流体力学第六章

合集下载

流体力学 第六章 流体波动

流体力学 第六章 流体波动

由上式可见,波群中包含两个波动的乘积。
其中:
sinkx t
称为高频载波,其波数k和圆频率ω都分别接近 各个单波的波数和圆频率。即
k
k1 k2 2
k1
k2,
1 2
2
1
2
载波的波速也接近于各个单波的波速,即
c 1 2
k k1 k2
Q* 2Qcos kx t
称为低频包络,它是载波的包络线,或称波包,
1
界面波传播速度是有相同厚度H的重力表面
波速度的十分之一。
§3 群速度
单波(单色波,单纯波):具有一定振幅、一 定频率和一定波长在时间和空间都是无限的波 动。
群波(group wave):由各种单色波叠加而成 的波动。叠加结果,有些振幅是相抵消的,有 些是加强的。所以群波的振幅随时间和空间改 变。群波 混合波
设其形式解为:
u(x,t) B sin k(x ct) (6.2.21)
代入原方程,
u t
g
h x
h
t
H
u x
0
(6.2.22)
有:
B g A H
(6.2.23)
说明u和h位相相同(c>0),或位相相差180(0 c 0).
若取 1波速 1 对于海洋若取H=4km, 0.01, c 20m / s,
kx ly mz t (x, y, z,t)
其中:
/ t k / x l / y m / z
圆频率 x 方向的波数 y 方向的波数 z 方向的波数
全波数的概念
定义波数矢量为:
K ki lj mk
波数矢量垂直于等位相面(波阵面) (波数矢量即为波动传播的方向) 定义其模称为全波数

流体力学-第六章 旋转流体力学

流体力学-第六章 旋转流体力学

da A
da Ax
i
da Ay
j
d
a
Az
k
dt dr A
dt dA
dAx
dt
i
dAy
dt
j
dAz
k
dt dt dt
dt
dt
Chen Haishan NIM NUIST
da A da Axi Ay j Azk
dt
dt
展开
dA
dAx
i
dAy
j
dAz
k
dt dt
dt
dt
Chen Haishan NIM NUIST
假定流体运动满足: RO 1 或者RO 0(即 Rossby 数很小);
Ek
R0 Re
0
同时要求: RO L/UT 0 (即要求T很大,1/T 0,即 对应缓慢运动或者准定常流动)。
L R0 UT
V t
(V

)V
1 R0
1 p
1 Fr
g
Ek
一致,是衡量旋转效应的一个重要量。
Chen Haishan NIM NUIST
由Rossby数的定义可知: RO 1 ,偏向力的作用大,旋转效应重要; RO 1,偏向力的作用小,可不考虑地球的旋转效应。
另外的角度来考虑:
大尺度运动(L大),流速缓慢(U小)偏差大 RO 1,旋转效应重要,采用旋转流体运动方程;
普鲁德曼--泰勒定理:不可压或正压流体,在有 势力作用下的准定常缓慢运动,由于强旋转效应 ,其速度将与垂直坐标无关,流动趋于两维化( 流动是水平、二维的)。
普鲁德曼--泰勒定理的检验: 泰勒流体柱实验(P221)。
Chen Haishan NIM NUIST

