粘性流体力学第六章(6-2)

合集下载

流体力学第6章讲解

流体力学第6章讲解

2、射孔的形状,圆孔口和方孔显然其扩张的情况不会相同。不同的射口形状有 不
同的实验值。用φ表示这个影响因素, 对圆断面射流 φ=3.4,长条缝射孔 φ=2.44。
圆孔综口合射这流两:个t影g响因素K:x k=Kφα 3.4a
x
R 1 3.4 as 3.4( as 0.294)
r0
vm
vm r0 1
1
v0 R
2
1
[(11.5 )2 ]2d
0
9
第二节圆断面射流的运动分析
1
n
1
n
[(1 1.5 )2 ] d Bn; [(1 1.5 )2 ] d Cn
0
0
n
1
1.5
2
2.5
3
Bn
0.0985
0.064
0.0464
0.0359
0.0286
第一节无限空间淹没紊流射流特性
二、紊流系数a及几何特征
其斜率即:tga=常数=k。 对于不同的条件,k值是不同的常数,也叫实验常数。 通过实验发现,k值的影响因素有两个主要的因素:
1、射孔出口截面上气流的紊流强度。 紊流强度的大小用紊流系数a(A)来表示:a大紊流的强度就大,因此,紊
流 系数的大小可以反映出射流的扩张能力,所以,a也叫表征射流流动结构的 特征系数。另一方面,由于a反映的是射流混合能力的大小,因此,a还可以反 映孔口出口截面上的速度均匀程度。a越小,则混合能力越差,说明流速越均匀 。
二、断面流量Q
R
微环面的流量表达式 Q 2vydy Q0 r02v0
0
主体段:
R
Q
v r 0
y
y
2 ( )( )d( )

流体力学-张也影-李忠芳 第6章--孔口出流

流体力学-张也影-李忠芳 第6章--孔口出流

6.2 厚壁孔口出流
如图6-6所示,当2<l/d≤ 4时称为厚壁孔口, 或外伸管嘴。
6.2.1 厚壁孔口出流公式 厚壁孔口在入口处同样
形成一个c-c收缩断面,c-c 断面上的速度用vc表示,流 束面积用Ac表示,这种收缩 称为厚壁孔口的内收缩。
列1-1、2-2断面上的伯努利方程式,令α =l,推演 则得
从公式(6-3)来看,如果经孔口流动没有能量损失,孔 口的阻力系数ζ =0,则孔口的理想流速应该是
vT
2p

2gH
(6-9)
于是
Cv
vc vT

vc 2p

vc 2gH
(6-10)
2.流量系数
从(6-5)式得
Cq

A
qv 2p

A
qv 2gH

qv AvT
qv qT

(6-13)
Cc

0.63

0.37

d D
4
(6 -16)
当(d/D)4项不能忽略时,大孔口的出流速度仍需 按(6-2)式计算:
vc
1
1
Cc2

d D
4
2p

2gH
1

Cc2

d D
4
Cv
2gH
(6-17)
大孔口的流量公式为
2gH
qV Acvc Cc A
4.阻力系数
用实验得出的Cv,可以算出孔口的阻力系数


1 Cv2
1
(6-15)
ζ与Re的关系也表示在图6-3上,当Re>=105时,ζ=0.06。

流体力学 第6章 6-6-2 to 6-7-3

流体力学 第6章 6-6-2 to 6-7-3

∫ v=
r0
0
u 2πrdr
πr
2 0
u yv* = 5.75 lg + 5 .5 ν v*
v* = v λ / 8
13:44:34
1
Re λ = 2 lg 2.51 λ
式(6-11)
同济大学航空航天与力学学院
7
第六节 紊流的沿程水头损失
2、紊流粗糙区沿程摩阻系数 尼古拉兹粗 糙管公式
1
3 .7 d = 2 lg ks λ
13:44:34
同济大学航空航天与力学学院
11
第六节 紊流的沿程水头损失
粗糙区,工业管道与尼古拉兹曲线均与横坐标平行 工业管道的当量糙粒高度:和工业管道紊流粗糙区λ 值相等的同直径尼古拉兹粗糙管的糙粒高度 k s 。
反映粗糙中各种因素对沿 程损失的综合影响
1
3 .7 d = 2 lg ks λ
通过工业管道紊流粗糙区实测的 λ 值,代入该式,反算出 k s
层流局部损失也与平均流速 的一次方成正比
13:44:34
同济大学航空航天与力学学院
25
第八节 管道流动的局部损失
v2 hj = ζ 2g
局部阻力的产生
突变
13:44:34
渐变
同济大学航空航天与力学学院
26
第八节 管道流动的局部损失
局部阻力的产生
突变
13:44:34
渐变
同济大学航空航天与力学学院
27
δ ′ = 11 .6
13:44:34
ν
v*
ks 1 v* k s 1 = = Re * 11 .6 δ ′ 11 .6 ν
9
同济大学航空航天与力学学院

