流体力学 第六章
流体力学 第六章 流体波动

由上式可见,波群中包含两个波动的乘积。
其中:
sinkx t
称为高频载波,其波数k和圆频率ω都分别接近 各个单波的波数和圆频率。即
k
k1 k2 2
k1
k2,
1 2
2
1
2
载波的波速也接近于各个单波的波速,即
c 1 2
k k1 k2
Q* 2Qcos kx t
称为低频包络,它是载波的包络线,或称波包,
1
界面波传播速度是有相同厚度H的重力表面
波速度的十分之一。
§3 群速度
单波(单色波,单纯波):具有一定振幅、一 定频率和一定波长在时间和空间都是无限的波 动。
群波(group wave):由各种单色波叠加而成 的波动。叠加结果,有些振幅是相抵消的,有 些是加强的。所以群波的振幅随时间和空间改 变。群波 混合波
设其形式解为:
u(x,t) B sin k(x ct) (6.2.21)
代入原方程,
u t
g
h x
h
t
H
u x
0
(6.2.22)
有:
B g A H
(6.2.23)
说明u和h位相相同(c>0),或位相相差180(0 c 0).
若取 1波速 1 对于海洋若取H=4km, 0.01, c 20m / s,
kx ly mz t (x, y, z,t)
其中:
/ t k / x l / y m / z
圆频率 x 方向的波数 y 方向的波数 z 方向的波数
全波数的概念
定义波数矢量为:
K ki lj mk
波数矢量垂直于等位相面(波阵面) (波数矢量即为波动传播的方向) 定义其模称为全波数
流体力学第六章流体节流与缝隙流动

第六章流体节流与缝隙流动(了解各种节流及缝隙流动现象,理解影响流量的因素,理解偏心状缝。
掌握气蚀现象。
) §6.1 流体的节流节流:管道内流体流经断面突然缩小的截面后,又进入和以前一样断面的管道,致使压力下降的现象,称为节流。
一、气体节流气体节流后各参数的变化规律,表6-1进行简要分析二、液体节流缝隙中油液产生运动的原因:1)缝隙两端存在压力差;1)组成缝隙的壁面存在相对运动;3)缝隙大小的变化。
缝隙中油液的运动大都呈稳定层流:1)缝隙高度与其长度宽度相比很小,液体在缝隙中流动时受固体壁面的影响;2)油液具有一定的粘度,Re一般很小。
§6.2 液体在小孔中的流动通道截面为圆孔型(分为薄壁小孔型和细长小孔型)。
l d≤。
薄壁小孔:当横隔板壁厚L与孔口直径d之比小于0.5,即/0.5l d>。
液压和润滑系统中的导油管。
细长小孔:小孔的长径比/4§6.3 液体流经平面缝隙平面缝隙:由两平行平面夹成的缝隙。
齿轮泵齿顶与泵壳之间的油液运动,柴油机中滑块与导板之间的油液流动。
结论:1)缝隙中液体流速按抛物线规律分布的;2)流经平面缝隙的流量与缝隙厚度δ的三次方成正比,和动力粘度μ成反比。
§6.4 液体流经同心环状缝隙同心环状缝隙:由内外两个同心圆柱面所围成的缝隙。
结论:流经平面缝隙的流量与缝隙厚度δ的三次方成正比。
§6.5 液体流经偏心环状缝隙偏心环状缝隙:在船舶机械中的环状缝隙,当运动部件装配不当或工作受力不均时,同心环状缝隙就变成偏心环状缝隙。
结论:流经偏心环状缝隙的流量与偏心距成正比,偏心距最大时,泄漏量为同心环状缝隙的2.5倍。
§6.6 液体流经具有相对运动的平行面缝隙喷油泵中的柱塞泵。
类型:(1、2、3)1)平行剪切流动∆=p,由于液体粘滞性,通过平行板的运动液体运动。
2)压差流动液体的运动,在缝隙两端的压差作用下实现。
3)压差与剪切流动的合成液体的运动,在缝隙两端的压差和平行剪切力的作用下共同实现。
流体力学第六章

