第9章方差分析思考与练习-带答案

合集下载

第9章 方差分析

第9章  方差分析

第九章 方差分析教学目的:理解方差分析的一般原理;掌握完全随机设计和随机区组设计方差分析的步骤;熟悉事后检验方法。

教学重点:完全随机化设计和随机区组设计类型的方差分析,事后检验。

教学时数:8学时Z 、t 检验用于两组样本平均差异的显著性检验,是通过检验两组样本平均值间的差异来推论各自代表的两总体均值的差异。

但在实际工作中,我们有时需要同时对多于两个的总体平均数有无显著性差异作出检验,如下例:例:某研究者设计了三种不同的教学方法,为比较三种方法有无优劣之分,他随机抽取了三组被试,每组6人,各组分别接受一种教法的教学,学习同一种材料,学完之后进行统一测试,测得结果如下,问这样的结果是否支持三种教学方法有无优劣之分。

对于这样一种多个总体平均数差异的显著性检验问题,似乎可用Z 、t 检验分别两两成对比较,但是我们不能忘记统计决策是有犯错误的风险的,在对两个总体平均数作检验时,犯弃真错误(Ho 为真,拒绝)的概率为α,结论正确的概率为1-α,比较次数会随着总体的增多而迅速增大,如此例,323==C n ,那第连续三次都正确的概率为3)1(α-,结论出错的概率为3)1(1α--,这个值>α,不符合我们希望在一次检验中犯弃真错误的概率为α的要求了。

因此,在对多个总体平均数作显著性检验时,采用Z 、t 检验两两逐对比较并不是一种理想的方法,另外,从检验工作量来说,平均数个数增多,两两比较次数迅速增多,工作量增大。

本章所介绍的方差分析,又称作变异数分析(Analysis of Variance ,缩写为ANOV A ),就是一种用于多个总体平均数差异显著性检验,既不增加犯错误的概率,又不加大工作量的一次性通盘检验方法。

因对平均数的检验是通过对方差的分析比较进行的,故称方差分析。

方差分析是统计学中一种独特的假设检验方法,多个总体平均数差异显著性检验是其基本功能,但其功能不仅仅如此,还可以用于两种以上实验处理的数据分析(包括同时在多个不同方向上分别进行各向内多个平均数之间的比较,还可侦查不同方向因素之间有无交互作用)。

第9章 方差分析

第9章 方差分析

第九章方差分析➢学习目标◆了解方差分析的一般原理◆掌握方差分析的步骤◆掌握事后检验方法➢学习内容◆方差分析的一般原理◆完全随机设计方差分析◆多因素方差分析◆随机区组方差分析◆事后检验➢方差分析的基本原理及步骤方差分析又称变异分析,其主要功能在于分析实验数据中不同来源的变异对总变异贡献的大小,从而确定实验中自变量是否对因变量有重要影响。

◆方差分析的基本原理:综合的F检验(1)综合虚无假设和部分虚无假设主要处理两个以上的平均数之间的差异检验问题。

研究为多组实验设计,需要检验的虚无假设是“任何一对平均数”之间是否有显著性差异。

设定虚无假设为,样本归属的所有总体平均数都相等,一般把这一假设称为“综合的虚无假设”(方差分析)。

组间的虚无假设相应的就称为“部分虚无假设”(事后检验)。

◆方差分析的基本原理:综合的F检验(2)方差的可分解性方差分析依据的基本原理就是方差(或变异)的可加性原则。

确切的说应该是方差的可分别性。

方差分析把实验数据的总变异分解为若干个不同来源的分量。

不同强度噪音下解数学题犯错误频数由于被试分组是随机分派,个体差异及实验误差带有随机性质,因而组内变异与组间变异相互独立,可以分解。

方差分析中组间均方和组内均方分别表示为:平方和的大小与项目数有关(即k 或n )。

方差分析中组间变异与组内变异的比较不能直接比较各自的平方和,必须将项目数的影响去掉求均方。

比较组间均方与组内均方要用F检验。

方差分析关心的是组间均方是否显著大于组内均方。

如果组间均方小于组内均方,无须检验其是否小到显著性水平,因而总是将组间均方放在分子位置,进行单侧检验。

即F> 1 且落入F分布的临界区域说明数据的总变异基本上由不同的实验处理所造成,或者说不同的实验处理之间存在着显著差异。

◆方差分析的过程(1)求平方和为了简便,一般直接从原始数据计算平方和:◆方差分析的过程(2)计算自由度(3)计算均方◆方差分析的过程(4)计算F值(5)查F值表进行F检验并作出决策(6)陈列方差分析表◆方差分析的基本假定进行方差分析时,数据必须满足几个假定条件,否则得出的结论可能产生错误。

