多级放大电路的设计报告

合集下载

三极管共射极放大电路实验报告

三极管共射极放大电路实验报告

实验报告课程名称: 电路与模拟电子技术实验 指导老师: 张冶沁 成绩:__________________ 实验名称: 三极管共射极放大电路 实验类型: 电路实验 同组学生姓名:__________ 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求1.学习共射放大电路的设计方法与调试技术;2.掌握放大器静态工作点的测量与调整方法,了解在不同偏置条件下静态工作点对放大器性能的影响;3.学习放大电路的电压放大倍数、输入电阻、输出电阻及频率特性等性能指标的测试方法;4.了解静态工作点与输出波形失真的关系,掌握最大不失真输出电压的测量方法;5.进一步熟悉示波器、函数信号发生器的使用。

二、实验内容和原理1.静态工作点的调整与测量2.测量电压放大倍数3.测量最大不失真输出电压4.测量输入电阻5.测量输出电阻6.测量上限频率和下限频率7.研究静态工作点对输出波形的影响三、主要仪器设备示波器、信号发生器、万用表 共射电路实验板四、操作方法和实验步骤1.静态工作点的测量和调试 实验步骤:(1)按所设计的放大器的元件连接电路,根据电路原理图仔细检查电路的完整性。

(2)开启直流稳压电源,用万用表检测15V 工作电压,确认后,关闭电源。

(3)将放大器电路板的工作电源端与15V 直流稳压电源接通。

然后,开启电源。

此时,放大器处于工作状态。

(4)调节偏置电位器,使放大电路的静态工作点满足设计要求I CQ =6mA 。

为方便起见,测量I CQ 时,一般采用测量电阻R C 两端的压降V Rc ,然后根据I CQ =V Rc /Rc 计算出I CQ 。

(5)测量晶体管共射极放大电路的静态工作点,并将测量值、仿真值、理论估算值记录在下表中进行比较。

2.测量电压放大倍数(R L =∞、R L =1k Ω)专业: 姓名:学号: 日期: 地点:学生序号6实验步骤:(1)从函数信号发生器输出1kHz的正弦波,加到电路板上的Us端。

多级运算电路实验报告(3篇)

多级运算电路实验报告(3篇)

