第六章流体力学题库5-1-8
流体力学课后习题答案第六章

6-5 某蒸汽冷凝器内有250根平行的黄铜管,通过的冷却水流量Q =8 l /s ,水温为10oC ,为了使黄铜管内冷却水保持为紊流(此时黄铜管的热交换性能比层流时好),问黄铜管的直径不得超过多少?解:查表1.3有10℃的水621.310*10/m s ν-= 由214Q nd v π= ①及临界雷诺数R e 2300vdν== ② 联立有 14d m m = 即为直径最大值6.7 某管道的半径0r 15cm =,层流时的水力坡度J 0.15=,紊流时的水力坡度J 0.20=,试求管壁处的切应力0τ和离管轴r 10cm =轴处的切应力。
解:层流时:2f 3000h r r 1510ggJ 1.0109.80.15110.25Pa 2l 22τρρ-⨯===⨯⨯⨯⨯=23r 1010g J 1.0109.80.1573.5Pa 22τρ-⨯==⨯⨯⨯⨯=紊流时:2f 3000h r r 1510ggJ 1.0109.80.20147Pa 2l22τρρ-⨯===⨯⨯⨯⨯=2'3r1010gJ 1.0109.80.2098Pa 22τρ-⨯==⨯⨯⨯⨯=6.9为了确定圆管内径,在管内通过ν为0.013 cm 2/s 的水,实测流量为35cm 3/s ,长15m ,管段上的水头损失为2㎝水柱,试求此圆管的内径。
解: 设管内为层流42212832264gdlQgdl gd l d h f πνυνυυν===11441281280.013150035 1.949802f lQ d cm ghνππ⎛⎫⨯⨯⨯⎛⎫===⎪ ⎪⎪⨯⨯⎝⎭⎝⎭校核 1768013.094.13544Re =⨯⨯⨯===πνπνυd Qd 层流6-18 利用圆管层流Re64=λ,紊流光滑区25.0Re3164.0=λ和紊流粗糙区25.011.0⎪⎭⎫⎝⎛=d k s λ这三个公式,(1)论证在层流中0.1v∝f h ,光滑区75.1v∝f h ,粗糙区0.2v∝f h ;(2) 在不计局部损失h m 的情况下,如管道长度l 不变,若使管径d 增大一倍,而沿程水头损失h f 不变,试讨论在圆管层流、紊流光滑区和紊流粗糙区三种情况下,流量各为原来的多少倍?(3) 在不计局部损失h m 的情况下, 如管道长度l 不变,通过流量不变,欲使沿程水头损失h f 减少一半,试讨论在圆管层流、紊流光滑区和紊流粗糙区三种情况下,管径d 各需增大百分之几? 解:(1)由R e vdν=,22f l vh d gλ=有1232f l h v gdν=即在层流 1.0f h v∝由0.250.3164R eλ=得0.251.752 1.250.1582f lvh dgν=光滑区 1.752f h v∝由0.250.11s k d λ⎛⎫= ⎪⎝⎭得0.2523 1.250.0505sf k lh v dg=粗糙区 2.03f h v ∝(2)由214Q d v π=,以上公式变为14128f lQh d gνπ=Q 变为16倍0.251.752 4.751.750.7898f lQh dg νπ=Q 变为6.56倍0.2523 5.2520.808sf k lQh dg π=Q 变为6.17倍(3)由以上公式计算可知分别19%,16%,14%6-19 两条断面面积、长度、相对粗糙高度都相等的风管,断面形状分别为圆形和正方形,试求(1)若两者通过的流量相等,当其管内流动分别处在层流和紊流粗糙区两种情况下时,两种管道的沿程水头损失之比h f 圆/h f 方分别为多少?(2)若两者的沿程水头损失相等,且流动都处在紊流粗糙区,哪条管道的过流能力大?大多少? 解:(1)2214d a π=224a dπ=当量直径de a = 层流时 226464R e 22f l vlv h d gd gν==22220.7854f h de a h ddπ====圆方紊流粗糙区22f l vh d gλ=,λ相等0.886f h de a h dd====圆方(2)Q Q =圆方此时圆管流通能力大,大6%6.20 水管直径为50㎜,1、2两断面相距15 m ,高差3 m ,通过流量Q =6 l/s ,水银压差计读值为250㎜,试求管道的沿程阻力系数。