第9章 方差分析

第9章 方差分析



Dependent List:weight Factor:fodder Contrasts选项: 多项式比较(AD与BC比较和AC与BD比较) Post Hoc选项: 均值多重比较LSD和Tamhane’s T2 ,一致性子集 检验Duncan(各种方法的使用条件-方差齐或不齐) Options选项:Descriptive描述统计量,Homogeneity-ofvariance方差齐次性检验,Means plot均值分布图 结果除了方差分析表,还有很多选项相应的结果 结论:四种饲料对猪体重增加的作用有显著性差异,还可得知 ABCD四种饲料对猪平均体重增加多少(越来越多)。

9.3.2 单因变量多因素方差分析的菜单和选择项
菜单:Analyze->General Linear Model-> Univariate 选项:


选择分析模型Model: 默认全模型Full Factorial:包括所有因素变量的主效应、所有 协变量的主效应、所有因素与因素的交互效应,不包括协变量与 其他因素的交互效应。 自定义模型Custom:主效应(Main effects及其因素变量)、交 互变量(有交互效应维数之分) 选择分解平方和的方法(默认为TYPE III) Include Intercept in model:系统默认截距包括在回归模型中。 选择对照方法Contrasts 选择分布图形Plots 选择多重比较分析Post Hoc 保存运算结果的选择项Save 选择输出项Options

零假设H0:组间均值无显著性差异(即四种饲料对 猪体重增加的平均值无显著性差异);
9.2.2--9.2.3 单因素方差分析的选择项和例子
使用选择项的单因素方差分析:

方差分析习题答案

方差分析习题答案

方差分析习题答案【篇一:方差分析习题】lass=txt>班级_______ 学号_______ 姓名________ 得分_________一、单项选择题1、方差分析所要研究的问题是() a、各总体的方差是否相等 b、各样本数据之间是否有显著差异 c、分类型自变量对数值型因变量的影响是否显著 d、分类型因变量对数值型自变量是否显著2、组间误差是衡量因素的不同水平(不同总体)下各样本之间的误差,它()a、只包含随机误差b、只包含系统误差c、既包含随机误差也包含系统误差d、有时包含随机误差,有时包含系统误差3、组内误差() a、只包含随机误差b、只包含系统误差 c、既包含随机误差也包含系统误差d、有时包含随机误差,有时包含系统误差4、在单因素方差分析中,各次实验观察值应()a、相互关联b、相互独立c、计量逐步精确d、方法逐步改进5、在单因素方差分析中,若因子的水平个数为k,全部观察值的个数为n,那么()a、sst的自由度为n b 、ssa的自由度为k c、 sse的自由度为n-k-1 d、sst的自由度等于sse的自由度与ssa的自由度之和。

6、在方差分析中,如果拒绝原假设,则说明()a、自变量对因变量有显著影响b、所检验的各总体均值之间全部相等c、不能认为自变量对因变量有显著影响d、所检验的各样本均值之间全不相等7、在单因素分析中,用于检验的统计量f的计算公式为() a、ssa/sseb、ssa/sst c、msa/msed、mse/msa8、在单因素分析中,如果不能拒绝原假设,那么说明组间平方和ssa () a、等于0 b、等于总平方和c、完全由抽样的随机误差所决定d、显著含有系统误差9、ssa自由度为()a、r-1b、n-1c、n-rd、r-n二、实验分析题1、某公司采用四种颜色包装产品,为了检验不同包装方式的效果,抽样得到了一些数据并进行单因素方差分析实验。

实验依据四种包装方式将数据分为4组,每组有5个观察值,用excel中的数据分析工具,在0.05的显著水平下得到如下方差分析表:方差分析(1)填表:请计算表中序号标出的七处缺失值,并直接填在表上。