第1篇一、实验目的1. 理解多级运算电路的工作原理及特点。

2. 掌握多级运算电路的设计方法。

3. 学习使用电子实验设备,如信号发生器、示波器、数字万用表等。

4. 培养实验操作能力和数据分析能力。

二、实验原理多级运算电路是由多个基本运算电路组成的,通过级联多个基本运算电路,可以实现对信号的放大、滤波、调制、解调等功能。

本实验主要涉及以下几种基本运算电路:1. 反相比例运算电路:该电路可以实现信号的放大或衰减,放大倍数由反馈电阻RF和输入电阻R1的比值决定。

2. 同相比例运算电路:该电路可以实现信号的放大,放大倍数由反馈电阻RF和输入电阻R1的比值决定。

3. 加法运算电路:该电路可以将多个信号相加,输出信号为各输入信号的代数和。

4. 减法运算电路:该电路可以实现信号的相减,输出信号为输入信号之差。

三、实验仪器与设备1. 信号发生器:用于产生实验所需的输入信号。

2. 示波器:用于观察实验过程中信号的变化。

3. 数字万用表:用于测量电路的电压、电流等参数。

4. 电阻、电容、二极管、运放等电子元器件。

5. 电路板、导线、焊接工具等。

四、实验内容与步骤1. 设计并搭建反相比例运算电路,测量并记录放大倍数、输入电阻等参数。

2. 设计并搭建同相比例运算电路,测量并记录放大倍数、输入电阻等参数。

3. 设计并搭建加法运算电路,测量并记录输出信号与输入信号的关系。

4. 设计并搭建减法运算电路,测量并记录输出信号与输入信号的关系。

5. 分析实验数据,验证实验结果是否符合理论计算。

五、实验结果与分析1. 反相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。

分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。

实验结果与理论计算基本一致。

2. 同相比例运算电路实验结果:放大倍数为10,输入电阻为10kΩ。

分析:根据理论计算,放大倍数应为RF/R1,输入电阻应为RF+R1。

实验结果与理论计算基本一致。

实验报告——设计放大电路

实验报告——设计放大电路

课程名称:电路与电子实验Ⅱ指导老师: yyy 成绩:__________________ 实验名称:集成功放及其应用实验类型:模电同组学生姓名:一、实验目的二、实验原理三、实验接线图四、实验设备五、实验步骤六、实验数据记录七、实验数据分析八、实验结果或结论一、实验目的1.了解仪表放大器与运算放大器的性能区别;2.掌握仪表放大器的电路结构、设计和测试方法;3.学习仪表放大器在电子设计中的应用。

二、实验内容1 .用通用运算放大器设计一个仪表放大器2 .用INA128 精密低功耗仪器放大器设计一个仪表放大器3 .仪表放大器应用:实现电子秤量电路功能三、实验原理●基本放大器性能比对●输入电阻Ri:放大电路输入电压与输入电流之比。

(输入电阻越大,信号电压损失越小,输入电压越接近信号源电压)K:差模电压放大倍数与共模电压放大倍数之比的绝对值。

(一般要求:●共模抑制比CMR放大差模信号,抑制共模信号,即共模抑制比越大越好)●电子秤电路●用单个通用运算放大器设计一个差分放大电路,并与力传感器、零点与增益调节电路、万用表一起构成电子秤。

表1本实验选择该电路图做实验差动放大电路放大倍数为200倍,后面增益调节电路放大倍数7.5倍至12.5倍。

测量时实验箱上COM1与COM2须连接在一起。

●用单片集成仪表放大器INA128构成放大电路,并与力传感器、零点与增益调节电路、万用表一起构成电子秤。

INA128放大电路放大倍数为1000倍,后面增益调节电路放大倍数1.5倍至2.5倍。

测量时实验箱上COM1与COM2须连接在一起。

INA128仪用放大器的电源绝对不能接错!●零点与增益调整电路倍放大后,输出为0.5V,如果想在数字万用表上显示100的数值,可以通过零点与增益调节电路将0.5V直流信号放大两倍,使Vout输出1V的电压信号,万用表选择2V档量程,则在万用表上显示1.000,与被称物体的实际重量相一致,唯一的区别是小数点不对。

多级放大电路设计与调试实验报告

多级放大电路设计与调试实验报告

多级放大电路设计与调试实验报告1多级放大电路设计与调试实验报告一,实验目的:1( 自行设计,安装,调试一个放大电路,满足规定实验要求2( 对实验电路的设计,调试过程进行分析,用实验验证模拟电路分析所采用的近似方法的可行性及同实际电路特性相比的差异性。

3( 学会在对电路进行检测后,对对应的问题和不足进行对应调节,有针对性对元件进行调整的方法。

二,实验设备:直流稳压电源,函数信号发生器,交流毫伏表,万用电表,双踪示波器,BJT 三极管,电容器,电阻,导线若干。

三,实验原理:由小功率BJT组成的电压放大电路可以对交流小信号起到线性放大作用,但是由于BJT的技术特性所限,其构成电路只能在一定范围信号电压,一定信号频带宽度,一定范围环境温度内达到线性放大的目的,超出限度,便可能出现信号失真,噪声增大,甚至烧毁电路的结果,因此对电路的设计要根据具体工作要求,选取符合要求的电路组态,元件参数进行设计。

此次实验所规定的所要满足的技术参数如下:电源电压VCC=12V;电压增益音视颇简称=40dB;输入电阻Ri(20k;最大输出电压VOM (有效值)>1V;频带宽度30Hz~30KHz;负载电阻RL=2k;信号源内阻RS=1k;使用环境温度:-10~+60鉴于电路的上述工作要求,在对电路组态以及元件选取的时候有如下考虑: 1,由于电路电压增益要达到40DB,也就是要电压放大100倍,因此要选用一种高增益的电路组态,由BJT放大电路三种组态知,其中共发射极放大电路增益大,因此可选用其做为放大电路的一部分。