流体力学课后习题答案第六章

6-5 某蒸汽冷凝器内有250根平行的黄铜管,通过的冷却水流量Q =8 l /s ,水温为10oC ,为了使黄铜管内冷却水保持为紊流(此时黄铜管的热交换性能比层流时好),问黄铜管的直径不得超过多少?解:查表1.3有10℃的水621.310*10/m s ν-=由214Q nd v π= ① 及临界雷诺数Re 2300vdν== ②联立有 14d mm = 即为直径最大值6.7 某管道的半径0r 15cm =,层流时的水力坡度J 0.15=,紊流时的水力坡度J 0.20=,试求管壁处的切应力0τ和离管轴r 10cm =轴处的切应力。
解:层流时:2f 3000h r r 1510g g J 1.0109.80.15110.25Pa 2l 22τρρ-⨯===⨯⨯⨯⨯=23r 1010g J 1.0109.80.1573.5Pa 22τρ-⨯==⨯⨯⨯⨯=紊流时:2f 3000h r r 1510g g J 1.0109.80.20147Pa 2l 22τρρ-⨯===⨯⨯⨯⨯=2'3r 1010g J 1.0109.80.2098Pa 22τρ-⨯==⨯⨯⨯⨯= 6.9为了确定圆管内径,在管内通过ν为0.013 cm 2/s 的水,实测流量为35cm 3/s ,长15m ,管段上的水头损失为2㎝水柱,试求此圆管的内径。
解: 设管内为层流42212832264gd lQ gd l g d l d h f πνυνυυν===11441281280.013150035 1.949802f lQ d cm gh νππ⎛⎫⨯⨯⨯⎛⎫===⎪ ⎪⎪⨯⨯⎝⎭⎝⎭校核 1768013.094.13544Re =⨯⨯⨯===πνπνυd Q d 层流 6-18 利用圆管层流Re 64=λ,紊流光滑区25.0Re 3164.0=λ和紊流粗糙区25.011.0⎪⎭⎫⎝⎛=d k s λ这三个公式,(1)论证在层流中0.1v ∝f h ,光滑区75.1v ∝f h ,粗糙区0.2v ∝f h ;(2) 在不计局部损失h m 的情况下,如管道长度l 不变,若使管径d 增大一倍,而沿程水头损失h f 不变,试讨论在圆管层流、紊流光滑区和紊流粗糙区三种情况下,流量各为原来的多少倍?(3) 在不计局部损失h m 的情况下, 如管道长度l 不变,通过流量不变,欲使沿程水头损失h f 减少一半,试讨论在圆管层流、紊流光滑区和紊流粗糙区三种情况下,管径d 各需增大百分之几?解:(1)由Re vdν=,22f l v h d g λ=有1232f lh v gd ν=即在层流 1.0f h v ∝由0.250.3164Re λ= 得0.25 1.752 1.250.1582f lv h d g ν=光滑区 1.752f h v∝由0.250.11s k d λ⎛⎫= ⎪⎝⎭得0.2523 1.250.0505s f k l h v d g=粗糙区 2.03f h v ∝(2)由214Q d v π=,以上公式变为 14128f lQh d gνπ=Q 变为16倍0.25 1.7524.75 1.750.7898f lQ h d g νπ= Q 变为6.56倍0.25235.2520.808s f k lQ h d g π= Q 变为6.17倍 (3)由以上公式计算可知分别19%,16%,14%6-19 两条断面面积、长度、相对粗糙高度都相等的风管,断面形状分别为圆形和正方形,试求(1)若两者通过的流量相等,当其管内流动分别处在层流和紊流粗糙区两种情况下时,两种管道的沿程水头损失之比h f 圆/h f 方分别为多少?(2)若两者的沿程水头损失相等,且流动都处在紊流粗糙区,哪条管道的过流能力大?