方差分析习题及答案

方差分析习题及答案

方差分析习题及答案方差分析习题及答案方差分析是一种统计方法,用于比较两个或多个样本均值之间的差异。

它可以帮助我们确定是否存在显著的差异,并进一步了解这些差异的来源。

在本文中,我们将介绍一些方差分析的习题,并提供相应的答案。

习题一:某研究人员想要比较三种不同的肥料对植物生长的影响。

他随机选择了30个植物,并将它们分成三组,每组10个。

每组植物分别使用不同的肥料进行施肥。

研究人员在10天后测量了每组植物的平均生长高度(单位:厘米)。

下面是测量结果:组1:12, 14, 15, 16, 17, 13, 14, 15, 16, 18组2:10, 11, 13, 12, 14, 15, 13, 12, 11, 10组3:9, 10, 8, 11, 12, 13, 10, 9, 11, 12请使用方差分析方法,判断这三种肥料是否对植物生长有显著影响。

答案:首先,我们需要计算每组的平均值和总体平均值。

组1的平均值为15.0,组2的平均值为11.1,组3的平均值为10.5。

总体平均值为12.2。

接下来,我们计算组内平方和(SS_within),组间平方和(SS_between)和总体平方和(SS_total)。

根据公式,我们有:SS_within = Σ(xi - x̄i)^2SS_between = Σ(ni * (x̄i - x̄)^2)SS_total = Σ(xi - x̄)^2其中,xi代表第i组的观测值,x̄i代表第i组的平均值,x̄代表总体平均值,ni代表第i组的样本量。

计算得到:SS_within = 23.0SS_between = 48.6SS_total = 71.6接下来,我们计算均方(mean square):MS_within = SS_within / (n - k)MS_between = SS_between / (k - 1)其中,n代表总样本量,k代表组数。

计算得到:MS_within = 2.56MS_between = 24.3最后,我们计算F值:F = MS_between / MS_within计算得到:F = 9.49根据F分布表,自由度为2和27时,F临界值为3.35。

概率论与数理统计_浙大四版_习题解_第9章_方差分析

概率论与数理统计_浙大四版_习题解_第9章_方差分析

概率论与数理统计(浙大四版)习题解 第9章 方差分析约定:以下各个习题所涉及的方差分析问题均满足方差分析模型所要求的条件。

【习题9.1】今有某种型号的电池三批,它们分别是C B A ,,三个工厂所生产的。

为评比其质量,各随机抽取5只电池为样品,经试验得其寿命(小时)如下表。

三批电池样品的寿命检测结果 A B C 40 42 26 28 39 50 48 45 34 32 40 50 383043(1)试在显著性水平0.05下检验电池的平均寿命有无显著的差异。

(2)若差异显著,试求B A μμ-、C A μμ-及C B μμ-的置信水平为0.95的置信区间。

〖解(1)〗设,,A B C μμμ分别表C B A ,,三厂所产电池的寿命均值,则问题(1)归结为检验下面的假设(单因素方差分析)01::,,不全相等A B CA B C H H μμμμμμ==设A 表因素(工厂),设,,,T R A CR 分别表样本和、样本平方和、因素A 计算数、矫正数,其值的计算过程和结果如下表。

样本数据预处理表A B C 预处理结果40 42 26 28 39 50 n=15 48 45 34 32 40 50 a=338 30 43 CR=22815 j T 213 150 222 T=585 2j j T n9073.8 4500 9856.8 A=23430.6 2ijx∑913745409970R=23647112221121158558522815152364723430.6jjj n aij j i n aijj i n a ij j j i T x T CR n R x A x n =============⎛⎫== ⎪ ⎪⎝⎭∑∑∑∑∑∑计算平方和及自由度如下23647228158321151142364723430.6216.41531223430.622815615.61312T E A SST R CR df n SSE R A df n a SSA A CR df a =-=-==-=-==-=-==-=-==-=-==-=-= 方差分析表方差来源 平方和 自由度 均方 F 值()0.052,12F因素A 615.6 2 307.8 17.07 3.89 误差 216.4 12 18.0333总和83214因17.07 3.89值F =>在拒绝域内,故在0.05水平上拒绝0H ,即认定各厂生产的电池寿命有显著的差异。

第九章 方差分析

第九章 方差分析

3。计算各部分变异的均方 在方差分析中 ,方差也称为均方,是各部分的离均差平 方和除以其相应的自由度,用MS表示。基 本公式为:MS=SS/ν。 4。计算统计量F值 F值是指两个均方之比。 一般是用较大的均方除以较小的均方。故 F值一般不会小于1。
5。确定P值,推断结论 根据分子ν1,分母 ν2,查F界值表(方差分析用),得到F 值的临界值(critical value),即:如 果F≥F界值,则P≤0.05,在α=0.05水准 上拒绝H0,接受H1。可以认为各样本所代表 的总体均数不全相等。如果想要了解哪两 个样本均数之间有差异,可以继续进行各 样本均数的两两比较。