量纲分析
量纲分析主要用于分析物理现象中的未知规 律,通过对相关的物理量做量纲幂次分析, 将它们组合成无量纲量,揭示他们间内在关 系,并降低变量数目。 较早提议做量纲分析的是瑞利 (L.Reyleigh,1877),而奠定量纲分析理 论基础的是白金汉 (E.Buckingham,1914),他提出了П定理。
FD Π1 = = CD 2 2 ρV d
П2的量纲幂次式
M L T = (ML ) (LT ) L (ML T )
0 0 0 - 3 a2 -1 b2 c2
−1
−1
M : a 2 + 1 = 0 L : - 3a 2 + b 2 + c 2 - 1 = 0 T : - b - 1 = 0 2
相似的概念
“相似”概念来源于几何学。矩形的相似条 件是对应边长成比例。
l h = ' = kl ' l h
力学相似比几何相似的内容丰富,以机翼绕 流流场为例。
1、几何相似 2、运动相似 3、动力相似
相似准数的确定
量纲分析法 方程分析法
方程分析法
根据物理方程的量纲齐次性可对已知方程进 行量纲为1化,无量纲形式的方程将包含相关 的相似准则数。
第五章
相似原理与量纲分析
实验研究是流体力学研究方法中的重要组成 部分。量纲分析和相似原理是关于如何设计 和组织实验,如何选择实验参数,如何处理 实验数据等问题的指导性理论。
主要内容:物理方程的量纲齐次性, 定理与 量纲分析法,流动相似与相似准则,相似准 数的确定,常用的相似准则数。 重点:(1)量纲齐次性原理; (2) 定理和量纲分析; (3)常用的相似准则.
量纲分析一般步骤
第一步 列举所有相关的物理量。 第二步 选择包含不同基本量纲的物理量为基本量。 第三步 将其余的物理量均作为导出量,分别与以基 本量为底的指数式组成П表达式。 第四步 用量纲幂次式求解每个П表达式中的指数,组 成П数。 第五步 用П数构成新的方程
《流体力学》第六章气体射流

.
射流参数的计算
段 名
参数名称
符号
圆断面射流
平面射流
扩散角 主
α tg3.4a tg2.44a
体
段 射流直径 或半高度
D b
D d0
6.8
as d0
0.147
b b0
2.44
0.095 as 0.147
d0
v1 0.492
v0
as 0.41
b0
v2
v2 v0
as
0.23 0.147
d0
v2 v0
0.833 as 0.41 b0
.
段名 参数名称
符 号
圆断面射流
平面射流
起
流量
Q
2
QQ0 10.76ar0s1.32ar0s
Q Q0
1 0.43 as b0
始
v 断面平均 流速
B0Kx
tgKxK3.4a
x
紊流系数
起始段
主体段
C
B
A
R
M
α r0
核心
0
D X0
边 E
界 层
Sn
F
S
X
射流结构
.
紊流系数与 出口断面上 紊流强度有 关,也与出 口断面上速 度分布的均 匀性有关。 (表6-1)
紊流系数
喷嘴种类 带有收缩口的喷嘴
a
0.066 0.071
圆柱形管
带有导风板的轴流式通风机 带导流板的直角弯管
已知射流直径D, v2,d0,a, 求S和Q0
流体力学第六章 流动阻力及能量损失