2,对电路输入电阻的要求为Ri>20k,而共射极放大电路的输入电阻一般较小,很难满足此种要求,考虑加入另一级电路以提高输入电阻,而射极输出电路具有高输入阻抗的特点,因此选用共集电极射极输出电路做为放大电路的输入级。

3,由电路设计要求放大信号的频带宽度为30Hz~30Khz,而放大电路中对交流信号频率响应起主要作用的是电路中的偶合电容,旁路电容,以及三极管的极间电容,因此要设法调节这些电容的大小,以满足频带宽度的要求。

三极管放大电路实验报告范文

三极管放大电路实验报告范文

三极管放大电路实验报告范文要求设计一放大电路,电路部分参数及要求如下:(1)信号源电压幅值:0.5V;(2)信号源内阻:50kohm;(3)电路总增益:2倍;(4)总功耗:小于30mW;(5)增益不平坦度:20~200kHz范围内小于0.1dB2、问题分析:通过分析得出放大电路可以采用三极管放大电路。

2.1对三种放大电路的分析(1)共射级电路要求高负载,同时具有大增益特性;(2)共集电极电路具有负载能力较强的特性,但增益特性不好,小于1;(3)共基极电路增益特性比较好,但与共射级电路一样带负载能力不强。

综上所述,对于次放大电路来说单采用一个三极管是行不通的,因为它要求此放大电路具有比较好的增益特性以及有较强的带负载能力。

2.2放大电路的设计思路在此放大电路中采用两级放大的思路。

先采用共射级电路对信号进行放大,使之达到放大两倍的要求;再采用共集电极电路提高电路的负载能力。

3、实验目的(1)进一步理解三极管的放大特性;(2)掌握三极管放大电路的设计;(3)掌握三种三极管放大电路的特性;(4)掌握三极管放大电路波形的调试;(5)提高遇到问题时解决问题的能力。

4、问题解决测量调试过程中的电路:增益调试:首先测量各点(电源、基极、输出端)的波形:结果如下:绿色的线代表电压变化,红色代表电源。

调节电阻R2、R3、R5使得电压的最大值大于电源电压的2/3 VA=R2〃R3〃(1+3)R5/[R2//R3//(1+3)R5+R1],其中由于R1较大因此R2、R3也相对较大。

第一级放大输出处的波形调试(采用共射级放大电路):结果为:红色的电压最大值与绿色电压最大值之比即为放大倍数。

则需要适当增大R2,减小R3的阻值。

总输出的调试:如果放大倍数不合适,则调节R4与R5的阻值。

即当放大倍数不足时,应增大R4,减小R5如果失真则需要调节R6,或者适当增大电源的电压值,必要时可以返回C极,调节C极的输出。

功率的调试:由于大功率电路耗电现象非常严重,因此我们在设计电路时,应在满足要求的情况下尽可能的减小电路的总功耗。

课程设计(两级放大电路的设计)

课程设计(两级放大电路的设计)

新疆大学课程设计报告所属院系:电气工程学院专业:电气工程及其自动化课程名称:电子技术基础A设计题目:两级放大电路的设计班级:学生姓名:学生学号:指导老师:完成日期:3.图2以同样的方法测量出1CV,2B V,2E V.记录到表格4中。

V,1B V,2CV1C V1E V2B V2C V2E VB12.2435V8.5451V 1.6001V3.0847V 7.9905V 2.4317V图3三.放大倍数的测量调整函数发生器,使放大器输入imU=5mA,f=1KHZ的正弦信号,测量输出电压U,计算电压增益。

如下图5。

om图4由示波器得到其输入和输出波形如下图6,两者进行比较。

图5放大倍数的测量输入U im输出U om增益A v5mV 362mV 73图6四.输入电阻和输出电阻的测量运用两次电压法测量两级放大器的输入电阻和输出电阻。

测试输入电阻时,在输入口接入取样电阻R=1KΩ;测试输出电阻时,在输出口接入负载电阻R L=1KΩ。

由于本次试验是电路的两级放大所以有以下性质:1.多级放大器的输入电阻等于第一级放大器的输入电阻;2.多级放大器的输出电阻等于末级放大器的输出电阻;3.后级放大器的输入电阻是前级放大器的负载;4.前级放大器的输出电路是后级放大器的信号源;5.总的电压增益等于各级电压增益相乘。

