乘法原理与排列组合
排列组合常见的九种方法

复习巩固1.分类计数原理(加法原理)完成一件事,有类办法,在第1类办法中有种不同的方法,在n 1m 第2类办法中有种不同的方法,…,在第类办法中有种不2m n n m 同的方法,那么完成这件事共有:12nN m m m =+++L 种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成个步骤,做第1步有种不同的方法,做n 1m 第2步有种不同的方法,…,做第步有种不同的方法,那2m n n m 么完成这件事共有:12nN m m m =⨯⨯⨯L 种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C 然后排首位共有14C 最后排其它位置共有34A 由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有种不同522522480A A A =的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习题:1、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 302、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A (空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种47A 方法,其余的三个位置甲乙丙共有1种坐法,则共有种方法。
乘法原理 排列组合

乘法原理排列组合
乘法原理是组合数学中的基本原理之一,用于计算具有多个步骤或阶段的事件的总数。
根据乘法原理,如果一个事件需要依次经过多个步骤,每个步骤都有若干选项可选,则该事件的总数等于每个步骤的选项数的乘积。
例如,假设有一个有三个颜色的衣柜,一个有两个样式的鞋柜,一个有四个款式的帽子。
如果我们要从这些柜子中选择一件衣服、一双鞋子和一顶帽子,那么根据乘法原理,总的选择数等于3(衣柜中的选项数)乘以2(鞋柜中的选项数)乘以4
(帽子款式的选项数),即3×2×4=24。
乘法原理还可以用于计算排列和组合。
排列是从给定元素中选择若干个元素并按一定顺序进行排列的方式,而组合是从给定元素中选择若干个元素,不考虑顺序的方式。
例如,假设我们有5个人要从中选出3个人组成一个小组,那么按照乘法原理,总的组合数等于5(第一个人的选择数)乘
以4(第二个人的选择数)乘以3(第三个人的选择数),即
5×4×3=60。
这个计算结果表示了从5个人中选出3个人进行
排列的总数。
总之,乘法原理是一个非常有用且广泛应用于排列组合问题中的原理,可以帮助我们计算多个步骤的事件的总数。
在计算过程中,我们需要根据给定的问题情境确定每个步骤的选项数,并使用乘法运算求得最终结果。
排列组合的二十种解法(最全的排列组合方法总结)

排列组合的二十种解法(最全的排列组合方法总结)教学目标:1.理解和应用分类计数原理和分步计数原理。
2.掌握解决排列组合问题的常用策略,能够解决简单的综合应用题,提高解决问题和分析问题的能力。
3.学会应用数学思想和方法解决排列组合问题。
复巩固:1.分类计数原理(加法原理):完成一件事,有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法。
在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+。
+mn种不同的方法。
2.分步计数原理(乘法原理):完成一件事,需要分成n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法。
做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×。
×mn种不同的方法。
3.分类计数原理和分步计数原理的区别:分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事;分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件。
解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事。
2.确定采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合问题(无序),元素总数是多少及取出多少个元素。
4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略。
一、特殊元素和特殊位置优先策略:例1.由0、1、2、3、4、5可以组成多少个没有重复数字的五位奇数。
解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置。
先排末位共有C3,然后排首位共有C4,最后排其它位置共有A4^3.由分步计数原理得C4×C3×A4^3=288.位置分析法和元素分析法是解决排列组合问题最常用也是最基本的方法。
若以元素分析为主,需先安排特殊元素,再处理其它元素。
若以位置分析为主,需先满足特殊位置的要求,再处理其它位置。
乘法原理和排列组合

乘法原理和排列组合
乘法原理是概率论中一种常用的计数方法。
它是指如果事件 A 可以发生的方式数为 m 种,事件 B 可以发生的方式数为 n 种,那么事件 A 和 B 同时发生的方式数为 m × n 种。
排列是从给定的对象中取出几个,按照一定的顺序排列起来;而组合是从给定的对象中取出几个,不考虑顺序。
举例来说,假设有 3 个任务,每个任务可以由 A、B、C 三个
人中的任何一个完成。
那么根据乘法原理,完成这 3 个任务的方式数为 3 × 3 × 3 = 27 种。
即每个任务有 3 种选择,总的方
式数为 3 的 3 次方。
再举一个例子,假设有 5 个人排队,他们的身高依次是A、B、C、D、E。
那么根据排列的定义,他们可以排列成的不同队形数为 5 × 4 × 3 × 2 × 1 = 120 种。
即第一个位置有 5 种选择,第
二个位置有 4 种选择,以此类推。
再来看一个组合的例子,假设有 7 个球员要从中选出 3 个进行比赛。
那么根据组合的定义,不考虑选出球员的顺序,选出的不同组合数为 C(7, 3) = 7! / (3! * (7 - 3)!) = 35 种。
即从 7 个球
员中选出 3 个的方式数为 35 种。
乘法原理和排列组合在概率论和统计学中都有广泛的应用。
它们是辅助计算事件发生方式数和计算概率的重要方法,可以帮助我们更好地理解和分析随机事件的规律。
排列与组合,分步乘法计数原理,分类加法计数原理