大多少?解:(1) 2214d a π= 224a d π=当量直径de a =层流时 226464Re 22f l v lv h d g d gν==22220.7854f h de a h d d π====圆方紊流粗糙区22f l v h d gλ=,λ相等0.886f h de a h d d ====圆方(2)Q Q =圆方此时圆管流通能力大,大6%6.20 水管直径为50㎜,1、2两断面相距15 m ,高差3 m ,通过流量Q =6 l/s ,水银压差计读值为250㎜,试求管道的沿程阻力系数。
李玉柱流体力学课后题答案 第六章

第六章 孔口、管嘴出流与有压管流6-1 在水箱侧壁上有一直径50mm d =的小孔口,如图所示。
在水头H 的作用下,收缩断面流速为 6.86m/s C V =,经过孔口的水头损失0.165m w h =,如果流量系数0.61μ=,试求流速系数ϕ和水股直径c d 。
解:根据伯努利方程:22.51m 2c w V H h g=+= 流速系数0.9672c cV V V gHϕ=== 2c c Q A gH AV μ==,39.71mm cd = 6-2 图示一船闸闸室,闸室横断面面积2800m A =,有一高2m h =、宽4m b =的矩形放水孔。
该孔用一个速度0.05m/s v =匀速上升的闸门开启。
假设初始水头15m H =,孔口流量系数0.65μ=,孔口出流时下游水位保持不变。
试求(1)闸门开启完毕时闸室中水位降低值y ;(2)闸室水位与下游平齐所需要的总时间T 。
解:(1)闸门完全开启所用的时间:40s ht v== 此段时间内孔口的面积可用孔的平均面积来表示:24m A =因为40s T ==所以:2 3.796m H =,12 1.204m y H H =-=(2)闸门完全打开后,防水孔的面积:28m A bh '== 液面降到与下游液面平齐所需要的时间因为135.41s T '==所以175.41s T t T '=+=6-3 贮液箱中水深保持为 1.8m h =,液面上的压强070kPa p =(相对压强),箱底开一孔,孔直径50mm d =。
流量系数0.61μ=,求此底孔排出的液流流量。
解:根据伯努利方程:202p V h g gρ+= 215.9L/s 4Q d V πμ==6-4 用隔板将矩形水池中的水体分成左右两部分,如图所示,右半部分水面保持恒定,隔板上有直径10.1m d =的圆形孔口,位于右半部液面下1 4.8m H =处。
在左半部分的侧面与前一孔口相同的高度处开有直径20.125m d =的圆形孔口,当水池两半部分的水面稳定后,试求左半部水面高度计孔口出流流量。
《流体力学》徐正坦主编课后答案第6、7、8章

第六、七、八章习题简答6-1 假设自由落体的下落距离s与落体的质量m,重力加速度g及下落时间t有关,试用瑞利法导出自由落体下落距离的关系式。
解:首先将关系式写成指数关系:s=Km a g b t c其中,K为无量纲量,也称无量系数。
各变量的量纲分别为:dim s=L,dim W=MLT-2,dim t= T,dim g=LT-2。
将上式指数方程写成量纲方程:L=( MLT-2) a ( LT-2) b ( T) c根据物理方程量纲一致性原则得到M:0=aL:1=a+bT:0=-2a-2b+c得出a=0 b=1 c=2代入原式,得s=Km0gt2即s=Kgt2注意:式中重量的指数为零,表明自由落体距离与重量无关。
其中系数K须由实验确定。
6-7已知矩形薄壁堰的溢流量Q与堰上水头H、堰宽b、水的密度ρ和动力粘滞系数μ,重力加速度g 有关,试用π定理推导流量公式。
题6-7图解:首先将函数关系设为 F(Q ,H ,b ,ρ,μ,g )=0其中变量数n=6,选取基本变量H 、ρ、g ,这3个变量包含了L 、T 、M 三个基本量纲。