两次电压法测输入电阻如图:图7输入电阻的测量U s U i取样电阻R R i=R错误!未找到引用源。

U i/(U s错误!未找到引用源。

U i)3.536mV 2.903mV 1K 4322Ω图8两次电压法测输出电阻如下图:图9图10输出电阻的测量U o U o’负载电阻R L R o=R L错误!未找到引用源。

(U o/U o’错误!未找到引用源。

1)264.191mV 125.143mV 1K 901Ω图11五.测量两级放大器的幅频、相频曲线图12频率值(Hz)f L/2f L f0/2f02f0f H10f H总带宽△f 9.318.65001k2k425.1k 4.251MU O29.651.972.872.872.851.97.54425K图13三.总体设计1.总体电路电路的是由电源输入信号到一级共射的放大电路,再到二级的共射的放大电路,最后输出,实现电压或电流的放大。

反馈放大电路设计实验报告模版

反馈放大电路设计实验报告模版

深圳大学实验报告课程名称:模拟电路实验名称:负反馈放大电路设计学院:信息工程学院专业:信息工程班级:组号:指导教师:田明报告人:学号:实验地点N102 实验时间:实验报告提交时间:教务处制一.实验名称:负反馈放大电路设计二.实验目的:加深对负反馈放大电路原理的理解.学习集成运算反馈放大电路、晶体管反馈放大电路的设计方法. 掌握集成运算反馈放大电路、多级晶体管反馈放大电路的安装调试及测试方法.三.实验仪器:双踪示波器一台/组信号发生器一台/组直流稳压电源一台/组万用表一台/组四.实验容:设计一个多级晶体管负反馈放大电路或集成运算负反馈放大电路,性能要求如下:闭环电压放大倍:30---120输入信号频率围:1KHZ-------10KHZ.电压输出幅度≥1.5V输出电阻≤3KΩ五.实验步骤:1.选择负反馈放大电路的类型,一般有晶体管负反馈放大电路、集成运算负反馈放大电路.为满足上述放大倍数的要求,晶体管负反馈放大电路最少需要二级放大,其连接形式有直接耦合和阻容耦合,阻容耦合可以消除放大器各级静态工作点之间的影响,本设计采用两者相结合的方式;对于各级放大器,其组态有多种多样,有共发射极,共基极和共集电极。

本设计可以采用共发射极-共基极-共集电极放大电路。

对于负反馈形式,有电压串联、电压并联、电流串联、电流并联。

本设计采用电压并联负反馈形式。

2.设计电路,画出电路图.下面是电源输入电路,通过并联两个电容的滤波电路形式,以效消除干扰,保证电路稳定工作,否则容易产生自激振荡。

整体原理图如下:从上图可以看出来,整个电路由三级放大和一路负反馈回路构成,第一级电路是NPN管构成的共发射极电路,通过直接耦合的方式输出给第二级的共基极电路,因此两级直接的静态工作点会相互影响。

第二级放大电路通过电容输出给第三级。

第三级放大电路是共集电极电路,射极跟随输出到负载。

整体参数设计:假设输入电压峰峰值为50mv,输出电压峰峰值不小于1.5V,电压放大倍数>30 倍。

两级交流放大电路实验报告数据

两级交流放大电路实验报告数据

竭诚为您提供优质文档/双击可除两级交流放大电路实验报告数据篇一:数据放大器设计实验报告数据放大器设计实验报告姓名:徐海峰班级:通信工程15-1班学号:20XX211573同组者:蒲玉倩指导老师:孙锐许良凤一、设计题目:数据放大器设计二、设计指标及要求放大倍数Avf?60db,共模抑制比KcmR?60db,截止频率fh3d?1khz,带外衰减速率大于等于-30db/10倍频。

