图的邻接矩阵结构上实现图的广度优先遍历
解释结构模型邻接矩阵

解释结构模型邻接矩阵结构模型(Structural Model)是指在软件工程中,用于描述系统的静态结构的一种模型。
它通常用于表示系统的组件、类、对象之间的静态关系以及它们的属性和行为。
结构模型可以帮助开发人员理解系统的组成部分以及它们之间的相互关系,从而更好地设计、开发和维护软件系统。
在结构模型中,最常用的表示方法是邻接矩阵(Adjacency Matrix)。
邻接矩阵是一种用来表示图形结构的矩阵。
图形结构是由节点和连接节点的边组成的。
邻接矩阵的行和列分别对应图的节点,矩阵中的元素表示节点之间是否存在边。
如果两个节点之间存在边,则对应矩阵元素的值为1;如果两个节点之间不存在边,则对应矩阵元素的值为0。
邻接矩阵可以提供关于图形结构的丰富信息。
通过分析矩阵的行和列,可以确定图中节点的数量、节点之间的连接关系、节点的度等。
邻接矩阵还可以用于进行图的遍历和算法,如深度优先(DFS)和广度优先(BFS)。
此外,邻接矩阵还可以用于解决一些图形相关的优化问题,如最短路径问题和最小生成树问题。
邻接矩阵在实际应用中有广泛的用途。
例如,在社交网络分析中,可以使用邻接矩阵来表示用户之间的关系,并通过矩阵的运算来发现社交网络中的社群结构。
在路由器和互联网中,邻接矩阵可以用来描述网络节点之间的物理连接,从而实现路由表的生成和更新。
邻接矩阵还可以用于解决诸如稀疏矩阵压缩和图形聚类等问题。
然而,邻接矩阵也存在着一些限制和不足之处。
首先,矩阵的大小由节点的数量决定,对于大型图形结构,矩阵会占用大量的内存空间。
其次,对于稀疏图,即节点之间的连接较少的情况,邻接矩阵会浪费大量的空间来表示不存在的边,从而造成存储的浪费。
此外,邻接矩阵在表示稀疏图时的运算效率较低,不适用于一些复杂的图形分析算法。
为了克服邻接矩阵的不足,还有其他的表示图形结构的方法,如邻接表(Adjacency List)和邻接多重表(Adjacency Multilist)。
专升本《数据结构》_试卷_答案

专升本《数据结构》_试卷_答案专升本《数据结构》一、(共75题,共150分)1. 数据的逻辑结构是由()部分组成的。
(2分)A.2B.3C.4D.5标准答案:A2. 算法是对某一类问题求解步骤的有限序列,并具有()个特性。
(2分)A.3B.4C.5D.6标准答案:C3. 队列的入队操作是在()进行的。
(2分)A.队头B.队尾C.任意位置D.指定位置标准答案:B4. 队列的出队操作是在()进行的。
(2分)A.队头B.队尾C.任意位置D.指定位置标准答案:A5. 数组通常采用顺序存储的优点是()。
(2分)A.便于增加存储空间B.便于依据下标进行随机存取C.避免数据元素的移动D.防止下标溢出标准答案:B6. 下列给出的操作中,()是允许对队列进行的操作。
(2分)A.删除队首元素B.取出最近进队的元素C.按元素大小排序D.中间插入元素标准答案:A7. 采用带头结点的单链表存储的线性表,若表长为n,在删除第号元素时,需要移动指针()次。
(2分)A.k+1B.kC.k-1D.k-2标准答案:C8. 字符数组a[1..100]采用顺序存储,a[6]地址是517,则a的首地址为()。
(2分)A.510B.512C.514D.516标准答案:B9. 深度为n的完全二叉树最多有()个结点。
(2分)A.2n+1B.2n-1C.2nD.2n-1 10. 若二叉树对应的二叉链表共有n个非空链域,则该二叉树有()个结点的二叉树。
(2分)A.n-1B.nC.n+1D.2n标准答案:A11. 下面叙述错误的是()。
(2分)A.借助于队列可以实现对图的广度优先遍历B.二叉树中序遍历的序列是有序C.只有一个结点的二叉树的度为0D.空格串是指由1个或以上的空格符号组成的串标准答案:B12. 以下与数据的存储结构无关的术语是()。
(2分)A.循环队列B.链表C.哈希表D.栈标准答案:D13. 在一个长度为n的链式栈中入栈实现算法的时间复杂度为()。
【免费下载】邻接矩阵表示图 深度 广度优先遍历

图 5-2 中有向图 G1 的邻接矩阵为 M1 M1=┌ 0 1 0 1 ┐
│1010│ │1001│ └0000┘