第六章流体力学10.8

第六章流体力学10.8

第六章流体力学基础基本概念一、流体的粘滞性流体流动时,由于流体与固体壁面的附着力及流体本身的分子运动和内聚力,使各流体层的速度不相等。

在两个相邻流体层之间的接触面上,将产生一对阻碍两层流体相对运动的等值反向的摩擦力,叫做内摩擦力。

流体的粘滞性:流体流动时产生内摩擦力的性质。

二、理想流体与实际流体粘性流体:具有粘性的流体(实际流体)。

理想流体:忽略了粘滞性的流体。

三、流体流动的基本概念1.稳定流动与非稳定流动(1)稳定流动运动流体内任意点的速度u和压力p仅仅是空间坐标()z,的函数,而不x,y随时间变化而变化。

()zu,=,uyx()z,p,=xyp(2)非稳定流动运动流体内任意点的速度u和压力p不仅是空间坐标()z,的函数,也随x,y时间而不同。

()t z,,=u,yxu()t z,,=pp,yx2.迹线与流线(1)迹线流体质点的运动轨迹。

(2)流线流场:流体流动的空间。

流线:是流场中某一瞬间绘出的一条曲线,在这条曲线上所有各流体质点的流速矢量与该曲线相切。

流线的性质:①稳定流动时,流线形状不随时间而变化;②稳定流动时,同一点的流线始终保持不变,且流线上质点的迹线与流线重合,即流线上的质点沿流线运动;③流线既不会相交,又不能转折,只能是光滑的曲线。

假定某一瞬间有两条流线相交于M点或转折。

M处就该有两个速度矢量,这是不符合流线的定义。

3.流管、微小流速及总流(1)流管在流场中取出一段微小的封闭曲线,过这条曲线上各点引出流线,这些流线族所围成的封闭管状曲面。

(2)微小流束及总流流束:在流管中运动的流体。

微小流束:断面无穷小的流束称为微小流束。

微小流束断面上各点的运动要素相等。

流管内的流体只能在流管内流动,流管外的流体也只能在流管外流动。

伯努利方程一、理想流体的伯努利方程仅在重力作用下作稳定流动的理想流体gu g p Z g u g p Z 2//2//22222111++=++ρρ=常数1Z 和2Z :过流断面1-1和2-2距基准面0-0的高度,1u 和2u :断面1-1和2-2的流速,1p 和2p :断面1-1和2-2的压力,ρ:为流体密度。

流体力学

流体力学

2008年真题:盛水容器a 和b 的上方密封,测压管水面位置如 图所示,其底部压强分别为pa与pb若两容器内水深相等, 则pa与pb的关系为: (A) pa pb (B) pa pb (C) pa pb (D)不能确定 答案:A
等压面的概念
由压强相等的点连成的面,称为等压面。等压面 可以是平面,也可以是曲面。
第六章 流 体 力 学
6.1流体的主要物性与流体静力学
6.1.1 流体的连续介质模型 1.假设液体是一种连续充满其所占据空间的毫无空隙的连 续体。流体力学所研究的液体运动是连续介质的连续流动。 意义:使描述液体运动的一切物理量在空间和时间上连续, 故可利用连续函数的分析方法来研究液体运动。 2.流体质点:指微观充分大(其中包含大量分子),宏观
连通容器
连通容器
连通器被隔断
2009年真题 : 1.静止的流体中,任一点的压强的大小与下列哪一项无关? (A) 当地重力加速度 (B) 受压面的方向
(C) 该点的位置
答案:B 2009年真题:
(D) 流体的种类
静止油面(油面上为大气)下3m深度处的绝对压强为下列哪一 项?(油的密度为800kg/m3,当地大气压为100kPa)
充满以流管为边界的一束液流,称为微小流束,也叫元流。
性质:微小流束内外液体不会发生交换;恒定流微小流束的 形状和位置不会随时间而改变,非恒定流时将随时间改变; 横断面上各点的流速和压强可看作是相等的。 任何一个实际水流都具有一定规模的边界,这种有一 定大小
尺寸的实际水流称为总流。总流可以看作是由无限多个微小
1.渐变流过流断面近似为平面 2.恒定渐变流过流断面上流体动压近似按静压分布,同一 过流断面:z+p/(ρg)=c

