
可得到(a ﹣b )(2016201520152016...b ab b a a ++++)=
3.(2016河北3分)若mn=m+3,则2mn+3m-5nm+10=
4.(2016·四川宜宾)分解因式:2
3444ab ab ab +-=
5.(2016·四川南充)如果x²+mx+1=(x+n )²,且m >0,则n 的值是
6.(2016·湖北荆门·3分)分解因式:(m+1)(m ﹣9)+8m=
7.(2016·湖北荆州·3分)将二次三项式x²+4x+5化成(x+p )²+q 的形式应为
8.(2016·内蒙古包头·3分)若2x ﹣3y ﹣1=0,则5﹣4x+6y 的值为
9.(2015•东营)分解因式:4+12(x ﹣y )+9(x ﹣y )²=
10.(2015•孝感)分解因式:(a ﹣b )²﹣4b²=
11.(2015•南京)分解因式(a﹣b)(a﹣4b)+ab的结果是
12.(2014山东潍坊)分解因式:2x(x-3)一8=
13. (2014山东淄博)分解因式:8(a²+1)﹣16a=
三、解答题
14.(2016·山东省菏泽市)已知4x=3y,求代数式(x﹣2y)2﹣(x﹣y)(x+y)﹣2y2的值.。

相关文档
最新文档