用邻接矩阵表示法来表示一个具有 n 个顶点的图时,除了用邻接矩阵中的 n*n 个元素存储顶点间相邻关系外,往往还需要另设一个向量存储 n 个顶点的 信息。因此其类型定义如下: VertexType vertex[MAX_VERTEX_NUM]; // 顶点向量
易求得各个顶点的度。
对于有向图,顶点 Vi 的出度 OD(Vi)为邻接矩阵第 i 行元素之和,顶点 Vi 的入度 ID(Vi)为第 i 列元素之和。即 n n OD(Vi)=∑A[i,j], OD(Vi)=∑A[j,i]) j=1 j=1 用邻接矩阵也可以表示带权图,只要令 Wij, 若<Vi,Vj>或(Vi,Vj) A[i,j]={ ∞ , 否则。 其中 Wij 为<Vi,Vj>或(Vi,Vj)上的权值。相应地,网的邻接矩阵表示的类型 定义应作如下的修改: adj:weightype ; {weightype 为权类型}
2、图的遍历: *深度优先搜索
深度优先搜索遍历类似于树的先根遍历,是树的先根遍历的推广。假设初 始状态是图中所有的顶点未曾被访问,则深度优先遍历可从图的某个顶点 V 出 发,访问此顶点,然后依次从 V 的未被访问的邻接点出发深度优先遍历图,直 至图中所有和 V 有路径相通的顶点都被访问到;若此时图中尚有顶点未被访问, 则另选图中的一个未被访问的顶点,重复上述过程,直至图中所有顶点都被访 问到为止。
以图中无向图 G4 为例,深度优先遍历图的过程如图所示。假设从顶点 V1 出 发进行搜索,在访问了顶点 V1 后,选择邻接点 V2。因为 V2 未曾访问,则从 V2 出发进行搜索。依次类推,接着从 V4,V8,V5 出发进行搜索。在访问了 V5 之后, 由于 V5 的邻接点已都被访问,则搜索回到 V8。由于同样的理由,搜索继续回到 V4,V2 直至 V1,此时由于 V1 的另一个邻接点为被访问,则搜索又从 V1 到 V3,再
南开大学20秋《数据结构》在线作业-2(参考答案)

1.已知图的邻接矩阵,根据算法,则从顶点0出发,按深度优先遍历的结点序列是()。
A.0 2 4 3 1 5 6B.0 1 3 5 6 4 2C.0 4 2 3 1 6 5D.0 1 3 4 2 5 6答案:D2.设有两个串p和q,求q在p中首次出现的位置的运算称作()。
A.连接B.模式匹配C.求子串D.求串长答案:B3.一个向量第一个元素的存储地址是100,每个元素的长度为2,则第5个元素的地址是()。
A.110B.108C.100D.120答案:B4.已知图的邻接矩阵,根据算法,则从顶点0出发,按广度优先遍历的结点序列是()。
A.0 2 4 3 1 6 5B.0 1 3 5 6 4 2C.0 1 2 3 4 6 5D.0 1 2 3 4 5 6答案:C5.对n个不同的排序码进行冒泡排序,在下列哪种情况下比较的次数最多?()A.从小到大排列好的B.从大到小排列好的C.元素无序D.元素基本有序答案:B6.线性表L在()情况下适用于使用链式结构实现。
A.需经常修改L中的结点值B.需不断对L进行删除插入C.L中含有大量的结点D.L中结点结构复杂答案:B7.具有n(n>0)个结点的完全二叉树的深度为()。
A.log2(n)B.log2(n)C.log2(n)+1D.log2(n)+1答案:C8.一棵具有n个结点的完全二叉树的树高度(深度)是()。
A.[logn]+1B.logn+1C.[logn]D.logn-1答案:A9.链表适用于()查找。
A.顺序B.二分法C.顺序,也能二分法D.随机答案:A10.线性表若采用链式存储结构时,要求内存中可用存储单元的地址()。
A.必须是连续的B.部分地址必须是连续的C.一定是不连续的D.连续或不连续都可以答案:D11.在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的()倍。
A.1/2B.1C.2D.4答案:B12.数据在计算机存储器内表示时,物理地址与逻辑地址相同并且是连续的,称之为()。
第7章自测题与答案

第7章图自测卷解答姓名班级题号一二三四五总分题分1620241030100得分一、单选题(每题1分,共16分)(C)1.在一个图中,所有顶点的度数之和等于图的边数的倍。
A.1/2B.1C.2D.4(B)2.在一个有向图中,所有顶点的入度之和等于所有顶点的出度之和的倍。