流体力学第六章明渠恒定均匀流

流体力学第六章明渠恒定均匀流
明渠恒定均匀流
§6-1 明渠恒定均匀流的特性及其计算公式
明渠水流: 渠槽或河槽中液流具有与大气相 通的自由表面 恒定流:运动要素不随时间变化。
均匀流: 流线为平行直线,运动要素沿程不变。
棱柱形渠道:横断面形状、尺寸均沿程不变 的长直渠道,A=f(h)。
梯形断面:
过水断面面积 A (b mh)h
一断面,然后分别对这些断面进行水力
计算,最后进行叠加。
2 n 1 3 Ri i Ai Ri i i 1 ni
Q Ai C i
i 1
n
Q,求i。
确定渠道的断面尺寸:已知Q、i、n、m,
求断面尺寸b和h。
确定渠道的断面尺寸: (1)b一定,求h 假定若干不同的h值,绘出Q=f(h)曲线, 找出对应的h。 (2)h一定,求b 假定若干不同的b值,绘出Q=f(b)曲线, 找出对应的b。
(3)按梯形水力最佳断面条件,确定b和h。 确定边坡系数m,计算宽深比β m,根据 h=f(β m)得出h。 (4)已知 Q、v、i、n、m,求断面尺寸b和h。
V 2
明渠均匀流的计算公式: 谢才公式:v C RJ C Ri
1 y 巴甫洛夫斯基公式:C R , y f (n, R) n Q AV AC Ri K i (K:流量模数)
1 曼宁公式: C R n
1 6
粗糙系数n反映河、渠壁面对水流阻力的
大小,与渠道壁面材料、水位高低、施工质
量及渠道修成后的运行管理等有关。
设计n值偏大,设计阻力偏大,断面尺寸
偏大,实际流速>设计流速;
设计n值偏小,设计阻力偏小,断面尺寸
偏小,实际流速<设计流速;
水力最佳断面:流量一定时过水断面最小

流体力学第六章流体节流与缝隙流动

流体力学第六章流体节流与缝隙流动

第六章流体节流与缝隙流动(了解各种节流及缝隙流动现象,理解影响流量的因素,理解偏心状缝。

掌握气蚀现象。

) §6.1 流体的节流节流:管道内流体流经断面突然缩小的截面后,又进入和以前一样断面的管道,致使压力下降的现象,称为节流。

一、气体节流气体节流后各参数的变化规律,表6-1进行简要分析二、液体节流缝隙中油液产生运动的原因:1)缝隙两端存在压力差;1)组成缝隙的壁面存在相对运动;3)缝隙大小的变化。

缝隙中油液的运动大都呈稳定层流:1)缝隙高度与其长度宽度相比很小,液体在缝隙中流动时受固体壁面的影响;2)油液具有一定的粘度,Re一般很小。

§6.2 液体在小孔中的流动通道截面为圆孔型(分为薄壁小孔型和细长小孔型)。

l d≤。

薄壁小孔:当横隔板壁厚L与孔口直径d之比小于0.5,即/0.5l d>。

液压和润滑系统中的导油管。

细长小孔:小孔的长径比/4§6.3 液体流经平面缝隙平面缝隙:由两平行平面夹成的缝隙。

齿轮泵齿顶与泵壳之间的油液运动,柴油机中滑块与导板之间的油液流动。

结论:1)缝隙中液体流速按抛物线规律分布的;2)流经平面缝隙的流量与缝隙厚度δ的三次方成正比,和动力粘度μ成反比。

§6.4 液体流经同心环状缝隙同心环状缝隙:由内外两个同心圆柱面所围成的缝隙。

结论:流经平面缝隙的流量与缝隙厚度δ的三次方成正比。

§6.5 液体流经偏心环状缝隙偏心环状缝隙:在船舶机械中的环状缝隙,当运动部件装配不当或工作受力不均时,同心环状缝隙就变成偏心环状缝隙。

结论:流经偏心环状缝隙的流量与偏心距成正比,偏心距最大时,泄漏量为同心环状缝隙的2.5倍。

§6.6 液体流经具有相对运动的平行面缝隙喷油泵中的柱塞泵。

类型:(1、2、3)1)平行剪切流动∆=p,由于液体粘滞性,通过平行板的运动液体运动。

2)压差流动液体的运动,在缝隙两端的压差作用下实现。

3)压差与剪切流动的合成液体的运动,在缝隙两端的压差和平行剪切力的作用下共同实现。

《流体力学》第六章气体射流

《流体力学》第六章气体射流
和圆断面射流相比,流量沿程的增加,流速沿 程的衰减都要慢些,这是因为运动的扩散被限 定在垂直于条缝长度的平面上的缘故。
.
射流参数的计算
段 名
参数名称
符号
圆断面射流
平面射流
扩散角 主
α tg3.4a tg2.44a