流体力学第六章流体动力学积分形式基本方程

流体力学第六章流体动力学积分形式基本方程

右端为零。
第1页
退出 返回
第六章 流体动力学积分形式基本方程
第三节 动量矩方程
例题6.3 如图6.4所示,离心压缩机叶轮转
速为 ,带动流体一起旋转,圆周速度
为 u ,流体沿叶片流动速度为w ,流量
为Q,流体密度为 ,求叶轮传递给流体
的功率。
解:流体绝对速度为 c u w
当叶片足够多时,可认为流动是稳定的。取
则控制体内流体内能的增量将由辐射热提供,于是有
qR d
de dt
d
d dt
ed
qR
de dt
,即 (6.11)
第3页
退出 返回
第六章 流体动力学积分形式基本方程
第四节 能量方程
据系统导数公式(输运公式),有
d dt
ed
t
ed
A w
nedA
稳定流动时由式(6.11)、(6.12)可得
(6.12)
d
u
t
d
(b)
第4页
退出
返回
第六章 流体动力学积分形式基本方程
第二节 动量方程
将式(a),(b)代入式(6.4)得到
A wr nwrdA u
A wr ndA
Fd
A pndA
t
wrd
u t
d
u t
d
(c)
由连续性方程可知
u
t
d
uA
wr
ndA
0
,则(c)式变为
Awr nwrdA
第1页
退出
返回
第六章 流体动力学积分形式基本方程
第一节 连续性方程
如图6.1所示,令 为控制体体积,A为控制面面积,n为 dA 控制面外

第六章粘性流体动力学基础

第六章粘性流体动力学基础

第六章 粘性流体动力学基础实际流体都是有粘性的,只有当粘性力与惯性力相比很小时,才能忽略粘性力而采用“理想流体”这个简单的理想模型。

支配粘性流体运动的方程比理想流体的基本方程复杂得多,因此粘性流体动力学问题的求解比理想流体动力学问题更加复杂、困难。

本章的目的在于介绍粘性流体动力学的一些基本知识。

§1 雷诺数(Re )——粘性对于流动的影响的大小的度量粘性流体运动方程为:⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+=z y x Dt D z y x p p p f V ρ1 在x 方向的投影为:⎪⎪⎭⎫ ⎝⎛∂∂+∂∂+∂∂+=∂∂+∂∂+∂∂+∂∂z p y p x p f z u w y u v x u u t u zx yx xx x ρ1 这里以xu u ∂∂作为惯性力的代表; y p yx ∂∂ρ1作为粘性力项的代表,其大小为⎪⎪⎭⎫ ⎝⎛∂∂∂∂y u y μρ1。

下面以圆球的粘性流体绕流为例,来估算作用在单位质量流体上的惯性力和粘性力的量阶:(插圆球绕流图)L 为所研究问题的特征长度;∞V 为特征速度;∞ρ为特征密度;∞μ为特征粘性系数。

u 的量阶为∞V ;x u ∂∂的量阶为L V ∞; 22yu ∂∂的量阶为L V 2∞, 则: 作用在单位质量流体上的惯性力的量阶为:LV 2∞ 作用在单位质量流体上的粘性力的量阶为:2L V ∞∞∞ρμ 粘性力惯性力~22L V L V ∞∞∞∞ρμ=∞∞v L V =∞Re Re 称为雷诺数(Reynolds 数),它的物理意义是作用在流体上的惯性力与粘性力的比值的度量。