结论:拒绝H0。四个行业的服务质量有显著差异
用Excel分析
选一批单元格输入原始数据; 选中数据区域,“工具”→“数据分析”;
1.输入数据表;选“工具”→“数据分析 ”→“……‖
1.输入数据表;选“工具”→“数据分 析”→“单因素方差分析”
―单因素方差分析”对话框中:输入区 域,行,输出区域
Ar
X r1 ... X rnr
列和Ti X ij
j 1
ni
T 1
T2
...
Tr
总和 Ti
i 1
r
列平均X i Ti ni
(水平组内平均值)
X1
X2
...
Xr
r
(总平均值)
1 r X ni X i n i 1
其中诸
ni 可以不一样, ni n
i 1
单因素方差分析表
3.处理
处理——指按单因素的各个“水平”条 件或多因素的各个“水平”的组合条件进行 的重复实验。 例如,要研究性别因素对智力发展的影 响,可以从同龄学生中各抽取男女学生50名 参加智力测验。性别因素所分成的两个水平 (男和女)即两种处理。

方差分析习题与答案

方差分析习题与答案

统计学方差分析练习题与答案一、单项选择题1.在方差分析中,()反映地是样本数据与其组平均值地差异A 总离差B 组间误差C 抽样误差D 组内误差2.是()A 组内平方和B 组间平方和C 总离差平方和D 因素B地离差平方和3.是()A 组内平方和B 组间平方和C 总离差平方和D 总方差4A r,1AD2ACE3ACE4(AD12345.在试验设计中,把要考虑地那些可以控制地条件称为,把因素变化地多个等级状态称为 .6.在单因子方差分析中,计算F统计量地分子是方差,分母是方差.7.在单因子方差分析中,分子地自由度是,分母地自由度是 .四、计算题1.有三台机器生产规格相同地铝合金薄板,为检验三台机器生产薄板地厚度是否相同,随机从每台机器生产地薄板中各抽取了5个样品,测得结果如下:机器1:0.236,0.238,0.248,0.245,0.243机器2:0.257,0.253,0.255,0.254,0.261机器3:0.258,0.264,0.259,0.267,0.262问:三台机器生产薄板地厚度是否有显著差异?2.养鸡场要检验四种饲料配方对小鸡增重是否相同,用每一种饲料分别喂养了6只同一品种同时孵出地小鸡,共饲养了8周,每只鸡增重数据如下:(克)配方:370,420,450,490,500,450配方:490,380,400,390,500,410配方:330,340,400,380,470,360配方:410,480,400,420,380,410问:四种不同配方地饲料对小鸡增重是否相同?3.今有某种型号地电池三批,它们分别为一厂、二厂、三厂三个工厂所生产地.为评比其一厂二厂三厂41.1.1234567.四、计算题1.解:根据计算结果列出方差分析表因为(2,12)=3.89<32.92,故拒绝,认为各台机器生产地薄板厚度有显著差异.2.解:根据计算结果列出方差分析表。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第九章方差分析【思考与练习】一、思考题1. 方差分析的基本思想及其应用条件是什么?2. 在完全随机设计方差分析中SS SS SS、、各表示什么含义?总组间组内3. 什么是交互效应?请举例说明。