根据π定理,上式可变为 f (π1,π2,π3)=0 式中Q g H c b a 1111ρπ=b g Hc b a 2222ρπ=μρπ3333c b a g H =将各数方程写成量纲形式:)()()(dim 132********---==T L LT ML L T L M c b a π根据量纲的一致性,有: L :a 1-3b 1+c 1+3=0 T :-2c 1-1=0 M :b 1=0得a 1=-5/2,b 1= 0,c 1= -1/2所以 gHQ Q g H 2521251==--π同理可得Hb b H ==-12πgH g H ρμμρπ23211233==---这样原来的函数关系可写成0(2325=),,gH H b g H Q f ρμ 即),gH H b f gHQ ρμ23125(=则5252312((H g Hb f H g g H H b f Q )),==ρμ 6-8 加热炉回热装置冷态模型试验,模型长度比尺λl =5,已知回热装置中烟气的运动粘滞系数为ν=0.7×10-4m 2/s ,流速为υ=2.5m/s ,试求20℃空气在模型中的流速为多大时,流动才能相似。
流体力学第六章边界层流动5

层流与紊流、雷诺数
在不同的初始和边界条件下,粘性流体质点的运动会出现两种不同
的运动状态,一种是所有流体质点作定向有规则的运动,另一种是
作无规则不定向的混杂运动。前者称为层流状态,后者称为湍流状 态(别称紊流状态)。首先是英国物理学家雷诺在1883年用实验证
明了两种流态的存在,确定了流态的判别方法。
u???????????????????????用量纲分析的方程分析法可得一般二维流动无量纲方程组用量纲分析的方程分析法可得一般二维流动无量纲方程组621平板层流边界层微分方程精确解0??????yuxuyxre12222yuxuxpeuyuuxuuxxxyxx???????????????1121?11?11?11???2?2015112924忽略第二方程最后一项第三方程除压强项的其他项
vc d Re c
Re c
vc d
Re 2320时,管中是层 流; Re 2320时,管中是紊 流。
2018/10/31 13
根据实验结果可知,同管流一样,边界层内也存在着层流和紊流两种 流动状态,若全部边界层内部都是层流,称为层流边界层;若全部边界层 内部都是湍流,称为湍流边界层;若在边界层起始部分内是层流,而在 其余部分内是紊流,称为混合边界层。如图所示,在层流变为紊流之间 有一过渡区。在紊流边界层内紧靠壁面处也有一层极薄的层流底层。
dp dU U dx dx
②第二式右边得到简化(x方向二阶偏导数消失),有利于数值计算。 利用该方程就可计算壁切应力和流动阻力,具有里程碑式意义。
2018/10/31 25
布拉修斯利用相似性解法,引入无量纲坐标:
Rex
*
*
流体力学课后题

第一章 绪论1-6.图示为一水平方向运动的木板,其速度为1m s,平板浮在油面上,油深 1mm δ=,油的0.09807Pa s μ=,求作用于平板单位面积上的阻力?⎡⎤⎣⎦解10.0980798.070.001du Pa dy τμ==⨯= 1-7. 温度为20℃的空气,在直径为2.5cm 管中流动,距管壁上1mm 处的空气速度为3cm/s 。
求作用于单位长度管壁上的粘滞切应力为多少? 解: f=m N dyduA/103.410/1031105.2100183.053223-----⨯=⨯⨯⨯⨯⨯⨯=πμ 1-8.一底面积为4045cm ⨯,高为1cm 的木板,质量为5kg ,沿着涂有润滑油的斜面等速向下运动,1m v s=,1mm δ=,求润滑油的动力黏度?⎡⎤⎣⎦解0T GSin α-=55255131313T GSin G g g α==⋅=⨯⨯=所以 10.400.451800.001du T A dy μμμ==⨯=但 259.8070.10513180Pa s μ⨯==⋅⨯所以5第二章 流体静力学2-6.封闭容器水面的绝对压强20107.7KNp m=,当地大气压强298.07a KNp m =,试求〔1〕水深0.8h m =的A 点的绝对压强和相对压强?〔2〕假设容器水面距基准面高度5Z m =,求A 点的测压管高度和测压管水头。
