粘性流体力学
4-粘性流体力学与层流流动

4-粘性流体力学与层流流动粘性流体力学是研究粘性流体运动规律的一门学科,可根据流体的不同分为牛顿流体和非牛顿流体。
层流流动是流体流动方式的一种,指流体流动时粒子之间的运动具有良好的有序性,且互相之间影响很小,层流流动的特性和规律是粘性流体力学研究的一部分。
粘性流体力学中,我们用一种称为“粘度”的物理量来描述流体的内部阻力。
粘度描述了流体粒子之间难以滑动的程度,粘度越大,表明流体相对运动的内阻力越大。
在粘性流体中,如果微观粒子的速度变化较大,则会产生较大的粘性阻力。
层流流动中,流体按照一定的竖直方向上的速度分布进行平稳流动。
由于粘度的存在,不同速度层面上的流体在相互掠过时,会因相对速度而受到阻力,这就形成了一种剪切应力。
在一定条件下,流体会形成种类众多、形态各异的流动类型,如平面层流,管道层流等等。
在粘性流体力学里,层流流动是一种非常稳定的流动现象,诸如颗粒的路径稳定、流速和压力分布稳定等。
层流流动中流体中各个流层都是并行流动的,并且相邻流层间的速度差别通常不大,这使得层流流动中的流动失稳和湍动现象较少出现,从而能够获得相当准确的数学描述和解析解。
然而,尽管层流流动在粘性流体力学中处于重要地位,但并不是所有流体流动都能达到层流状态。
在实际生产和生活中,许多流体常常处于层流与湍流的过渡状态,这就需要进行深入的研究来对这些过渡状态进行理解和把控。
研究粘性流体力学和层流流动有着重要的理论意义和实际价值。
这些研究成果广泛应用在化工、高分子材料、土壤水动力学、生物医学等诸多领域,如液态塑料的注塑工艺、血液的流动、河流的径流等等。
以上是简单介绍粘性流体力学与层流流动的相关知识,希望能帮助大家对这两个概念有一个更深入的理解。
粘性流体力学与层流流动的研究充满了挑战,需要我们用严谨的科学态度和持续的努力去不断深化研究,推动这一门学科的进步。
在现代物理科学与工程技术中,粘性流体力学与层流流动的研究定会有更广阔的应用前景,值得我们进一步探索和研究。
工程流体力学-粘性流体的一维定常流动

动量守恒方程是流体运动的基本方程之一,表示流体在运动过程中动量的增加或减少等于作用在流体 上的外力之和。
详细描述
动量守恒方程的数学表达式为ρdudt=−p+ρg+τx+F,其中p表示流体的压强,g表示重力加速度,τx表示 由于粘性作用在x方向上的应力,F表示作用在流体上的外力。
能量守恒方程
总结词
化提供了重要支持。
能源利用
能源领域如火力发电、 水力发电等涉及到大量 的流体流动问题。通过 一维定常流动理论,可 以深入理解流体在涡轮 机内的流动规律,提高
能源利用效率。
生物医学
在生物医学领域,血液 、淋巴液等生物流体也 存在着一维定常流动的 现象。研究这些流动有 助于深入了解人体生理 机制,为疾病诊断和治
边界层。
边界层的分离
当流体经过弯曲的壁面或突然扩大 的区域时,边界层可能会与壁面分 离。分离后的边界层会形成涡旋, 影响流体的流动特性。
边界层的厚度
边界层的厚度与流体的粘性、流速 和壁面的粗糙度有关。了解边界层 的厚度对于控制流体流动和减小阻 力具有重要意义。
射流流动的实例分析
射流的定义
射流是指流体从一定口径的喷嘴喷出后形成的流动。射流的特性与 喷嘴的口径、流体性质和出口压力有关。
一维定常流动的特性
01
流体参数不随时间变化而变化,只与空间位置有关。
02
流体参数沿流程方向不发生变化,只与流程位置有 关。
03
流体参数在垂直方向上均匀分布,不随高度变化而 变化。
05
粘性流体的一维定常流动 的实例分析
管道流动的实例分析
管道流动的特点
在管道中,流体受到壁面的限制,呈现出一定的流动规律。 由于粘性作用,流体的速度在靠近管壁处较小,而在中心 区域较大。
4-粘性流体力学与层流流动