段 射流直径 或半高度
D b
D d0
6.8
as d0
0.147
b b0
2.44
0.095 as 0.147
d0
v1 0.492
v0
as 0.41
b0
v2
v2 v0
as
0.23 0.147
d0
v2 v0
0.833 as 0.41 b0
.
段名 参数名称
符 号
圆断面射流
平面射流

流量
Q
2
QQ0 10.76ar0s1.32ar0s
Q Q0
1 0.43 as b0

v 断面平均 流速
B0Kx
tgKxK3.4a
x
紊流系数
起始段
主体段
C
B
A
R
M
α r0
核心
0
D X0
边 E
界 层
Sn
F
S
X
射流结构
.
紊流系数与 出口断面上 紊流强度有 关,也与出 口断面上速 度分布的均 匀性有关。 (表6-1)
紊流系数
喷嘴种类 带有收缩口的喷嘴
a
0.066 0.071
圆柱形管
带有导风板的轴流式通风机 带导流板的直角弯管
已知射流直径D, v2,d0,a, 求S和Q0

流体力学第六章

流体力学第六章

积分常数C1、C2由边界条件确定。
C1 exp( h) C2 exp( h) 0
消去一个常数
C C1 exp(h) C 2 exp(h) 2 C exp ( z h) exp ( z h) Cch ( z h) 2 Cch ( z h)sin x cos t 在 z0
t x x y y z
自由面上的运动边界条件
波浪问题的基本方程和边界条件:

2φ x
2

2φ y
2
1 t 2
n 0

z p pa

2
2
0
运动学方程 动力学方程

gz 0
=+

pa C (t ) dt
1 p pa gz 0 t 2
在自由面上: z , p pa
1 g 0 t 2
在自由面上:
z ( x, y, t ) , z z ( x x, y y, t t )
流体质点的速度 :
Ach ( z h) u cos x cos t x shh
w Ash ( z h) sin x cos t z shh
波数和频率之间的关系
Ach ( z h) sin x cos t shh
z0
0 在 z h z g 0 在 z 0 t
Ach ( z h) sin x cos t shh
2 gthh
流体质点的运动轨迹(有限水深):
u w
Ach ( z h) sh h Ash ( z h) sh h
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
流体由于具有易变形的特性(易流动性),因此流体的 运动要比工程力学中的刚体的运动复杂得多。在流体运动中, 有旋流动和无旋流动是流体运动的两种类型。由流体微团运 r 0 动分析可知,有旋流动是指流体微团旋转角速度 的流 r 0 动,无旋流动是指 的流动。
粘性流体的流动大多数是有旋流动,而且有时是以明显的 旋涡形式出现的,如桥墩背流面的旋涡区,船只运动时船尾 后形成的旋涡,大气中形成的龙卷风等等。但在更多的情况 下,流体运动的有旋性并不是一眼就能看得出来的,如当流 体绕流物体时,在物体表面附近形成的速度梯度很大的薄层 内,每一点都有旋涡,而这些旋涡肉眼却是观察不到的。至 于工程中大量存在着的湍流运动,更是充满着尺度不同的大 小旋涡。
一、速度环量
速度环量Г:速度V沿封闭曲线L的 线积分。
L ds
α
V
Γ LV ds L V cos ds L (udx vdy wdz) L d
按照惯例,曲线积分的方向规定为逆时针方向为正, 顺时针方向为负。 例题6-2
二、漩涡(涡旋)强度
旋涡中某点涡量的大小是流体微团绕 该点旋转的平均角速度的2倍,方向 与微团的瞬时转动轴线重合。 漩涡强度就是面积A上涡量的通量, 简称为涡通量。
y