4. 重复测量资料具有何种特点?5. 为什么总的方差分析的结果为拒绝原假设时,若想进一步了解两两之间的差别需要进行多重比较?二、最佳选择题1. 方差分析的基本思想为A. 组间均方大于组内均方B. 误差均方必然小于组间均方C. 总变异及其自由度按设计可以分解成几种不同来源D. 组内方差显著大于组间方差时,该因素对所考察指标的影响显著E. 组间方差显著大于组内方差时,该因素对所考察指标的影响显著3. 完全随机设计的方差分析中,下列式子正确的是4. 总的方差分析结果有P<0.05,则结论应为 A. 各样本均数全相等 B. 各总体均数全相等 C. 各样本均数不全相等 D. 各总体均数全不相等 E. 至少有两个总体均数不等5. 对有k 个处理组,b 个随机区组的资料进行双因素方差分析,其误差的自由度为A. kb k b --B. 1kb k b ---C. 2kb k b ---D. 1kb k b --+E. 2kb k b --+6. 2×2析因设计资料的方差分析中,总变异可分解为 A. MS MS MS =+B A 总 B. MS MS MS =+B 总误差 C. SS SS SS =+B 总误差D. SS SS SS SS =++B A 总误差E. SS SS SS SS SS =+++B A AB 总误差7. 观察6只狗服药后不同时间点(2小时、4小时、8小时和24小时)血药浓度的变化,本试验应选用的统计分析方法是 A. 析因设计的方差分析B. 随机区组设计的方差分析C. 完全随机设计的方差分析D. 重复测量设计的方差分析E. 两阶段交叉设计的方差分析8. 某研究者在4种不同温度下分别独立地重复10次试验,共测得某定量指标的数据40个,若采用完全随机设计方差分析进行统计处理,其组间自由度是A.39B.36C.26D.9E. 39. 采用单因素方差分析比较五个总体均数得0.05P ,若需进一步了解其中一个对照组和其它四个试验组总体均数有无差异,可选用的检验方法是A. Z检验B. t检验C. Dunnett–t检验D. SNK–q检验E. Levene检验三、综合分析题1. 某医生研究不同方案治疗缺铁性贫血的效果,将36名缺铁性贫血患者随机等分为3组,分别给予一般疗法、一般疗法+药物A低剂量,一般疗法+药物A高剂量三种处理,测量一个月后患者红细胞的升高数(102/L),结果如表9-1所示。

问三种治疗方案有无差异?表9-1 三种方案治疗一个月后缺铁性贫血患者红细胞的升高数(102/L)编号一般疗法一般疗法+A1 一般疗法+A21 0.81 1.32 2.352 0.75 1.41 2.503 0.74 1.35 2.434 0.86 1.38 2.365 0.82 1.40 2.447 0.75 1.43 2.408 0.74 1.38 2.439 0.72 1.40 2.2110 0.82 1.40 2.4511 0.80 1.34 2.3812 0.75 1.46 2.402. 在药物敏感试验中,欲比较三种弥散法的抑菌效果,每种方法均采用三种药物,观察其抑菌效果,以抑菌环的直径为观察指标,结果如表9-2所示,试比较三种方法的抑菌效果。

表9-2 三种药物在不同弥散法下的抑菌效果(mm)药物弥散法纸片挖洞钢圈黄芪27.5 24.3 20.0 27.6 24.6 21.026.9 25.0 20.627.3 27.7 20.8大黄20.9 24.6 19.121.2 24.7 19.320.5 23.9 18.721.3 24.8 18.5青霉素27.4 22.0 29.6 27.6 21.7 30.2 26.9 21.8 29.5 26.7 22.3 30.43. 某试验研究饮食疗法和药物疗法降低高胆固醇血症患者胆固醇的效果有无差别,随机选取14名高胆固醇血症患者,随机等分为两组,分别采用饮食疗法和药物疗法治疗一个疗程,测量试验前后患者血胆固醇含量,结果如表9-3所示,请问两种疗法降胆固醇效果有无差异。

表9-3 不同治疗方法下胆固醇变化情况(mmol/L)编号饮食治疗药物治疗试验前试验后试验前试验后1 6.11 6.00 6.40 6.352 7.59 7.28 7.00 7.103 6.42 6.30 6.53 6.415 9.17 8.42 6.81 6.736 7.61 7.22 8.16 7.657 6.60 6.65 6.98 6.524. 为研究某中学初一年级、初二年级和初三年级学生周日锻炼时间情况,从这三个年级中各随机抽取20名学生,调查得到学生周日锻炼时间如下表9-4所示。

问这三个年级学生周日锻炼时间是否不同?表9-4 初中不同年级学生的锻炼时间(分)一年级二年级三年级37.856 59.164 48.77870.793 36.650 51.05786.928 38.511 47.60958.785 48.945 48.42873.923 29.367 42.81461.435 41.988 52.30364.130 69.419 54.32767.169 33.109 35.59149.099 38.872 55.01362.728 53.401 36.08452.534 62.814 21.30745.230 38.454 46.41940.400 32.802 41.83644.399 37.683 37.48133.091 48.944 35.78163.469 48.869 31.35441.704 41.920 45.19062.268 46.859 40.92458.209 65.067 38.87763.319 38.403 27.259经数据分析结果见下表:表9-5 三个年级之间的t检验结果组别t P一年级和二年级 2.85 0.0071一年级和三年级 4.09 0.0002二年级和三年级 1.12 0.2710问:(1) 该资料采用的是何种统计分析方法?(2) 所使用的统计分析方法是否正确?为什么?(3) 若不正确,可以采用何种正确的统计分析方法。