4-粘性流体力学与层流流动流体力学是研究流体运动规律的科学分支,可以分为粘性流体力学和非粘性流体力学。
其中,粘性流体力学主要研究的是流体内部分子间相互作用所引起的黏性阻力,并分析流体在受力作用下的运动规律。
而层流流动则是粘性流体力学中的一种重要流动现象。
粘性流体力学是流体力学中的一个重要分支,其研究的对象为具有黏性的流体。
黏性流体的粘度是描述流体黏性大小的物理量,它决定了流体的黏滞阻力大小。
黏性流体的运动可以分为层流流动和湍流流动两种模式。
层流流动是指黏性流体在导体内部或流道内的流动方式,其特点是流动速度场呈现规则性,流体各层之间的速度梯度较小。
在层流流动中,黏性阻力主要通过分子间的黏性作用传递,流体流动稳定,流线连续而平行。
层流流动通常发生在低速、长管道或细颗粒填充床中。
而湍流流动则是流体在高速或复杂几何形状中的流动方式,其特点是速度场无规则变化,存在涡旋和漩涡结构。
湍流流动中的黏性阻力主要由于流体内部不同速度层之间的相互作用而产生,流体流动不稳定,流线不连续而交织。
黏性流体力学的研究内容主要包括流体的黏性阻力、黏性作用力、流体的流速场分布以及流体稳定性等方面。
其中,黏性阻力表示了黏性流体在流动中克服黏性阻力所需的力大小。
黏性作用力是流体分子间的相互作用力,它决定了流体的粘性大小。
流体的流速场分布是指研究流体在不同位置的速度大小和方向,可以通过流体力学方程和边界条件来描述。
流体的稳定性是指流体在外界干扰下能保持稳定的能力,其稳定性不仅由黏性力作用决定,还与流动条件、流体特性以及外界干扰因素有关。
层流流动是黏性流体力学中一种较为重要的流动现象。
层流流动的特点是流体各层之间的速度梯度较小,流线连续而平行,黏性阻力主要通过分子间的黏性作用传递。
层流流动对于一些工程问题具有重要意义,比如管道中的油水输送、微流体操控以及骨科手术中的关节润滑等。
在这些应用中,层流流动可以有效减小黏性阻力,降低能源消耗,提高流体运输效率。
粘性流体力学知识点汇总

粘性流体力学知识点汇总粘性流体力学涉及到了流体的黏度、黏滞力和黏滞性等概念。
在本文中,我们将逐步思考和总结一些重要的粘性流体力学知识点。
1.流体的黏度黏度是流体抵抗剪切变形的能力,也可以理解为流体内部分子间相互作用力的一种体现。
黏度的大小决定了流体的流动性质。
一般来说,黏度越大的流体,其运动越困难,黏滞力越高。
2.层流和湍流在流体运动中,当流体的运动是有序的、分层的,流动速度沿着一个方向变化较小时,称为层流。
相反,当流体的运动是混乱的、无序的,流动速度沿着各个方向都有明显的变化时,称为湍流。
湍流比层流的黏滞力大,能量损失也较大。
3.流体的黏滞力黏滞力是流体内部分子之间的摩擦力,它使得流体在流动过程中出现阻力。
黏滞力与流体黏度有关,黏度越大,黏滞力也就越大。
黏滞力对于流体的流动速度和形状变化起着重要的作用。
4.斯托克斯定律斯托克斯定律描述了小球在粘性流体中的运动规律。
根据斯托克斯定律,当小球在粘性流体中运动时,流体对小球的阻力与小球的半径、流体的黏度和小球的速度成正比。
这个定律对于研究微小颗粒在流体中的运动十分重要。
5.纳维-斯托克斯方程纳维-斯托克斯方程是描述流体运动的基本方程之一。
它通过描述流体的连续性、动量守恒和能量守恒来描述流体的运动规律。
纳维-斯托克斯方程是非线性的偏微分方程,求解非常困难,因此通常需要借助数值方法进行求解。
6.流体流动的雷诺数雷诺数是描述流体流动状态的一个重要无量纲参数。
它由流体的惯性力与粘性力的比值得出,可以判断流体流动的稳定性。
当雷诺数较小时,流体流动呈现层流状态;当雷诺数较大时,流体流动呈现湍流状态。
7.流体黏度的测量方法测量流体黏度的常用方法包括粘度计法、旋转式粘度计法和圆柱旋转法等。
这些方法通过测量流体在不同条件下的流动性质,从而得到流体的黏度。
总结:粘性流体力学是研究流体的黏滞性和流动性质的一个重要分支。
本文逐步思考了一些粘性流体力学的知识点,包括流体的黏度、黏滞力和黏滞性等概念,层流和湍流的区别,斯托克斯定律和纳维-斯托克斯方程等基本原理。
流体力学中的流体粘性分析