并图示容器液体各点的测压管水头线;〔3〕压力表M 和酒精〔27.944KNm γ=〕测压计h 的读数值?hh 1AM p 0⎡⎤⎣⎦解〔1〕201107.79.8070.8115.55A KN p p h m γ'=+=+⨯= 2115.5598.0717.48A A a KN p p p m '=-=-=〔2〕217.481.789.807Ap h m γ=== 25 1.78 6.78n A H Z h m =+=+=〔3〕20107.798.079.63M a KNp p p m =-=-=9.631.217.944Mp h m γ=== 2-16. 水箱真空表M 的读数为0.98kPa ,水箱与油箱的液面差H =1.5m ,水银柱差m 2.02=h ,3m /kg 800=油ρ,求1h 为多少米?解:取等压面1-1,那么()()()()()12122211332800.29809800 1.50.2 5.610008009.8a a Hg Hg P P g H h h P gh gh gh P g H h h gmρρρρρρρ-+++=+++-+=-⨯+-⨯+==-⨯油油2-20.图为倾斜水管上测定压差的装置,cm 20=z ,压差计液面之差cm 12=h ,求当〔1〕31kg/m 920=ρ的油时;〔2〕1ρ为空气时;A 、B 两点的压差分别为多少?解:〔1〕取等压面1-1 PaghgZ gh P P ghgZ P gh P A B B A 92.1865)12.02.0(980012.08.992011=-⨯+⨯⨯=-+=---=-ρρρρρρ〔2〕同题〔1〕可得Pagh gZ P P gZP gh P A B B A 784)12.02.0(9800=-⨯=-=--=-ρρρρ2-36.有一圆滚门,长度10l m =,直径4D m =,上游水深14H m =,下游水深22H m =,求水作用于圆滚门上的水平和铅直分压力?⎡⎤⎣⎦解2212121()2x x x p p p l H H γ=-=- 2219.80710(42)5902KN =⨯⨯⨯-=23439.8074109204z p V Al R lKN γγγππ==•==⨯⨯⨯=2-44.一洒水车以等加速度2/98.0s m a =在平地上行驶,水车静止时,B 点位置m x 5.11=,m h 1=,求运动后该点的静水压强。
流体力学题库

名词解释1。
粘性:在外力作用下,流体微元间出现相对运动时,随之产生阻抗相对运动的内摩擦力2。
压缩系数:在一定温度下,密度的变化率与压强的变化成正比3。
膨胀系数:在一定压强下,体积的变化率与温度的变化成正比4.表面张力:通常是指液体与气体交界面上的张应力( 单位长度所受拉力(N/m) )5.接触角:当液体与固体壁面接触时, 在液体,固体壁面作液体表面的切面, 此切面与固体壁在液体内部所夹部分的角度θ称为接触角,当θ为锐角时, 液体润湿固体,当θ为钝角时,液体不润湿固体。
6。
时变导数:固定点物理量A随时间变化率,反映流场的不定常性。
7。
位变导数:不同位置上物理量的差异引起的变化率,反映流场的不均匀性8.流管:在液流中取一封闭的曲线,通过这一封闭曲线上每一点可以引出一条流线,这些流线形成一个封闭的管状体,称为流管。
9.总流:过流断面为有限大小的流束,它由无数元流构成10.涡管:在给定瞬时,在涡量场中取一不是涡线得封闭曲线,通过曲线上每点做涡线,这些涡线形成一个管状表面,称为涡管,涡管中充满着做旋转运动的流体。
11。
漩涡强度:面积dA,dA上流体质点的旋转角速度向量为ω,n为dA的法线方向,微元面积上的漩涡强度用dI表示,公式为:对整个表面积A积分,总的漩涡强度为:12.速度环量:假定某一瞬时,流场中每一点的速度是已知的,AB曲线上任一点的速度为V,在该曲线上取一微元段ds,V与ds之间的夹角为α,则称dГ=V·ds=V cos αds为沿微元线段ds上的环量。