A.1/2B.1C.2D.4(B)3.有8个结点的无向图最多有条边。
A.14B.28C.56D.112(C)4.有8个结点的无向连通图最少有条边。
A.5B.6C.7D.8(C)5.有8个结点的有向完全图有条边。
A.14B.28C.56D.112(B)6.用邻接表表示图进行广度优先遍历时,通常是采用来实现算法的。
A.栈B.队列C.树D.图(A)7.用邻接表表示图进行深度优先遍历时,通常是采用来实现算法的。
A.栈B.队列C.树D.图(C)8.已知图的邻接矩阵,根据算法思想,则从顶点0出发按深度优先遍历的结点序列是01111011001001A.02431561000100B.0136542C.042316511001101011010D.03615420001101建议:01342561100010(D)9.已知图的邻接矩阵同上题8,根据算法,则从顶点0出发,按深度优先遍历的结点序列是A.0243156B.0135642C.0423165D.0134256(B)10.已知图的邻接矩阵同上题8,根据算法,则从顶点0出发,按广度优先遍历的结点序列是A.0243651B.0136425C.0423156D.0134256(建议:0123456)(C)11.已知图的邻接矩阵同上题8,根据算法,则从顶点0出发,按广度优先遍历的结点序列是A.0243165B.0135642C.0123465D.01234561(D)12.已知图的邻接表如下所示,根据算法,则从顶点0出发按深度优先遍历的结点序列是A.0132B.0231C.0321D.0123(A)13.已知图的邻接表如下所示,根据算法,则从顶点0出发按广度优先遍历的结点序列是A.0321B.0123C.0132D.0312(A)14.深度优先遍历类似于二叉树的A.先序遍历B.中序遍历C.后序遍历D.层次遍历(D)15.广度优先遍历类似于二叉树的A.先序遍历B.中序遍历C.后序遍历D.层次遍历(A)16.任何一个无向连通图的最小生成树A.只有一棵B.一棵或多棵C.一定有多棵D.可能不存在(注,生成树不唯一,但最小生成树唯一,即边权之和或树权最小的情况唯一)二、填空题(每空1分,共20分)1.图有邻接矩阵、邻接表等存储结构,遍历图有深度优先遍历、广度优先遍历等方法。
JAV数据库考题适用于大连东软信息学院

5.8 习题5.8.1 知识点:图的基本概念一、选择题1①n个顶点的连通图至少有( A )条边。
A.n-1 B.nC.n+1 D.02① 在无向图中定义顶点vi与vj之间的路径为从vi到达vj的一个(B )。
A .顶点序列B .边序列C.权值总和 D .边的条数3① 具有n个顶点的有向图最多可包含(D )条有向边。
A. n-1B. nC. n(n-1)/2D. n(n-1)4①在无向图中定义顶点的度为与它相关联的(B )的数目。
A .顶点B .边C.权 D .权值5①一个有N个顶点的无向图中,要连通全部顶点至少需要(C )条边。
A. NB. N+1C. N -1D. N/26② 含N个顶点的连通图中的任意一条简单路径,其长度不可能超过( C )。
A. 1B. N/2C. N -1D. N7② 设无向图的顶点个数为n,则该图最多有(B )条边。
【清华大学1998】【西安电子科技大1998】【北京航空航天大学1999】A. n-1B. n(n-1)/2C. n(n+1)/2D. n(n-1)8② 在一个无向图中,所有顶点的度数之和等于所有边数( B )倍,在一个有向图中,所有顶点的入度之和等于所有顶点出度之和的( C )倍。
【哈尔滨工业大学2001】A. 1/2B. 2C. 1D. 4二、填空题1②n (n> 0)个顶点的无向图中顶点的度的最大值为___n-1 ____ 。
2②n (n> 0)个顶点的无向图最少有___0 _______ 条边。
3②n (n> 0)个顶点的连通无向图各顶点的度之和最少为__2(n-1)__ 。
4② 具有n个顶点的无向完全图,边的总数为__n(n-1)/2 ___ 条;而具有n个顶点的有向完全图边的总数为__n(n-1) ____ 条。
5② 在有n个顶点的有向图中,每个顶点的度最大可达__2(n-1)____ 。
6② 在有n个顶点的有向图中,若要使任意两点间可以互相到达,则至少需要__n___条弧。