流体力学中的流体粘性分析流体力学是机械工程领域中一个重要的分支,研究的是流体的运动和力学行为。
其中,流体的粘性是流体力学中一个重要的参数,对于流体的运动状况和性质具有显著影响。
本文将深入探讨流体粘性的分析及其在流体力学中的应用。
首先,我们需要了解粘性的概念。
粘性是指流体内部分子之间的相互作用力所导致的内摩擦力,是流体流动阻力的基本成因。
粘性较高的流体具有较大的内摩擦力,因此在流动过程中更容易形成无穷小的剪切应力。
而粘性较低的流体则具有较小的内摩擦力,流动时相对容易滑动,形成较小的剪切应力。
要分析流体粘性,我们可以通过研究流体的运动方式和流动特性来进行。
在流体力学中,粘性的分析通常依赖于牛顿第二定律和流体连续性方程,通过这些方程我们可以推导出粘性流体的运动方程。
在这个过程中,维度分析和相似性理论是非常重要的工具,可以帮助我们得到流体粘性的定量描述。
流体粘性的分析结果在工程实践中具有广泛的应用。
比如,在汽车设计中,对于车辆的阻力和燃油消耗有着直接影响的就是气体的粘性。
如果能减小气体的粘性,车辆的阻力将减小,从而提高燃油效率。
另外,粘性在计算机模拟和工艺设计中也有着重要的应用。
例如,在模拟油管输送过程中,对于油管内部流体的粘性分析能够直接影响输油速度和整个过程的效率。
流体粘性的研究对于我们理解自然界中的很多现象也非常重要。
例如,水滴落在玻璃上时的展开形状、液体在管道中的流动特性等等,这些现象都与流体的粘性密切相关。
另外,流体粘性的研究对于生物学和医学领域也有着重要意义。
比如,血液的流动过程和心血管系统的研究,需要考虑血液的粘性以及血管内部流体的行为。
流体力学中的流体粘性分析是一个复杂的课题,需要深入理解流体运动规律和力学原理。
通过数学模型的建立和实验数据的分析,我们可以得到流体粘性的定性和定量描述。
这为工程应用和科学研究提供了重要的依据。
同时,未来的研究也需要进一步深入挖掘流体粘性的实质,提出更加准确和可靠的粘性模型,为流体力学领域的发展做出更多贡献。
八章粘性流体力学基础

任意平面上应力 pn n P = ni pijej
n是该平面单位法向量 nx cos(n,i),ny cos(n, j),nz cos(n,k) 重规例复定Pn的:ip量用ijpije,e1nie,1e表jp21,e示j 3代该n替2P量pi 2i,各jj,pki,项jne3j下相p3 j标加用1,n2i,e3j代pij替xn,1nnyne32,1jz(((p,eee1111jppp一132111n项2eeee中22j2pppp1下232222j 标eene33符33pepp1j32号33p3)))3 j
2
第八章 粘性流体力学基础
8.1.3 应力张量分析
Sx sxx sxy sxz
变形速率张量 S iSx jSy kSz S y syx syy syz
Sz
szx
szy
szz
即:S sijeiej
式 中:
sij
牛顿流体平行平板层流流动实验: xy
du dy
(三)偏应力τ与变形速率S的线性关系式
aS b ij aS ij b ij
牛顿流体平行平板层流流动实验: xy
du dy
xy
a (u 2 y
v x
)
0
xy
a 2
u y
a
2
又: pm ( p11 p22 p33 ) / 3 3 pm pii 0
第八章 粘性流体力学基础 1.粘性流体动力学问题的建立; 2.粘性流动的基本特性; 3.粘性流体运动的相似律; 4.几个典型问题的解析求解和近似求解:
粘性流体力学第一章

有关三维边界层和边界层分离计算仍在不断发展。
有关湍流计算的模式理论等仍适用边界层的计算, 有关边界层流动的研究也是这些理论和方法发展的动 力。
ቤተ መጻሕፍቲ ባይዱ
边界层的实验测量
在湍流边界层计算的发展中,边界层的实验测量, 其中最主要的是对速度分布规律的研究,这方面的 成果有普朗特(Prandtl 1933年)的内层律,卡门 的外层律(Karman 1930年),克劳塞(Clauser 1954年,1956年)压力梯度对外层律影响的修正, 科尔斯(Coles)的尾迹律, 以及1960年代克兰 (Kline)开始用氢气泡技术观察到的边界层猝发 (burst)现象。
粘性流体力学的发展 两种基本流态——层流、湍流 和雷诺数 流体的传输性质 应变率张量和应力张量 广义牛顿定律
第一节 粘性流体力学的发展
1、研究流体粘性的意义
流体存在着粘性,粘性是流体阻止其本身流动 的性质。当流场中存在速度梯度时,流体就会 产生阻力,这就是粘性。
在求解运动物体在流体中的阻力,以及涡旋的 扩散、热量的传递等问题时,粘性会起主导作 用不能忽略。
D. Catherall et al(1966)首先提出了二维边界层 积分型逆解法。在二维边界层上主要应用East(1977)的 逆解法。
三维边界层在分离现象、判别和模拟方面比二维复杂, J. Cousteix(1981)提出了三维边界层的逆解法。以后Le Ballear(1981),Delery J and Formery(1983), Radwan S. F. (1984)和Edwards D.E.(1987)等都进 行边界层逆解法的计算,并取得了满意的结果。
粘性流体力学讲解