Re 数是粘性流体动力学中最重要的无量纲参数,它在粘性流体动力学中所占地位与无粘气体动力学的M 数相当。

在不同Re 数范围内的粘性流体运动可以有完全不同的性质,下面以圆柱绕流为例看不同Re 数范围内的圆柱绕流运动。

(插圆柱绕流图)总之:Re 增加,粘性影响变弱,当Re 》1时,对于某些问题,如无分离绕流物体的升力问题,可忽略粘性影响,采用“理想流体”模型。

流体力学 第6章

流体力学 第6章

6.5 紊流运动
紊流的形成过程
选定流层
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
13600 ( 1) 0.3 4.23m 900
设为层流
4Q v 2 2.73m/s d
6.4 圆管中的层流运动
64 l v2 hf vd d 2 g
解得
2 gd 2 hf 8.54106 m 2 /s 64lv
7.69103 Pa s
【解】 列细管测量段前、后 断面的伯努利方程
p1 p2 hf g g
p1 p2 p1 p2 hf g g g
6.4 圆管中的层流运动
p1 g (h hp ) p2 gh p hp p1 p2 ( p ) ghp
h
p p1 p2 hf ( 1)hp g g
2r0
w v 8
6.3 沿程水头损失与剪应力的关系
w v 8
w 定义 v
—— 壁剪切速度,则
v v

8
(6 -11)
上式表明了为沿程阻力系数λ和壁面剪应力τw的关系 式。
6.4 圆管中的层流运动
6.4.1 流动特征
①有序性:水流呈层状流动,各层的质点互不掺混, 质点作有序的直线运动。
6.2.2 雷诺数 1. 圆管流雷诺数

流体力学讲义 第六章 流动阻力及能量损失2

流体力学讲义 第六章 流动阻力及能量损失2

第六章流动阻力及能量损失本章主要研究恒定流动时,流动阻力和水头损失的规律。

对于粘性流体的两种流态——层流与紊流,通常可用下临界雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损失的计算方法是不同的。

对于流速,圆管层流为旋转抛物面分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对数规律分布或指数规律分布。

对于水头损失的计算,层流不用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及过渡区来考虑。

本章最后还阐述了有关的边界层、绕流阻力及紊流扩散等概念。

第一节流态判别一、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。

1.层流层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。

特点:(1)有序性。

水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。

(2)粘性占主要作用,遵循。

(3)能量损失与流速的一次方成正比。

(4)在流速较小且Re较小时发生。

2.紊流紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。

特点:(1)无序性、随机性、有旋性、混掺性。

流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。

(2)紊流受粘性和紊动的共同作用。

(3)水头损失与流速的~2次方成正比。

(4)在流速较大且雷诺数较大时发生。

二、雷诺实验如图6-1所示,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。

(2)ef段:当υ>υ''时,流动只能是紊流。

(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。

图6-1图6-2实验结果(图6-2)的数学表达式层流:m1=, h f=k1v , 即沿程水头损失与流线的一次方成正比。

流体第六章 粘性动力学

流体第六章 粘性动力学

同理可得切应力与剪切速率的关系式 :
上式(6—5)称为广义牛顿内摩擦定律。
式(6—6)
3、粘性流体中的压力
式(6—7)
一、纳维—斯托克斯方程的建立(N—S)
不可压缩牛顿流体层流流动的运动微分方程
矢量形式
二、方程的几种解析解
1、平行平板间的纯剪切流
2、平行平板间的泊谡叶流
部分固体边界的长度。 湿周长 ↑→外部阻力Fo↑ (3)绝对粗糙度Δ :管道内壁上的粗糙突起 高度的平均值。 相对粗糙度:绝对粗糙度与管径的比值
二、有效断面的水力要素
绝对粗糙度Δ ↑→阻力↑
(4)与管路的长度有关
l↑→阻力↑
二、有效断面的水力要素
讨论:有效断面面积A与湿周长 的影响
3、平行平板间的库特流
第四节 圆管中的层流流动
一、圆管中层流的速度分布
一、圆管中层流的速度分布
二、最大流量、流量、平均流速、切应力
1、最大流量
2、流量


层流时管中流量与管径的四次方成比例
3、平均流速
4、切应力
三、沿程水头损失的计算

p 32L D 2 p 32L D2
1/ 1.8 lg[6.8 / Re ( / 3.7d )1.11 ]
(4)紊流粗糙区(f—g以右) 当Re>(665-765lgε)/ε时,λ与Re无关而与
Δ /d有关。 2 1/[21g (3.7d / )] 希夫林松公式1m,管长l=300m的圆管中, 流动着10℃的水,其雷诺数Re=80000,试求绝 对粗糙度为0.15mm时的工业管道的水头损失。