排列:1、排列的概念:从n个不同元素中取出m (mWn)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。
2、全排列:把n个不同元素全部取出的一个排列,叫做这n个元素的一个全排列。
3、排列数的概念:从n个不同元素中取出m (mWn)个元素的所有排列的个数,叫做从 n 个不同元素中取出m个元素的排列数,用符号白;表示。
4、阶乘:自然数1到n的连乘积,用n!=1X2X3X・・・Xn表示。
规定:0!=15、排列数公式:*”n (n-1)(n-2)(n-3)…(n-m+1)='卡—活"。
组合:1、组合的概念:从n个不同元素中取出m个元素并成一组,叫做从n个不同元素中取出m 个元素的一个组合。
2、组合数的概念:从n个不同元素中取出m个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数用符号C;表示。
b=屋=题…---掰+。
_ /3、组合数公式:1H史耀!的I一对;4、组合数性质:K - …,5、排列数与组合数的关系:量二5,排列与组合的联系与区别:从排列与组合的定义可以知道,两者都是从n个不同元素中取出m个(mWn, n, m£N) 元素,这是排列与组合的共同点。
它们的不同点是:排列是把取出的元素再按顺序排列成一列,它与元素的顺序有关系,而组合只要把元素取出来就可以,取出的元素与顺序无关.只有元素相同且顺序也相同的两个排列才是相同的排列,否则就不相同;而对于组合,只要两个组合的元素相同,不论元素的顺序如何,都是相同的组合,如a, b与b, a是两个不同的排列,但却是同一个组合。
排列应用题的最基本的解法有:(1)直接法:以元素为考察对象,先满足特殊元素的要求,再考虑一般元素,称为元素分析法,或以位置为考察对象,先满足特殊位置的要求,再考虑一般位置,称为位置分析法;(2)间接法:先不考虑附加条件,计算出总排列数,再减去不符合要求的排列数。
排列的定义的理解:①排列的定义中包含两个基本内容,一是取出元素;二是按照一定的顺序排列;②只有元素完全相同,并且元素的排列顺序也完全相同时,两个排列才是同一个排列,元素完全相同,但排列顺序不一样或元素不完全相同,排列顺序相同的排列,都不是同一个排列;③定义中规定了 mWn,如果m<n,称为选排列;如果m=n,称为全排列;④定义中“一定的顺序”,就是说排列与位置有关,在实际问题中,要由具体问题的性质和条件进行判断,这一点要特别注意;⑤可以根据排列的定义来判断一个问题是不是排列问题,只有符合排列定义的说法,才是排列问题。
排列组合知识点

排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n nn n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L 注: 若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
排列组合

练习5
8.用20个不同颜色的念珠穿成一条项链,能做 多少个不同的项链 9.在单词MISSISSIPPI 中字母的排列数是 10求取自1,2,...k的长为r的非减序列的个数为
• (20!/20)
(11!/(1!*4!*4!*2!) (c(r+k-1,r))
排列与组合的产生算法
1.排列的产生 方法1:(递归,深度优先产生) 程序如下: program pailei; const m=4; var a:array[1..m] of integer ; b:array[1..m] of boolean; /////////////////////////////////////////////////// procedure print; var i:integer; begin for i:=1 to m do write(a[i]); writeln; end; /////////////////////////////////////////////////// procedure try(dep:integer); var i:integer; begin for i:=1 to m do if b[i] then begin a[dep]:=i; b[i]:=false; if dep=m then print else try(dep+1); b[i]:=true; end; end; ////////////////////////////////////////////////////////////
排列与组合的概念与计算公式
3.其他排列与组合公式 • 从n个元素中取出r个元素的循环排列数= p(n,r)/r=n!/r(n-r)!. • n个元素被分成k类,每类的个数分别是 n1,n2,...nk这n个元素的全排列数为 =n!/(n1!*n2!*...*nk!). • k类元素,每类的个数无限,从中取出m个元素 的组合数为c(m+k-1,m).
排列组合问题2:加法原理和乘法原理