z
-px
、v、px、p y、pz、f
牛顿第二定律:
x -py
z
M
z
y
py
p y y
y
ma F
x
y
px
p x x
x
-pz
Dv Dt
x
y
z
f
x
y
z
p x
y
z
(p x
p x x
x)
y
z
p y
x
z
(p
y
p y y
y)
x
z
Dv Dt
fy
1
p y
2v
Dw Dt
fz
1
p z
2w
Discussion:
Dv f 1 p 2 v v
Dt
3
1. 物理意义:单位质量流体惯性力、质量力、压力合力和 粘性力平衡。粘性力包括剪应力与附加法向应力。
0
du
dy
yh
dp h dx
y
h
o -h
umax x
dp 0 dx
压力梯度使速度剖面为抛物型——层流运动的特征。
7.3.2往复振荡平板引起的层流流动
平板运动引起粘性效应的扩散。 流场速度分布:
y o u=Ucos t
u U eky cosky t ——粘性扰动波。 y 2
dp 0 dx
速度分布: (Couette流动)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
荷花和荷叶——出污泥而不染: 为什么始终能自己保持清洁?
水波的奥妙?
水波、鱼鳞、沙漠波纹、鸟羽毛的排列、树叶的纹理 等等都是几何相似的东西,为什么? 最光滑的物体上流动阻力最小吗? 人类能够像小鸟、昆虫一样安全、自如的飞行吗? 人类能够像鱼儿一样游泳吗? 这些都同粘性流体力学有关,可又都是人类还没有攻 克的科学堡垒!
粘性流体力学——从北航的荷花池说起吧
想像在一个美好的夏天,我们一起逛逛北航的荷 花池—— 首先,一只蜻蜓翩翩飞来; 然后,一只蜜蜂嗡嗡光临; 然后,一只小鸟飘然而至; 接着,看到一条小鱼悠闲自得、游来游去; 还有,当然是荷花和荷叶; 最后,池碧水,水波涟漪;
蜻蜓:粘性非定常流动、翅膀机理涡运动
《粘性流体力学》
阎 超
北京航空航天大学
阎超简介
江苏徐州人,清华大学毕业,后在法国留学。博士学位,教 授、博士导师 专业:空气动力学、流体力学 研究方向:计算流体动力学(CFD)、导弹飞船等航天飞行 器总体布局及气动仿真、CFD软件系统开发及其应用 、复 杂流动的数值模拟研究 电话:010-82317019(o) E-mail: chyan@ 办公室:国家CFD实验室320房间 业余爱好:爬山、郊游、运动(羽毛球、乒乓球、高尔夫、游 泳)、桥牌。
谢 谢!
减小流动阻力:鲨鱼皮泳衣
据验证,穿着“鲨鱼皮”在比 赛中可比着普通泳衣减少7.5 %的水阻力,可将一般选手的 平均成绩提高3%左右。
游泳运动的CFD模拟
游泳运动员手臂的CFD计算
游泳运动员手的CFD计算
泳镜的CFD计算
减小流动阻力:仿鱼皮及其在航空航天中的 应用
减小流动阻力:仿鱼皮及其在航空航天中 的应用
蜜蜂:粘性非定常流动、人类飞行的希望
科学研究:尚没有答案
科学家一直在探索
科学家一直在探索:飞机尾涡?
鸟:可靠安全和高效的飞行、粘性流 体力学的专家、羽毛的奥妙?
昆虫飞行的CFD模拟
鱼类:粘性流体力学的专家、鱼鳞的秘密?
仿生:机器鱼、降噪及其军事意义如潜艇 (粘性流动中涡结构的运动导致噪声)
本课程若干问题
授课方法:讲课为主;安排一定自由学时由学 生自己选择粘性流体力学的若干问题,自己查 资料、文献,并写出论文;根据学生论文,安 排讨论等交流; 考试方法:笔试占总成绩60%;上述论文和平 时作业占总成绩40%; 希望大家大胆提问、勇于质疑。
主要参考书目
阎超、钱翼稷、连祺祥,“粘性流体力学”, 北京航空航天大学出版社,2005年版 陈懋章 编著 “粘性流体动力学基础” 高等教 育出版社,1993版或2002版 庄礼贤、尹协远、马晖扬 编著 “流体力学” 中国科学技术大学出版社,1997版