紊流
64 Re
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

卡门理论似乎比普朗特理论完善一些,但比较繁
琐上,多此用P外r当andtldd理x2u2论21 。0 时, t12 为奇点 ,所以工程
17
试验表明, 在湍流边界层据壁面的某个范围内,
速度与距离x2按对数关系变化,即u1 lnx2,根据卡门 的混合长度计算公式(6-47)可得
lm =k
du1 dx2
2
l12
d 2 u1 dx22
2
2
(6-45)
l1 是附加混合长度,不过由试验确定 l1 很复杂。 d、混合长度理论没有考虑压力脉动对动量传递的影响,
而压力脉动可以跨越lm而传递的,考虑到压力脉动的影 响,流体微团的动量不可能在lm范围内保持不变。
12
Karman相似理论:Karman(1930)提出了一种湍流 局部相似性假设。他认为在自由湍流场中各空间点的湍 流脉动具有几何相似性,也就是说,各点的湍流脉动对 同一个时间尺度和长度尺度只有比例系数的差别,因此 只要用一个时间和速度比尺就能确定湍动结构。对于二
到达点 x2 时,恰巧在 x2 l 微团的左边时,就会产
生碰撞,而产生横向运动 u1 ,这样 u2 ~ u1 。同样, 当向两中个间微 补团 充到 也达 会产x2生点u2时。向相反运动时,周围的微团会
8
图6-7 u2的产生
认为
u
2
常数 l du1 dx2
12
u1u2
lm 2
du1 dx2
du1 dx2
对三维流动
u1u2
t
u1 x2
t
u1 x2
uiu
j
t
Dij
t
ui x j
u j xi
2 t Sij
(6-34) (6-35)
3
应力张量表示
ij pij t Dij
(6-36)
其中: t湍流动力粘性系数,或称涡旋粘性系数,t t 是湍流运动粘性系数。
上述假设所以能提出是基于对湍流脉动引起的动量
23
tr 1 exp G
x1 x1tr
x1 x1tr
1 Ue
dx1
其中 xtr为转捩开始的位置,G为经验系数:
G
1 1200
U
3 e
Re 1.34 xtr
Rextr U e x1tr
BL模型(1978)同样适用于湍流边界层。其主要 特点为:采用分区的涡粘公式;用涡量取代变形率; 对混合长度做近壁修正。具体的表达式为:
(6-39)
9
t
lm2
du1 dx2
(6-40)
根据实验研究可以得到以下几点: a、由试验得到的 lm ,不象假设的那样为流体微团的
尺寸,而是与流动的平均尺度一样的量级。 b 、lm 不 是 空 间 常 数 。 在 边 界 层 中 根 据 尼 古 拉 兹 和
Klebanoff试验,在内层(壁面区)
lm
i
kx2
(6-41)
t
i
kx2v*
式中i表示内层,k=0.40~0.41,v*
阻力。
w
,
w是壁面摩擦
10
在边界层的外层(核心区):
lm o 1 t o 2v*
(6-42)
式中o表示外层,1 0.075 ~ 0.09 , 2 0.06 ~ 0.075 ,
为间隙因子。
Van Driest(1959)年提出在内层:
是壁面处的流体运动粘性系数,v* w 是壁面的磨
阻速度。
25
外层的涡粘性系数公式为:
式中,
t o =CFwakeFkleb (x2 )
(6-53)
Fwake=min
x2
max
Fmax
,
Cwk
x2
maxU
2 dif
/ Fmax
Fwake为尾流函数,Fmax和x2max分别为F (x2 ) x2[1 exp
交换与气体分子运动引起的粘性切应力进行简单的类比
的结果。对于 一般在定温下可认为是常数,但 t不
是常量,因为湍流的动量交换取决于湍流的平均运动。
流动只在一个方向上有明确的速度梯度时,可以认
为 t是个标量。在一般情况下,当i=j时
uiui
2k
2 t
ui xi
(6-37)
4
式中k为湍动能(k
1 2
uiui )
lm
i
k
x2
1
exp
x2
25.3v
(6-43)
11
式中k 0.435 ,在外层:
lm o 0.09
(6-44)
c、根据上述公式在管流中 u1
u1 max
时,u1
x2
0
,那么,
t12 0 ,而事实上 t12 0 ,为此Prandtl提出修正:
1
t12
lm
2
d u1 dx1
19
(3)、零方程模型
在上述理论的基础上,一些学者提出了湍流粘 性系数的代数型模型,也称为零方程模型:
Cebci-Smith(1968)(CS)模型, Mellor-Herring(1968)(MH), Patanka-Spalding(1968)(PS)和 Baldwin-Lomax(BL)等模型。 这些模型的共同点是根据湍流边界层的结构, 对 t 在边界层的内层和外层须用不同的尺度。
速度与混合长度lm的乘积成正比
t u1lm
混合长度lm类比于气体分子运动的自由行程,在lm一段
特征长度之内湍流微团保持自己的动量不变。
6
图6-6 混合长度与脉 动速度
对于图中二维不可压定常湍流:
ux2 l ux2 ux2 l
假设微团从x2 l 或 x2 l运动至 x2,对于 x2 来讲,
脉动速度
u
2
0