数据结构 实验报告

数据结构实验报告一、实验目的数据结构是计算机科学中非常重要的一门课程,通过本次实验,旨在加深对常见数据结构(如链表、栈、队列、树、图等)的理解和应用,提高编程能力和解决实际问题的能力。
二、实验环境本次实验使用的编程语言为C++,开发工具为Visual Studio 2019。
操作系统为 Windows 10。
三、实验内容1、链表的实现与操作创建一个单向链表,并实现插入、删除和遍历节点的功能。
对链表进行排序,如冒泡排序或插入排序。
2、栈和队列的应用用栈实现表达式求值,能够处理加、减、乘、除和括号。
利用队列实现银行排队系统的模拟,包括顾客的到达、服务和离开。
3、二叉树的遍历与操作构建一棵二叉树,并实现前序、中序和后序遍历。
进行二叉树的插入、删除节点操作。
4、图的表示与遍历用邻接矩阵和邻接表两种方式表示图。
实现图的深度优先遍历和广度优先遍历。
四、实验步骤及结果1、链表的实现与操作首先,定义了链表节点的结构体:```cppstruct ListNode {int data;ListNode next;ListNode(int x) : data(x), next(NULL) {}};```插入节点的函数:```cppvoid insertNode(ListNode& head, int val) {ListNode newNode = new ListNode(val);head = newNode;} else {ListNode curr = head;while (curr>next!= NULL) {curr = curr>next;}curr>next = newNode;}}```删除节点的函数:```cppvoid deleteNode(ListNode& head, int val) {if (head == NULL) {return;}ListNode temp = head;head = head>next;delete temp;return;}ListNode curr = head;while (curr>next!= NULL && curr>next>data!= val) {curr = curr>next;}if (curr>next!= NULL) {ListNode temp = curr>next;curr>next = curr>next>next;delete temp;}}```遍历链表的函数:```cppvoid traverseList(ListNode head) {ListNode curr = head;while (curr!= NULL) {std::cout << curr>data <<"";curr = curr>next;}std::cout << std::endl;}```对链表进行冒泡排序的函数:```cppvoid bubbleSortList(ListNode& head) {if (head == NULL || head>next == NULL) {return;}bool swapped;ListNode ptr1;ListNode lptr = NULL;do {swapped = false;ptr1 = head;while (ptr1->next!= lptr) {if (ptr1->data > ptr1->next>data) {int temp = ptr1->data;ptr1->data = ptr1->next>data;ptr1->next>data = temp;swapped = true;}ptr1 = ptr1->next;}lptr = ptr1;} while (swapped);}```测试结果:创建了一个包含 5、3、8、1、4 的链表,经过排序后,输出为 1 3 4 5 8 。
浅析深度优先和广度优先遍历实现过程、区别及使用场景

浅析深度优先和⼴度优先遍历实现过程、区别及使⽤场景⼀、什么是深度/⼴度优先遍历? 深度优先遍历简称DFS(Depth First Search),⼴度优先遍历简称BFS(Breadth First Search),它们是遍历图当中所有顶点的两种⽅式。