第六章流动阻力及能量损失本章主要研究恒定流动时,流动阻力和水头损失的规律。
对于粘性流体的两种流态——层流与紊流,通常可用下临界雷诺数来判别,它在管道与渠道内流动的阻力规律和水头损失的计算方法是不同的。
对于流速,圆管层流为旋转抛物面分布,而圆管紊流的粘性底层为线性分布,紊流核心区为对数规律分布或指数规律分布。
对于水头损失的计算,层流不用分区,而紊流通常需分为水力光滑管区、水力粗糙管区及过渡区来考虑。
本章最后还阐述了有关的边界层、绕流阻力及紊流扩散等概念。
第一节流态判别一、两种流态的运动特征1883年英国物理学家雷诺(Reynolds O.)通过试验观察到液体中存在层流和紊流两种流态。
1.层流观看录像1-层流层流(laminar flow),亦称片流:是指流体质点不相互混杂,流体作有序的成层流动。
特点:(1)有序性。
水流呈层状流动,各层的质点互不混掺,质点作有序的直线运动。
(2)粘性占主要作用,遵循牛顿内摩擦定律。
(3)能量损失与流速的一次方成正比。
(4)在流速较小且雷诺数Re较小时发生。
2.紊流观看录像2-紊流紊流(turbulent flow),亦称湍流:是指局部速度、压力等力学量在时间和空间中发生不规则脉动的流体运动。
特点:(1)无序性、随机性、有旋性、混掺性。
流体质点不再成层流动,而是呈现不规则紊动,流层间质点相互混掺,为无序的随机运动。
(2)紊流受粘性和紊动的共同作用。
(3)水头损失与流速的1.75~2次方成正比。
(4)在流速较大且雷诺数较大时发生。
二、雷诺实验如图6-1所示,实验曲线分为三部分:(1)ab段:当υ<υc时,流动为稳定的层流。
(2)ef段:当υ>υ''时,流动只能是紊流。
(3)be段:当υc<υ<υ''时,流动可能是层流(bc段),也可能是紊流(bde段),取决于水流的原来状态。
图6-1图6-2观看录像3观看录像4观看录像5实验结果(图6-2)的数学表达式层流:m1=1.0, h f=k1v , 即沿程水头损失与流线的一次方成正比。
流体力学第六章

流体由于具有易变形的特性(易流动性),因此流体的
运动要比工程力学中的刚体的运动复杂得多。在流体运动中,
有旋流动和无旋流动是流体运动的两种类型。由流体微团运
动分析可知,有旋流动是指流体微团旋转角速度
动,无旋流动是指
r 的 0流动。
r 的 0流
粘性流体的流动大多数是有旋流动,而且有时是以明显的 旋涡形式出现的,如桥墩背流面的旋涡区,船只运动时船尾 后形成的旋涡,大气中形成的龙卷风等等。但在更多的情况 下,流体运动的有旋性并不是一眼就能看得出来的,如当流 体绕流物体时,在物体表面附近形成的速度梯度很大的薄层 内,每一点都有旋涡,而这些旋涡肉眼却是观察不到的。至 于工程中大量存在着的湍流运动,更是充满着尺度不同的大 小旋涡。
旋转角速度:流体微团单位时间内绕与平面垂直的轴所 转过的角度。
流体微团转过的角度为
90 45
2
2
z
lim 1 2 t 0
t
1 (v 2 x
u ) y
同理可得
x
1 2
( w y
v ) z
u xt x
x
vC
v
v x
x
v y
y
线变形速度:单位时间内某方向的微元长度在此方向的
相对变化量。
x
lim
t ,x0
x
u x
xt
xt
x
u x
同理可得
y
v y
z
w z
角变形速度:单位时间内在坐标平面内的两条微元边的 夹角的减小量的一半。
流体力学第六章

积分常数C1、C2由边界条件确定。
C1 exp( h) C2 exp( h) 0
消去一个常数
C C1 exp(h) C 2 exp(h) 2 C exp ( z h) exp ( z h) Cch ( z h) 2 Cch ( z h)sin x cos t 在 z0
t x x y y z
自由面上的运动边界条件
波浪问题的基本方程和边界条件:
2φ
2φ x
2
2φ y
2
1 t 2
n 0
z p pa
2
2
0
运动学方程 动力学方程
gz 0
=+
pa C (t ) dt
1 p pa gz 0 t 2
在自由面上: z , p pa
1 g 0 t 2
在自由面上:
z ( x, y, t ) , z z ( x x, y y, t t )
流体质点的速度 :
Ach ( z h) u cos x cos t x shh
w Ash ( z h) sin x cos t z shh
波数和频率之间的关系
Ach ( z h) sin x cos t shh
z0
0 在 z h z g 0 在 z 0 t
Ach ( z h) sin x cos t shh
2 gthh
流体质点的运动轨迹(有限水深):
u w
Ach ( z h) sh h Ash ( z h) sh h
流体力学 第6章