三、原理分析与设计步骤1.数据放大器电路结构选择数据放大器基本结构如图1.1所示,分为两个基本环节,即差分放大器,Rc有源滤波器。

据此确定欲设计的电路结构如图1.2所示(具体阻容参数已经标出)。

图1.1图1.22.差模信号产生交流源通过桥式电路,根据各电阻的分压产生差模信号,输入到放大器进行放大。

3.差分放大器两级差分放大器,第一级,电压串联负反馈,双端输入双端输出,提高共模抑制比,并有一定的差模电压放大作用。

第二级,差动式输入,双端输入,单端输出,电压放大。

Av1?(1?2R1R0),Av2?2R1R5R5,Av?(1?。

)?R0R3R34.Rc有源滤波器电路中Rc网络起着滤波的作用,滤掉不需要的信号,这样在对波形的选取上起着至关重要的作用,通常主要由电阻和电容组成。

路中运用了同相输入运放,其闭环增益RVF=1+R10/R9同相放大器具有输入阻抗非常高,输出阻抗很低的特点,广泛用于前置放大级。

截止频率fh?2?,放大倍数Avf?(R9?R10R95.参数计算与器件选择5.1电路参数计算1)桥式电路Vo1?交流源通过桥式电路,根据各电阻的分压产生差模信号, R1*ViR1+R3,Vo2?R2*ViR1?1.5k?,R3?1.5k?,R2?2k?,R2+R5,故选择R5?1.5k?。

2)差分放大电路本实验需要四个运算放大器,在此我们选择含有四个运算放大器的的集成运算放大器Lm324,Lm324四运放管脚图。

两级差分放大器,第一级,电压串联负反馈,双端输入双端输出,提高共模Av1?(1?抑制比,并有一定的差模电压放大作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电工电子技术课程设计报告题目:多级放大电路的设计二级学院机械工程学院年级专业14 动力本学号1401250029学生姓名周俊指导教师张云莉教师职称讲师报告时间:2015.12.28目录第一章.基本要求和放电电路的性能指标 (1)第二章.概述和任务分析 (5)第三章.电路原理图和电路参数 (6)第四章.主要的计算过程 (9)第五章.电路调试运算结果 (11)第六章.总结 (12)制作调试步骤及结果 (12)收获和体会 (13)第七章.误差和分析 (14)第八章.参考文献 (15)第一章.基本要求和放电电路的性能指标1. 基本要求:用给定的三极管2SC1815(NPN),2SA1015(PNP)设计多级放大器,已知V CC=+12V, -V EE=-12V,要求设计差分放大器恒流源的射极电流I EQ3=1~1.5mA,第二级放大射极电流I EQ4=2~3mA;差分放大器的单端输入单端输出不是真电压增益至少大于10倍,主放大器的不失真电压增益不小于100倍;双端输入电阻大于10kΩ,输出电阻小于10Ω,并保证输入级和输出级的直流点位为零。