这两种遍历⽅式有什么不同呢?我们来举个栗⼦: 我们来到⼀个游乐场,游乐场⾥有11个景点。
我们从景点0开始,要玩遍游乐场的所有景点,可以有什么样的游玩次序呢?1、深度优先遍历 第⼀种是⼀头扎到底的玩法。
我们选择⼀条⽀路,尽可能不断地深⼊,如果遇到死路就往回退,回退过程中如果遇到没探索过的⽀路,就进⼊该⽀路继续深⼊。
在图中,我们⾸先选择景点1的这条路,继续深⼊到景点7、景点8,终于发现⾛不动了: 于是,我们退回到景点7,然后探索景点10,⼜⾛到了死胡同。
于是,退回到景点1,探索景点9: 按照这个思路,我们再退回到景点0,后续依次探索景点2、3、5、4、发现相邻的都玩过了,再回退到3,再接着玩6,终于玩遍了整个游乐场: 具体次序如下图,景点旁边的数字代表探索次序。
当然还可以有别的排法。
像这样先深⼊探索,⾛到头再回退寻找其他出路的遍历⽅式,就叫做深度优先遍历(DFS)。
这⽅式看起来很像⼆叉树的前序遍历。
没错,其实⼆叉树的前序、中序、后序遍历,本质上也可以认为是深度优先遍历。
2、⼴度优先遍历 除了像深度优先遍历这样⼀头扎到底的玩法以外,我们还有另⼀种玩法:⾸先把起点相邻的⼏个景点玩遍,然后去玩距离起点稍远⼀些(隔⼀层)的景点,然后再去玩距离起点更远⼀些(隔两层)的景点… 在图中,我们⾸先探索景点0的相邻景点1、2、3、4: 接着,我们探索与景点0相隔⼀层的景点7、9、5、6: 最后,我们探索与景点0相隔两层的景点8、10: 像这样⼀层⼀层由内⽽外的遍历⽅式,就叫做⼴度优先遍历(BFS)。
这⽅式看起来很像⼆叉树的层序遍历。
没错,其实⼆叉树的层序遍历,本质上也可以认为是⼴度优先遍历。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图的邻接矩阵结构上实现图的广度优先遍历:
广搜的实现相对而言比较难,它需要用到数据结构中另一个抽象:队列
[c-sharp]view plaincopy
1.void bfs(graph *g,int i){
2.int j,k;
3. printf("%d点被访问/n",i);//i已经被访问
4. visited[i] = 1;//标记i边已经被访问
5. cirqueue *p = (cirqueue*)malloc(sizeof(cirqueue));//申请一个对队列
6. p->front = p->rear = p->count = 0;//表示队列为空
7.//以下三行代码使得i进入队列
8. p->q[p->rear] = i;
9. p->rear = (p->rear++)/maxnum;
10. p->count++;
11.
12.while(p->count!=0){//假如队列不空
13.//以下三行代码是去队列元素
14. j = p->q[p->front];
15. p->front = (p->rear++)/maxnum;
16. p->count--;
17.//寻找序号为i顶点的邻接点,并做如下处理
18.for(k=0;k<g->vNum;k++){
19.if(g->e[j][k]!=0&&visited[k]==0){//假如j点与i点相连,并且j点还没
有被访问过
20. printf("%d点被访问/n",k);//i已经被访问
21. visited[k] = 1;//标记i边已经被访问
22.
23.//以下三行代码使得k进入队列
24. p->q[p->rear] = k;
25. p->rear = (p->rear++)/maxnum;
26. p->count++;
27. }
28. }
29. }
30.}
31.
32.
33.void BFS(graph *g){
34.int i;
35.//首先把所有点都设置成没有访问过
36.for(i=0;i<g->vNum;i++){
37. visited[i] = 0;
38. }
39.//广度优先搜索
40.for(i=0;i<g->vNum;i++){
41.if(visited[i]==0){//假如i点没有被访问过
42. bfs(g,i);//对以邻接矩阵表示的图,以序号为i的顶点为出发点进行广度优先
搜索
43. }
44. }
45.
46.}。