O
O

v xt x
u x t x
x
线变形速度:单位时间内某方向的微元长度在此方向的 相对变化量。

u x x t x u x x lim t , x 0 xt x
同理可得

y
v y
§6-1 流体微团运动分析
一.流体微团的旋转与变形
v yt y
u yt y
u A u, v A v u v u B u x, vB v x x x u v u D u y, vD v y y y u u uC u x y x y v v vC v x y x y
uB u
uC u
u dx x
vB v
vC v
v dx x
u u dx dy x y
v v dx dy x y
uD u
u dy y
vD v
v dy y
u u dx x v v dx x
u
u u dx dy x y v v v dx dy x y
A ωn ΔA
n
ω
I 2n A
I 2 n dA
A
三、斯托克斯定理
任意面积A上的漩涡强度I,等于该面积的边界L上的速度环 量Г,即:
u d x y dxdy 2 z dA dI
旋转角速度:流体微团单位时间内绕与平面垂直的轴所 转过的角度。

流体微团转过的角度为
90 45 2 2
z lim
1 1 v u ( ) t 0 2 t 2 x y
1 u w ) 2 z x
同理可得
x (
1 w v ) 2 y z
y (
旋转角速度大小
x 2 y 2 z 2
二.有旋流动与无旋流动
当流体微团具有绕自身轴作旋转运动时,则该点的运动 是有旋的,否则称无旋运动。无旋运动必定存在势函数, 故称势流。
无旋运动示意如下: 有旋运动示意如下:
斯托克斯定理是研究有旋流动的一个重要定理。它将涡 量的研究从面积分转变为线积分,使计算方便。 通常求 Г比求 I 要容易。

斯托克斯定律证明:
以平面流动为例来证明,如图6-2所示,在平面XOY上 取一微元矩形封闭曲线,其面积dA=dxdy,流体在A点 的速度分量为u和v,则B、C和D点的速度分量分别为:
z
w z
角变形速度:单位时间内在坐标平面内的两条微元边的 夹角的减小量的一半。
u yt u y t y y
v xt v x t x x
z lim t 0
同理可得
1 1 v u 2 t 2 x y 1 u w 1 w v y x 2 z x 2 y z
园盘绕流 尾流场中 的旋涡
机翼绕流(LES)
流体的无旋流动虽然在工程上出现得较少,但无旋流动比有 旋流动在数学处理上简单得多,因此,对二维平面势流在理论研 究方面较成熟。 对工程中的某些问题,在特定条件下对粘性较小的流体运动 进行无旋处理,用势流理论去研究其运动规律,特别是绕流物体 的流动规律,对工程实践具有指导意义和应用价值。因此,本章 先阐述有旋流动的基本概念及基本性质,然后再介绍二维平面势 流理论。
第六章 平面势流和漩涡运动
讨论理想不可压流体的二元运动: 平面势流和漩涡运动问题
意义:①研究理想流体二元运动规律;
②历史上发挥过重要作用,(如机翼绕流、升力 等问题); ③基本解与运动叠加原理对研究粘性流体运动有 指导作用。
刚体的一般运动可以分解为移动和转动两部分。流体与 刚体的主要不同在于它具有流动性,极易变形。因此,任一 流体微团在运动过程中不但与刚体一样可以移动和转动,而 且还会发生变形运动。所以,在一般情况下流体微团的运动 可以分解为移动、转动和变形运动三部分。
无旋流动的充要条件
x y z 0

r i r V x u v j y v
r 1 V 0 2 v k 0 (旋度=0) z w r

w v u w v u , , y z y x x y
§6-2
速度环量和漩涡强度
相关文档
最新文档