设计并仿真实现。

2. 放电电路的性能指标:第一种是对应于一个幅值已定、频率已定的信号输入时的性能,这是放大电路的基本性能。

第二种是对于幅值不变而频率改变的信号输出时的性能。

第三种是对应于频率不变而幅值改变的信号输入时的性能。

1.1第一种类型的指标:1.放大倍数放大倍数是衡量放大电路放大能力的指标。

它定义为输出变化量的幅值与输入变化量的幅值之比,有时也称为增益。

虽然放大电路能实现功率的放大,然而在很多场合,人们常常只关心某一单项指标的放大的倍数,比如电压或者电流的放大倍数。

由于输出和输入信号都有电压和电流量,所以存在以下四中比值:(1-1)1.(1-2)(1-3)(1-4)式中的、、、都是正弦信号的有效值。

需要注意的是,若输出波形出现明显失真,则此值就失去意义了,因此在输出端要有监视失真的措施(如用示波器观察波形)。

其他指标也是如此。

2.输入电阻作为一个放大电路,一定要有信号源来提供输入信号。

例如扩大机就是利用话筒将声音转成电信号提供放大电路的。

放大电路与信号源相连,就要从信号源取电流。

取电流的大小表明了放大电路对信号源的影响程度,所以我们定义一个指标,来衡量放大电路对信号源的影响,叫做输入阻抗。

当信号频率不是很高时,输入电流与输入电压基本同相,因此通常用输入电阻来表示。

它定义为:(1-5)从图1-1中可见,就是向放大电路输入端看进去的等效电阻。

越大,表明它从信号源取的电流越小,放大电路输入端所得到的电压越接近信号电压。

因此作为测量仪表用的放大电路其要大。

但是对于晶体管来说,大则取电流小,讲减低放大倍数。

所以在需要放大倍数大而为固定值的情况 2. 下,晶体管放大电路的又以小一些为好。

3.输出电阻放大电路讲信号放大后,总要送到某装置区发挥作用。

这个装置我们通常称为负载。

比如扬声器就是扩大机的负载。

当我们在原来的扬声器两端再并联一个扬声器时,它两端的电压讲要下降,这种现象说明向放大电路的输出端看进去有一个等效内阻,通常称为输出电阻,记为,如图1-1所示。

图1-1求输出电阻的等效电路通常测定输出电阻的办法是输入端加正弦波实验信号,测出负载开路时的输出电压,再测出接入负载时的输出电压。

则读者可自行证明(1-6)输出电阻越大,表明接入负载后,输出电压的幅值下降越多。

因此反映了放大电路带负载能力的大小。

1.2 第二种类型的指标:4.通频带当只改变输入信号的频率时,发现放大电路的放大倍数是随之变化的,输出波形的相位也发生变化。

这就需要有一定的指标来反映放大电路对于不同频率的信号的适应能力。

一般情况下,放大电路只适用于放大一个特定频率范围的信号,当信号频率太高或太低时,放大倍数都有大幅度的下降,如图1-2所示。

3.图1-2 放大电路的频率指标当信号频率升高而使放大倍数下降为中频时放大倍数(记作)的0.7倍时,这个频率称为上限截止频率,记作。

同样,使放大倍数下降为的0.7倍时的低频信号频率称为下线截止频率,记作。

我们将和之间形成的频带称为通频带,记作,即(1-7)通频带越宽,表明放大电路对信号频率的适应能力越强。

对于收录机、扩大机来说,通频带宽意味着可以将原乐曲中丰富的高、低音都能完美的播放出来。

然而有些情况下则希望频带窄,如带通滤波电路等。

1.3 第三种类型的指标:5.最大输出幅值最大输出幅值指的是当输入信号再增大就会使输出波形的非线性失真系数超过额定数值(比如10%)时的输出幅值。

我们以(或)表示。

一般指有效值,也有以封至峰值表示的,二者差倍。

6.最大输出功率与效率最大输出幅值是输出不失真时的单项(电压和电流)指标。

此外还应该有一个综合性的指标即最大输出功率。

它是输出信号基本不失真的情况下输出的最大功率,记作。

前面我们说过,输入信号的功率都是很小的,经过放大电路,得到了较大的功率输出。

这些多出来的能量石由电源提供的,放大电路只不过是实现 4.了有控制的能量转换。

既然是能量的转换,就存在转换效率的问题。

也就是说,不能只看输出功率的大小,还应该看能量的利用率如何。

效率定义为(1-8)式中为直流电源消耗的功率。

7.非线性失真系数由于晶体管等器件都具有非线性的特性,所以当输出幅度大了之后,有时需要讨论它的失真问题。

我们在这里定义的非线性失真系数,是指放大电路在某一频率的正弦波输入信号下,输出波形的谐波成分总量和基波成分之比。

用表示基波和各种谐波的幅值,则失真系数D定义为:(1-9)以上三类指标是以输入信号的幅值的频率来划分的。

一般来说,第一类指标多适用于输入为低频小信号时的情况;第二类指标多适用于输入信号幅值小但频率变化范围宽的情况;第三类指标则多适用于低频但输出幅值较大的情况。

第二章.概述和任务分析多级放大电路的概述:在我们日常生活和科学研究等工作中,常常会遇到放大电路。