6.5 紊流运动
紊流的形成过程
选定流层
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
紊流的形成过程
6.5 紊流运动
13600 ( 1) 0.3 4.23m 900
设为层流
4Q v 2 2.73m/s d
6.4 圆管中的层流运动
64 l v2 hf vd d 2 g
解得
2 gd 2 hf 8.54106 m 2 /s 64lv
7.69103 Pa s
【解】 列细管测量段前、后 断面的伯努利方程
p1 p2 hf g g
p1 p2 p1 p2 hf g g g
6.4 圆管中的层流运动
p1 g (h hp ) p2 gh p hp p1 p2 ( p ) ghp
h
p p1 p2 hf ( 1)hp g g
2r0
w v 8
6.3 沿程水头损失与剪应力的关系
w v 8
w 定义 v
—— 壁剪切速度,则
v v
8
(6 -11)
上式表明了为沿程阻力系数λ和壁面剪应力τw的关系 式。
6.4 圆管中的层流运动
6.4.1 流动特征
①有序性:水流呈层状流动,各层的质点互不掺混, 质点作有序的直线运动。
6.2.2 雷诺数 1. 圆管流雷诺数
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
几个概念
涵箱
加拿大某渠
龙羊峡导流洞
引渠
顺坡(正坡):i>0
平坡:i=0
逆坡(反坡):i<0明槽槽底沿程
降低
不变
增高
顺坡渠道i>0,当渠底坡度较小,
如i<0.01或θ很小时,两断面
间渠底长度△S与两断面间水平
距离△L近似相等,故:
此时,过流断面可以看成铅直面(θ很小),水深h可以直
接量取,认为h=h’。
§6-1 明渠均匀流的水力学特征
一、明渠均匀流特征
3.总水头线、测压管水头线及渠底线相互平行,且
假定单位面积上所受的阻力损失为
流体由断面1流至断面2总阻力损失为
11:21
由于是明渠紊流,故需要讨论流动的水力半径,根据
圆管水力半径的计算,R=d/4,故:
谢才公式(1775年):
由公式可知,要使明渠中的流动保持均匀流动,则i必须大于
0,也就是说只有在顺坡渠道的均匀流动中才有可能满足
§6-2 明渠均匀流的基本计算公式§6-3 水力最优断面及允许流速
从均匀流的公式可以看出,明渠的输水能力(流量)取决于过
水断面的形状、尺寸、底坡和粗糙系数的大小。
设计渠道时,底坡一般依地形条件或其它技术上的要求而定;
11:21
§6-3 水力最优断面及允许流速
从经济的观点来说,总是希望所选定的横断面形状和尺寸在
的比值成为边坡系数,
表示。
即
11:21
11:21
二、矩形断面的水力最优条件对于矩形断面,m=0
故,矩形断面水力最优条件为
在一般土渠中,边坡系数m>l,则按水力最优断面求得宽深比<1,即梯形水力最佳断面通常都是窄而深的断面。
11:21
内,即:
11:21§6-4 明渠均匀流水力计算的几类问题
一、校核渠道的输水能力
下,将已知值代入公式即可。
11:21
m、h,求底坡i。
11:21
§6-5 复式断面明渠均匀流水力计算
前述梯形、矩形等单式过流断面,如果某一渠道承担着
由于渠道主槽左右两侧各有边滩,因此该复式断面可以
分为三个部分,主槽、左边滩和右边。
具体做法是在左右边滩内侧做1-1和2-2铅垂线将主槽与
边滩分开,通过复式断面的流量=各单式断面流量之和,即
11:21
、梯形单式断面水力最优条件:
、矩形单式断面水力最优条件:b=2h
水力最优断面不一定最经济最合理,需要根据实际情况确定。
、设计中要求渠道流速u在不冲、不淤的允许流速范围内。
11:21。