简答题拉格朗日法与欧拉法的区别与联系:区别:拉格朗日法是以研究单个流体质点运动过程作为基础,综合所有质点的运动,构成整个流体的运动.——质点法欧拉法是以流体质点流经流场中各空间点的运动即以流场作为描述对象研究流动的方法.——流场法 它不直接追究质点的运动过程,而是以充满运动液体质点的空间--流场为对象。
联系:拉格朗日法和欧拉法只不过是描述流体运动的两种不同的方法,本质上是一样的。
第6章-流体流动微分方程-例题

0 0 0
θ:
2 v ∂v v v ∂vθ ∂v ⎡ ∂ ⎛1 ∂ 1 1 ∂p ⎞ 1 ∂ vθ 2 ∂vr ⎤ + ν ⎢ ⎜ (rvθ) + + vr θ + θ θ + r θ = fθ − + ⎟ 2 ρ r ∂θ r r ∂θ r
∂r ⎝ r ∂r ∂t ∂r ∂θ 2 r 2 ∂θ ⎥ ⎠ ⎣ ⎦
工程流体力学——第六章 流体流动微分方程——例题
CH6-5
r:
2 ⎡ ∂ ⎛1 ∂ ∂vr ∂v v ∂v v 2 1 ∂p ⎞ 1 ∂ vr 2 ∂vθ ⎤ + vr r + θ r − θ = f r − + − 2 + ν ⎢ ⎜ (rvr) ⎥ ⎟ 2 2 r r ∂ r ∂θ ⎦ θ r N ρ ∂r ∂t ∂ ∂r ⎝ r ∂r ⎠ r ∂θ ⎣
∂vz dv =μ z ∂r dr
由此可知:(a)不可压缩一维稳态层流每点各方向正应力=-p,因此分析 相应问题时微元体表面正应力可直接以压力标注;(b)管内流体既有沿 z 方向 的切应力,同时也伴随有 r 方向的切应力。 ⑤ 因 ∂p*/ ∂z = ∂p / ∂z =const 且 vz =vz (r ) ,故 z 方向运动方程为常微分方程, 其边界条件为 vz r = R = 0 、 (dvz /dr ) r =0 = 0 ;积分运动方程并以 −Δp /L 替代 ∂p / ∂z 可得 速度分布,进而得到切应力分布,其结果为:
CH6-7
对于内筒转动外筒固定的情况, 由于离心 力与压差力均指向外壁, 两者都促使流体向外 层运动, 故流体沿切向的层流流动难以保持稳 定。该条件下,雷诺数定义及过渡雷诺数分别 为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第六章流体力学题库
5-1-8
问题:
[单选]图示并联管路,已知两支管的比阻比,管长比,则两支管的流量比()。
A.['12
B.
C.
D.2
问题:
[单选]图示压力供水箱水位恒定,顶部压力表读数,水深H=2m,水平供水管长l=100m,管径d=200mm,沿程阻力系数λ=0.02,若忽略局部水头损失,则管道通过的流量Q=()Ls。
A.47.4
B.59.3
C.83.8
D.196.5
问题:
[单选]下列渠道中,可能产生均匀流的是()。
A.平坡棱柱形渠道
B.逆坡棱柱形渠道
C.正坡棱柱形渠道
D.正坡非棱柱形渠道
/ 西甲赛程
问题:
[单选]欲使水力最优梯形断面渠道的水深和底宽相等,则渠道的边坡系数m应为()。
A.1
B.34
C.12
D.14
问题:
[单选]图示半圆形断面长直渠道,半径r0=2m,底坡i=0.0004,渠壁粗糙系数n=0.01,则渠道的断面平均流速为()ms。
A.1
B.2
C.2.5
D.3
问题:
[单选]有一条养护良好的矩形断面长直渠道,底坡i=0.0008,底宽b=1.0m,均匀流动水深h=0.5m,粗糙系数n=0.025,则渠道通过的流量Q=()m3s。
A.0.10
B.0.15
C.0.23
D.0.35
问题:
[单选]矩形断面长直渠道通过流量Q=5m3s,渠壁粗糙系数n=0.016,底坡i=0.001,按水力最优断面设计,渠道底宽b应为()m。
A.2.60
B.3.60
C.4.60
D.5.60。