这些放大电路的形式不通,性能指标也不同,使用的元器件也不相同,但它们都是用来进行信号的放大,其基本工作原理都是一样的。

在这些放大电路中,管放大电路时构成各种复杂电路的基本单元。

本文以几个简单的放大电路为例,介绍放大电路的组成原理、工作原理、性能指标及计算方法。

由于单级放大电路的放大倍数有限,不能满足实际的需要,因此实 5.用的放大电路都是由多级组成的。

如图。

通常可分为两大部分,即电压放大(小信号放大)和功率放大(大信号放大),前置级一般跟据信号源是电压源还是电流源来选定,它与中间级主要的作用是放大信号电压。

中间级一般都用共发射极电路或组合电路组成。

末级要求有一定的输出功率供给负载RL,称为功率放大器,一般由共集电极电路,或互补推挽电路,有时也用变压器耦合放大电路。

多级放大电路的放大倍数:第三章. 电路原理图和电路参数电路原理图电路参数的选择和计算1.参数的选择:6. 电容全部选用10μf ,电阻在下列值范围波动:Rs=5.1 K Ω,Rb12=33 K Ω, R1=0~100 K Ω,Rb11=24,Rc1=5.1 K Ω,Re12=0~1 K Ω,Re11=1.8 K Ω,Rb22=47 K Ω,Re22=0~330 Ω,R2=0~25 K Ω,Re21=1 K Ω,Rb2=20 K Ω,Rc2=3 K Ω,Rb3=0~680 K Ω,Re3=2.2 K Ω,RL=3 K Ω,Vcc=12V,由Auf=(Re11+Re12+Rf)/Rf>20知,Rf<0.146 K Ω2.计算参数:一级放大电路的静态工作点 :12112b b b CC B R R R V U +=; K K K V U B 12601218+=; 3=B U V121b b CC B R R V I +=;A =μ25.0B I 1E BE B E C R U U I I -=≈;K V V I I E C 6.43.03-=≈ A =≈μ6.0E C I I()11E C C CC CE R R I V U +-≈;()K K V U CE 6.41218+-≈V U CE 4.1≈BC I I =β; 4.225.06.0=A A =μμβ电压放大倍数: =be L r R \=-β;(RL’=RC1 //RE2 ) Au=12.06034.2-=-KK 输入电阻 Ri: b1i R R = ////= 0.43 K 7. 输出电阻 Ro: Ro ≈; Ro ≈=12k 二级放大电路的静态工作点 :222122b b b CC B R R R V U +=;K K K V U B 4.96.264.918+= 8.4=B U V2221b b CC B R R V I +=;K K V I B 4.94.2618+=A =μ5.0B I2e BE B E C R U U I I -=≈;K V V I I E C 43.08.4-=≈ A =≈μ2.1E C I I()22E C C CC CE R R I V U +-≈;()K K I V U C CE 4618+-≈V U CE 6≈BC I I =β;4.25.02.1=A A =μμβ 电压放大倍数: Au=beL r R \=-β (RL’=RC1 //RE2 ) Au=12.06034.2-=-K K 输入电阻 Ri: b1i R R =// //Ri = 0.28 K输出电阻 Ro: Ro ≈ Rc1Ro ≈ Rc1=6k三级放大电路的静态工作点 :()eBE CC B R R U V I β++-=1b ;310026.0-⨯=B I B C I I β=;A=μ3.1C I 8. A =≈μ2.1E C I Ie C CC CE I I V U -≈;43.118⨯-≈V U CEV U CE 8.12≈输入电阻 Ri : b1i R R = //()[]L R `1rbe β++Ri = 461K // ( 1.32+ 51 0.25)Ri = 0.07 K输出电阻 Ro: Ro =Re // β++1`s be R r Ro =14.5 k第四章. 主要的计算过程直耦式多级放大电路的主要涉及任务是模仿运算放大器OP07的等效内部结构,简化部分电路,采用差分输入,共射放大,互补输出等结构形式,设计出一个电压增益足够高的多级放大器,可对小信号进行不失真的放大。

1.输入级电路的输入级是采用NPN 型晶体管的恒流源式差动放大电路。

差动放大电路在直流放大中零点漂移很小,它常用作多级直流放大电路的前置级,用以放大微笑的直流信号或交流信号。

典型的差动放大电路采用的工作组态是双端输入,双端输出。

放大电路两边对称,两晶体管型号、特性一致,各对应电阻阻值相同,电路的共模抑制比很高,利于抗干扰。

相关文档
最新文档