请作分析?【习题解析】一、思考题1. 方差分析的基本思想是把全部观察值的总变异按设计和需要分解成两个或多个组成部分,然后将各部分的变异与随机误差进行比较,来判断总体均数间的差别是否具有统计学意义。

应用条件:各样本是相互独立的随机样本,且服从正态分布,各样本方差齐性。

是各观测值与总均值之差的平方和,即总离均差平方和,表示总变异的大2. SS总表示组间变异,指各处理组均值大小的不同,是由处理因素和随机误小;SS组间表示组内变异,指同一处理组内部各观察值之间的变异,是由差造成的;SS组内随机误差造成的。

3. 交互效应是指某一因素的效应随另一因素不同水平的变化而变化,称这两个因素之间存在交互效应。

例如:某实验研究A、B两种药物在不同剂量情况下对某病的治疗效果,药物A在不同剂量时,B药的效应不同,或者药物B在不同剂量时,A药的效应不同,则A、B两药间存在交互效应。

4. 重复测量资料中的处理因素在受试者间是随机分配的,受试者内的因素即时间因素是固定的,不能随机分配;重复测量资料各受试者内的数据彼此不独立,具有相关性,后一个时间点的数据可能受到前面数据的影响,而且时间点离得越近的数据相关性越高。

5. 方差分析中备择假设是多个总体均数不等或不全相等,拒绝原假设只说明多个总体均数总的来说差别有统计学意义,并不能说明任意两总体均数之间均有差别。

因此,若希望进一步了解两两间的差别,需进行多重比较。

二、最佳选择题1. C2. C3. A4. E5. D6. E7. D8. E9. C三、综合分析题1. 解:本题采用完全随机设计的方差分析。

表9-6 三种方案治疗一个月后缺铁性贫血患者红细胞的升高数(102/L)一般疗法 一般疗法+A1一般疗法+A2合计 X0.81 1.32 2.35 0.75 1.41 2.50 0.74 1.35 2.43 0.86 1.38 2.36 0.82 1.40 2.44 0.87 1.33 2.46 0.75 1.43 2.40 0.74 1.38 2.43 0.72 1.40 2.21 0.82 1.40 2.45 0.80 1.34 2.38 0.751.462.40 i n12 12 12 36 (n ) i X ∑ 9.43 16.60 28.81 54.84(X ∑) i X0.7858 1.3833 2.40082i X ∑ 7.438522.982869.228199.6494(2X ∑)(1) 方差分析1) 建立检验假设,确定检验水准0H :123μμμ==,即三种方案治疗后缺铁性贫血患者红细胞升高数相同 1H :321μμμ、、不全相同,即三种方案治疗后缺铁性贫血患者红细胞升高数不全相同α=0.05 2) 计算检验统计量22()/(54.84)/36=83.5396C X N ==∑22()99.6494-83.5396=16.1098SS X X X C =-=-=∑∑总136135N ν=-=-=总 22()=() i i i i SS n X X X C =--∑∑∑组间2229.4316.6028.81()83.539616.0022121212=++-=1312k ν=-=-=组间16.109816.00220.1076SS SS SS =-=-=总组内组间33N k ν=-=组内 /= 2452.7216/MS SS v F MS SS v ==组间组间组间组内组内组内方差分析结果见表9-7。

表9-7 完全随机资料的方差分析表3) 确定P 值,作出统计推断查F 界值表(附表4)得P <0.01,按α=0.05水准,拒绝0H ,接受1H ,差别有统计学意义,可以认为三种不同方案治疗后患者红细胞升高数的总体均数不全相同。

(2) 用Dunnett-t 法进行多重比较。

1) 建立检验假设,确定检验水准0H :任一实验组与对照组的总体均数相同 1H :任一实验组与对照组的总体均数不同 0.05α= 2) 计算检验统计量0.0033e MS = 12312n n n ===0.02T C X X S -=== 表9-8 多个样本均数的Dunnett-t 检验计算表对比组 (1)均数差值 (2) 标准误 (3) D t (4) Dunnett -t 界值P一般疗法与一般疗法+A1 0.60 0.02 30 2.32 <0.05 一般疗法与一般疗法+A21.620.02812.32<0.053) 确定P 值,作出统计推断将表9-8中D t 取绝对值,并以计算e MS 时的自由度 33e ν=和实验组数a =k −1=2(不含对照组)查Dunnett-t 界值表得P 值,列于表中。

相关文档
最新文档