加法原理和乘法原理导言:加法原理和乘法原理,是排列组合中的二个基本原理,在解决计数问题中经常运用。
把握这两个原理,并能正确区分这两个原理,至关重要。
一、概念(一)加法原理如果完成某件事共有几类不同的方法,而每类方法中,又有几种不同的方法,任选一种方法都可以完成此事,那么完成这件事的方法总数就等于各种方法的总和,这一原理称为加法原理。
例:从甲地到乙地,一天中火车有4班,汽车有2班,轮船有3班,那么,一天中乘坐这些交通工具从甲地到乙地,共有多少种不同的走法?解析:把乘坐不同班次的车、船称为不同的走法。
要完成从甲地到乙地这件事,可以乘火车,也可以乘汽车,还可以乘轮船,一天中,乘火车有4种走法,乘汽车有2种走法,乘轮船有3种走法。
而乘坐火车、汽车、轮船中的任何一班次,都可以从甲地到乙地,符合加法原理。
所以从甲地到乙地的总的走法=乘火车的4种走法+乘汽车的2种走法+乘轮船的3种走法=9种不同的走法(二)乘法原理如果做某件事,需要分几个步骤才能完成,而每个步骤又有几种不同的方法,任选一种方法都不能完成这件事,那么完成这件事的方法总数,就等于完成各步骤方法的乘积。
例:用1、2、3、4这四个数字可以组成多少个不同的三位数?解析:要完成组成一个三位数这件事,要分三个步骤做,首先选百位上的数,再选十位上的数,最后选个位上的数。
选百位上的数这一步骤中,可选1、2、3、4任何一个,共4种方法选十位上的数这一步骤中,可选除百位上已选好那个数字之外的三个数字,共3种方法选个位上的数这一步骤中,可选除百、十位上已选好的两个数字之外的另两个数字,共2种方法单独挑上面的任何一步中的任何一种方法,都不能组成一个三位数,符合乘法原理所以,可以组成:4×3×2=24(个)不同的三位数二、加法原理和乘法原理的区别什么时候使用加法原理,什么时候使用乘法原理,最关键是要把握住加法原理与乘法原理的区别。
从上面两个例子我们容易发现,加法原理与乘法原理最大的区别就是:如果完成一件事有几类方法,不论哪一类方法,都能完成这件事时,运用加法原理,简称为“分类-----加法”;如果完成一件事要分几个步骤,而无论哪一个步骤,都只是完成这件事的一部分,只有每一步都完成了,这件事才得以完成,这里运用乘法原理,简称为“分步----乘法”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C
……
D
从n个不同元素取 k个(允许重复) (1 k n)的不同排列总数为:
例如:从装有4张卡片的盒中 有放回地摸取3张
第1张 第2张
第3张
1 2 34
n=4,k =3
1
1
1
2
2
2 共有4.4.4=43种可能取法
3
3
3
4
4
4
2、组合: 从n个不同元素取 k个 (1 k n)的不同组合总数为:
顺序不同是 不同的排列
而组合不管 顺序
从3个元素取出2个 从3个元素取出2个 的排列总数有6种 的组合总数有3种
排列、组合的几个简单公式 1、排列: 从n个不同元素取 k个 (1 k n)的不同排列总数为:
k = n时称全排列
第1次选取 A
B C
第2次选取 B C D
第3次选取
C 例如:n=4, k =3
例如,某人要从甲地到乙地去, 可以乘火车, 也可以乘轮船.
火车有两班
甲地 回答是 3 + 2 种方法
乙地
轮船有三班
ቤተ መጻሕፍቲ ባይዱ
乘坐不同班次的火车和轮船,共有几种方法?
基本计数原理
2. 乘法原理
设完成一件事有m个步骤,
第一个步骤有n1种方法, 第二个步骤有n2种方法, 则完成这件事共有
…;
第m个步骤有nm种方法,
r1个 元素
因为
r2个 元素
…
n个元素
rk个 元素
请回答:
对排列组合,我们介绍了几个计算公式?
排列: 选排列,全排列, 允许重复的排列 ;
组合; 分组分配.
必须通过每一步骤,
种不同的方法 .
才算完成这件事,
例如,若一个男人有三顶帽子和两 件背心,问他可以有多少种打扮?
可以有
种打扮
加法原理和乘法原理是两个很重要 计数原理,它们不但可以直接解决不少 具体问题,同时也是推导下面常用排列 组合公式的基础 .
排列、组合的几个简单公式 排列和组合的区别:
3把不同的钥匙的6种排列
常记作 ,称为组合系数。
3、组合系数与二项式展开的关系
组合系数 又常称为二项式系数,因为 它出现在下面的二项式展开的公式中:
利用该公式,可得到许多有用的组合公式: 令 a=b=1,得
令 a=-1,b=1
由 运用二项式展开 有
比较两边 xk 的系数,可得
4、n个不同元素分为k组,各组元素数目 分别为r1,r2,…,rk的分法总数为