u
2
0

7
u1
x2
l
u1
x2
l
d u1(x2 ) dx2
x x2
... ...
u1
u1 x2
l
u1 x2
l
d u1 dx2
由于u1 ~ u1, 所以微团从 x2 l 运动到 x2 时 u1 0,
u2还 可0,以也认就为是u说2 u~1u和1,u这2 是是异因号为的当。x2 l 处的微团
(6-47b)
18
其中A为衰减长度因子,定义为
A 26 w / 1 2
w为壁面剪切应力。式(6-47b)表明, 当x2很小时,粘性
作用很大;而当x2增大后,粘性作用逐渐消失。将该式中 的指数函数用泰勒级数展开后容易看出,当x2 0,lm x22。所以式(6-47b)综合了lm x22和lm x2两个区域混合 长度的变化,已称为现在许多实用的零方程的基础。
x2 x20
同时
u
2
u1
,并令 l1 kl2
,那么
l1
d u1 dx2
l12 k
d 2 u1 dx22
lm l1 k
du1
dx2 d 2u1 dx22
(6-47)
16
所以雷诺切应力为:
du1
3
t12 u1u2
式中k=0.40。
k2
dx2
d
2u1
dx22
2
du1 dx2
(6-48)
CS模型发展了Van Priest的模型,得到广泛的 应用,其公式为:
20
对于内层:
t
l2
u1 x2
rtr
式中 0 x2 x2c
l kx2 1 exp x2 A
k=0.40,A是衰减因子。
A A v*1
N
1
N
p v
1 exp 11.8v
exp 11.8v
第六章 湍流基本理论
第一节 第二节 第三节 第四节 第五节 第六节 第七节
湍流的基本特征和统计平均方法 湍流连续方程和雷诺方程 湍流能量方程 雷诺平均统计模式 湍流的相关函数和谱分析 拟序结构 湍流大涡数值模拟
1
第四节 雷诺平均统计模式
在雷诺方程中的不封闭量是雷诺应力,因此统计模式的 目标是封闭雷诺平均方程,建立足够的雷诺应力方程组(代 数的、微分的或一般泛函形式的)使得平均运动方程可解。
ui 0 xi
那么 uiui 0
,如果 t 是一个标量,
,而实际上
uiui
2k 3

为此Boussinesq修正(6-35),提出对于三维湍流
uiu
j
2 3
kij
t
Dij
(6-38)
Townsend.A.A测得在圆柱尾迹的充分湍流区,
t
0.0164U
0
d
,
(U
是来流速度,d是圆柱直径)。
0
Hinze J.O.在空气的圆截面射流中测得t 0.0116U pd
代数涡粘模式的最大缺点是它的局部性,代数表达 式中雷诺应力之核当地的平均变形率有关。代数模式 完全忽略了湍流通计量之间关系的历史效应,而历史 效应很难做局部的修正,因此发展包含历史效应的模
式是必要的,常用的 k 模式包含部分历史效应,称
为目前工程湍流计算的主要封闭模式。
24
t
t t
i o
, ,
内层的涡粘公式为:
x2 x2c x2 x2c
(6-51)
t i =l2
(6-52)
ii 1 2 (i ijk uk x j )是当地的涡量绝对值;l是
考虑壁面修正的混合长度:
l=kx2 1 exp
x2 / A
式中,k=0.4,为卡门常数,A=26,x2=v*x2 / w。 w
相关文档
最新文档